
S1 Nested Sampling

Nested sampling is a Bayesian inference technique that was originally introduced by John Skilling in [11] to
compute the Bayesian evidence

Z =

∫
l(θ)dπ(θ). (1.1)

NS can be viewed as an importance sampling technique (as for instance discussed in [10]) as it approximates
the evidence by generating samples θi, weights wi and likelihoods li = l(θi) such that the weighted samples
(θi, wi) can be used to obtain numerical approximations of a function f over the prior π

∑
i

wif(θi) ≈
∫
f(θ)dπ(θ). (1.2)

To compute an approximation Ẑ of the Bayesian evidence 1.1, f is chosen to be the likelihood function l

Ẑ =
∑
i

wili ≈
∫
l(θ)dπ(θ). (1.3)

The points θi are sampled from the prior distribution constrained to super level sets of the likelihood
corresponding to an increasing sequence of thresholds. In this sense it can also be viewed as a sequential
Monte Carlo method, where the intermediate distributions are the nested super level sets of the likelihood.
This way, samples from NS are concentrated around the higher regions of the likelihood. One can also use
the weights li × wi instead of wi to approximate functions over the posterior P(θ)
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Ẑ

∑
f(θi)liwi ≈

∫
f(θ)dP(θ).

S1.1 NS algorithm

In the following we briefly outline the NS algorithm. First, a set L0 of N “live” particles {θi}i=1,...,N is
sampled from the prior π

θi ∼ π(θ)

and their likelihoods li = l(θi) are computed. Then the particle with the lowest likelihood

θ1 = arg min {l(θ)|θ ∈ L0}

gets removed from the set of live particles and saved together with its likelihood

ε1 := l(θ1)

in a set of “dead” particles D. A new particle θ? is then sampled from the prior under the constraint that
its likelihood is higher than ε1

θ? ∼ π(θ|l(θ) > ε1). (1.4)

This particle is combined with the remaining particles of L0 to form a new set of live particles L1 that are
now distributed according to the constrained prior π(θ|l(θ) > ε1), which we denote as

L1 ∼ π(θ|l(θ) > ε1).

This procedure is repeated until a predefined termination criteria is satisfied. The result is a sequence of
dead points θi with corresponding likelihoods εi that are concentrated in the regions of high likelihood. The
Nested Sampling procedure is shown in Algorithm 1.
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1: Given observations y and a prior π(θ) for θ.
2: Sample N particles θk from the prior π and save in the set L0, set D = {∅}
3: for i = 1, 2, . . . , m do
4: Set θi = arg min {l(θ)|θ ∈ Li−1} and εi = l(θi)
5: Add {θi, εi} to D
6: Set Li = Li−1\θi
7: Sample θ? ∼ π(θ|l(θ) > εi) and add it to Li
8: end for

Algorithm 1: Nested sampling algorithm

S1.2 Approximating the Bayesian Evidence

Nested sampling exploits the fact that the Bayesian evidence 1.1 can also be written1 (see [11]) as a one
dimensional integral

Z =

1∫
0

L(x)dx,

over the prior volume

x(ε) := π(l(θ) > ε) =

∫
l(θ)>ε

dπ(θ),

where L(x) denotes the likelihood corresponding to the constrained prior with volume x

L(x) = arg inf
ε
{x(ε) ≥ x} . (1.5)

We have visualized these quantities on a simple example with a uniform prior on [0, 1] in Figure S1.
The sampling scheme of nested sampling provides a sequence of likelihoods ε1 < ε2 < . . . < εm, but

their corresponding prior volumes x(εi) are not known. However, since the εi are obtained by iteratively
removing the lowest likelihood of N uniformly distributed points on the constrained prior π(θ|l(θ) > εi−1),
the prior volume x(εi) can be written as

xi := x(εi) = t(i)xi−1,

where each t(i) is an independent sample of the random variable t which is distributed as the largest of N
uniform random variables on the interval [0, 1] and x0 = 1 (For further justification and discussion on this
see [11, 4, 2] and the references within). The values t(i) are not known and need to be estimated. Since their
distribution is known2, they can be approximated by their means E(t) = N

