
S2 Appendix. Variational inference algorithm. In this supplementary text we
present the algorithm used to approximate log model evidence for subsequent Bayesian
model comparison.

A free-form variational inference algorithm for general linear
models with spherical error covariance matrix.

We consider variational inference for probabilistic models of the form

p(y, β, λ) = p(y|β, λ)p(β)p(λ),

where

p(y|β, λ) := N(y;Xβ, λ−1In), p(β) = N(β; 0p, α
−1Ip), and p(λ) = G(λ;βλ, γλ).

Here, y ∈ Rn denotes the observed random variable modeling data, β ∈ Rp, λ > 0
denote unobserved random variables modeling regression weights and observation noise
precisions, respectively, and X ∈ Rn×p denotes a design matrix. The
parameter-conditional distribution of y is specified in terms of a multivariate Gaussian
density with expectation parameter Xβ ∈ Rn and a spherical covariance matrix
parameter λ−1In. The marginal (or prior) distribution of β is specified in terms of a
multivariate Gaussian density with zero expectation parameter 0p ∈ Rp and covariance
matrix parameter α−1Ip, where α > 0 denotes a precision parameter. Finally, the
distribution of λ is specified in terms of a Gamma density in its shape and scale
parameterization, where βλ, γλ > 0 denote the shape and scale parameters, respectively.

Model estimation

Application of the free-form variational inference theorem yields an algorithm that,
upon convergence, furnishes an approximation to the data-conditional (posterior)
parameter distribution of the form

q(β)q(λ) ≈ p(β, λ|y).

Here, the variational distributions take the form

q(β) = N(β;mβ , Sβ) and q(λ) = G(λ; bλ, cλ),

where mβ ∈ Rp and Sβ ∈ Rp×p denote the converged variational expectation and
covariance parameters, respectively, while bλ, cλ > 0 denote the converged variational
shape and scale parameters. Finally, the algorithm furnishes, upon convergence, the
variational free energy lower bound

F (q(β)q(λ)) ≤ ln

∫∫
p(y, β, λ) dλ dβ = ln p(y)

to the log marginal likelihood, also known as log model evidence.
The algorithm takes the following form
Initialization

0. Set
q(0)(β) := N

(
β;m

(0)
β , S

(0)
β

)
and q(0)(λ) := G

(
λ; b

(0)
λ , c

(0)
λ

)
with variational parameters

m
(0)
β := 0p, S

(0)
β := α−1Ip
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and
b
(0)
λ := βλ, c

(0)
λ :=

n

2
+ γλ,

respectively. Define a convergence criterion δ > 0 and a maximum number of
iterations ni.

Iterations
For i = 1, ..., ni or until convergence is reached

1. q(β) update

Set
q(i)(β) := N

(
β;m

(i)
β , S

(i)
β

)
where

S
(i)
β :=

(
b
(i−1)
λ c

(i−1)
λ XTX + αIp

)−1

and

m
(i)
β := b

(i−1)
λ c

(i−1)
λ S

(i)
β XT y

2. q(λ) update

Set
q(i)(λ) := G

(
λ; b

(i)
λ , c

(i)
λ

)
where

b
(i)
λ :=

(
1

2

(
tr
(
S

(i)
β XTX

)
+

(
y −Xm

(i)
β

)T (
y −Xm

(i)
β

))
+

1

βλ

)−1

and
c
(i)
λ :=

n

2
+ γλ.

Note that c
(i)
λ stays constant throughout.

3. F (q(β)q(λ)) update

Set
F (i) := F

(
q(i)(β)q(i)(λ)

)
,

where

F
(
q(i)(β)q(i)(λ)

)
:= L(i)

a −KL
(
q(i)(β)||p(β)

)
−KL

(
q(i)(λ)||p(λ)

)
where with the digamma function ψ, L

(i)
a denotes the average likelihood term

L
(i)
a := −

n

2
ln 2π −

1

2
b
(i)
λ c

(i)
λ

(
y −Xm

(i)
β

)T (
y −Xm

(i)
β

)
−

1

2
b
(i)
λ c

(i)
λ tr

(
S
(i)
β XTX

)
+
n

2
ψ
(
c
(i)
λ

)
+ ln b

(i)
λ

and KL(q(x)||p(x)) denotes the KL-divergence between the densities q(x) and
p(x).

4. Convergence assessment

If i > 1, evaluate
δF = F (i) − F (i−1).

Then,

• if δF < 0, i.e., the variational free energy has decreased, issue a warning and
end the algorithm,

• if 0 < δF < δ, i.e., the variational free energy has increased less than δ, end
the algorithm and declare convergence,

• else go to 1.
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Prior variational distributions

In order to select the probabilistic model of interest that minimizes Type II errors under
the constraint of minimizing Type I errors the following test procedure was implemented.
Data was simulated with low signal-to-noise levels (true, but unknown, λ = 0.001 and
β = [1; 1]) and underwent z-score normalization, after which model retrieval was
evaluated for a range of values for the precision parameter α. For data generated by the
null model, a range of values of α was determined for which false positives were highly
unlikely (exceedence probability φ = 1 in favour of the null model in every one of the
100 iterations). Next, for data generated by the non-null models, the value of α was
selected which lied within the previously established range and for which the difference
in log model evidence between null and non-null models was maximized. This procedure
yielded the following prior distributions which were used in all described evaluations.

q(0)(β) := N(β; 0p, 0.001Ip) and q
(0)(λ) := G(λ; 10, 0.1)
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