N+1 (or by the mean of their logs

E(log(t)) = − 1
N ), and thus the ith prior volume can be approximated as

x̂i =

(
N

N + 1

)i
≈ xi. (1.6)

With these prior volumes one can compute the importance weights wi in equation 1.2 and 1.3 for each of
the dead particles θi as

wi = (x̂i−1 − x̂i) . (1.7)
1for this to hold some weak conditions have to be satisfied, see for details [2] and [4]
2t ∼ B(N, 1) with B(a, b) being the Beta distribution with parameters a and b.
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These weights correct for the fact that the samples in D are not drawn uniformly from the prior, but are
concentrated in areas of high likelihood. We note that to integrate a function on the parameter space Ω over
the prior π, as in equations 1.2, only these weights are needed. To approximate Z, NS uses these weights
to integrate the likelihood function l(θ) over the prior

Z =

1∫
0

L(x)dx ≈
m∑
i=1

L(xi)(x̂i−1 − x̂i) =
m∑
i=1

εiwi =: ẐmD (1.8)

where m is the number of performed NS iterations and the subscript D in ẐmD emphasizes that for NS the
evidence estimate is obtained using only the dead points in D. The justification for these weights as well
as an in depth discussion and error approximation can be found in [2, 7, 9] and the references therein.
This basic idea of nested sampling has seen several modifications and improvements over the years, along
with in-depth discussions of various sampling schemes for the constrained prior [3, 5], parallel formulations
[5, 6, 1] and several implementations [3, 5, 8].

S1.3 Termination of NS

Assuming that the distribution 1.4 can be efficiently sampled, each iteration of the NS scheme has the same
computational complexity (the computationally most expensive step is usually to sample θ? ∼ π(θ|l(θ) > εi)
and computing its likelihood). The NS algorithm is usually run until the remaining prior volume multiplied
by the highest likelihood in this volume is smaller than a predefined fraction of the current BE estimate (see
[11]). We write this quantity as

∆m
max := x̂m max

θ∈Lm
(l(θ))

1

ẐmD
.

Some other termination criteria have been suggested (for instance in [5]), but since the prior volume decreases
exponentially with the number of NS iterations and each iteration takes the same computational time, the
choice of the particular termination criterion is not critical.

S1.4 Parallelization of NS

The parallelization of NS can be done in a very straight forward manner. Still several different parallelization
schemes have been suggested in [5, 6, 1] (for a short overview see section S2). We use a parallelization scheme
similar to the one presented in [6], where at each iteration not only the one particle with the lowest likelihood
is resampled, but the r lowest particles. The resulting parallel scheme is outlined in Algorithm 2. With r
parallel particles the final approximation 1.8 changes to

ẐmD =
m∑
i=1

r∑
j=1

εi,j(x̂i,j−1 − x̂i,j), (1.9)

with xi,j = t
(i)
j xi−1,r and t

(i)
j being ith sample of tj which is the jth largest number among N uniform

numbers between 0 and 1 3 (with the obvious boundary condition x0,r = 1). We note that this is slightly
different than the parallelization scheme presented in [5, 6, 1], for a brief discussion see S2.

3This means tj ∼ B(N − j + 1, j)
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1: Given observations y and a prior π(θ) for θ.
2: Sample N particles θk from the prior π and save them in the set L0, set D = {∅}
3: for i = 1, 2, . . . , m do
4: for j = 1, 2, . . . , r do
5: Set θi,j = arg min {l(θ)|θ ∈ Li−1} and εi,j = l(θi,j)
6: Add {θi,j , εi,j} to D
7: remove θi,j from Li−1
8: end for
9: Set Li = Li−1
10: for j = 1, 2, . . . , r do
11: Sample θ? ∼ π(θ|l(θ) > εi,r) and add it to Li
12: end for
13: end for

Algorithm 2: Parallel nested sampling algorithm. The samples drawn in line 11 are all independent
and thus can be drawn in parallel.
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