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Analytic results for well-mixed single deme with treatment

The dynamics of competition between drug-sensitive and drug-resistant strains of infection in an infinite,
well-mixed population where a fraction f of individuals receive treatment if infected is described by Eq. 1.
This system of equations tracks the proportion of the population in each treatment and infection category
(infected with the wild type and untreated (wu), infected with the wild type and treated (wt), infected
with the resistant strain and untreated (ru), and infected with the resistant strain and treated (rt)). These
equations were developed by first writing down the dynamics of the number of individuals in each state,
including uninfected (susceptible):

Ṡu = −k (Wu + (1− ε)Wt + (1− c)(Ru +Rt))Su + g(Wu +Ru),

Ẇu = k (Wu + (1− ε)Wt)Su − gWu,

Ṙu = k(1− c)(Ru +Rt)Su − gRu,
Ṡt = −k (Wu + (1− ε)Wt + (1− c)(Ru +Rt))St + g(Wt +Rt),

Ẇt = k(Wu + (1− ε)Wt)St − gWt,

Ṙt = k(1− c)(Ru +Rt)St − gRt.

(S.1)

The transmission rate k represents the rate at which each infected individual contacts and infects each
susceptible individual. Although we use the terms St and Su to track susceptible individuals who are
“treated” or “untreated”, our model is agnostic as to whether these uninfected individuals actually receive
drug, or if these markers simply indicate if these individuals will (or will not) receive treatment when infected.
While here we assume a pre-determined fraction f of the total population will receive treatment if infected,
similar models could be constructed assuming the decision to receive treatment is made instantaneously
upon infection with probability f , or that there is some rate of receiving treatment, such that a fraction f
will receive treatment before recovery. The analysis of these models gives identical steady state results.

Because in our model the total population size N , as well as the fraction of individuals who will (or will
not) receive treatment if infected, are both constant, we can remove the variables for susceptible individuals
using Su = N(1− f)−Wu−Ru and St = Nf −Wt−Rt. To further reduce the variables in this system and
remove any dependence on total population size, we let κ = kN and xi = Xi/N (the fraction of individuals
instead of the total number, for X = W,R and i = u, t), which then leads to Eq. 1. By keeping κ = kN as the
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constant parameter, we are implicitly assuming that the total rate at which a single individual can contact
and infect others when the population is completely susceptible (kN) is independent of the population size.
This is a reasonable assumption for many infections which require some type of active contact, and here
allows us to reduce the number of parameters required. None of our results depend on this scaling, and the
effect of changing population size is equivalent to changing κ in this deterministic model.

There are three possible equilibria of Eq. 1. In each of these equilibria, there is no possible coexistence
of infections. These equilibria are as follows:

1. No infection survives
wu = ru = wt = rt = 0 (S.2)

This uninfected equilibrium is only stable when

Rw0 =
κ(1− fε)

g
< 1

Rr0 =
κ(1− c)

g
< 1

(S.3)

2. Only wild-type (drug-sensitive) strain survives

wu = (1− f)

(
1− 1

Rw0

)
ru = 0

wt = f

(
1− 1

Rw0

)
rt = 0

(S.4)

This infected equilibrium is stable when

Rw0 > 1

Rr0 < Rw0
(S.5)

where the later condition implies c > fε.
3. Only drug-resistant strain survives

wu = 0

ru = (1− f)

(
1− 1

Rr0

)
wt = 0

rt = f

(
1− 1

Rr0

) (S.6)

This infected equilibrium is stable when

Rr0 > 1

Rw0 < Rr0
(S.7)

where the former condition implies c < fε.

2



Analytic results for two connected subpopulations

In an effort to be more general than in the main text, we consider the case of a population of total size N
divided into two demes, with a fraction f of the total population is contained in the drug-treated deme. The
system describing the number of individuals in each state can then be written as:

Ṡu = −(kWu + b(1− ε)Wt + (1− c)(kRu + bRt))Su + g(Wu +Ru),

Ẇu = (kWu + b(1− ε)Wt)Su − gWu,

Ṙu = (1− c)(kRu + bRt)Su − gRu,
Ṡt = −St(bWu + k(1− ε)Wt + (1− c)(bRu + kRt)) + g(Wt +Rt),

Ẇt = (bWu + k(1− ε)Wt)St − gWt,

Ṙt = (1− c)(bRu + kRt)St − gRt.

(S.8)

Since the size of each deme is fixed, we can remove the variables for susceptible individuals using Su =
N(1− f)−Wu−Ru and St = Nf −Wt−Rt. To create a nondimensional version of the system, we instead
track the fraction of individuals in each deme who have a particular infection status, so wu = Wu/(N(1−f)),
Ru = Ru/(N(1 − f)), wt = Wt/(Nf), Rt = Rt/(Nf), and κ = kN and β = bN , which gives the altered
system:

ẇu = (κ(1− f)wu + βf(1− ε)wt)(1− wu − ru)− gwu,
ṙu = (1− c)(κ(1− f)ru + βfrt)(1− wu − ru)− gru,
ẇt = (β(1− f)wu + κf(1− ε)wt)(1− wt − rt)− gwt,
ṙt = (1− c)(β(1− f)ru + κfrt)(1− wt − rt)− grt.

(S.9)

Using the next-generation technique [?], we arrive at the following values for the basic reproductive ratios,

Rw0 =
1

2

κ

g

(
(1− fε) +

√
(1− fε)2 − 4

(
1− β2

κ2

)
f(1− f)(1− ε)

)
,

Rr0 =
1

2

κ

g
(1− c)

(
1 +

√
1− 4

(
1− β2

κ2

)
f(1− f)

)
.

(S.10)

In general, this system has nine equilibria. However, only one of these is stable and physically realizable
(e.g. having between 0% and 100% of individuals infected) for any given parameter set. These are the values
that are plotted in the main text. These outcomes fall into one of two qualitative categories. Either one
strain drives the other to competitive extinction (true in Fig 3 for c > 0.4 and c < 0.06, for instance) or both
strains exist in both demes simultaneously. The boundaries separating this region from the competitive-
exclusion region are Rr0 = Rw0 , the lower bound when viewed as a function of the cost of resistance c, and
the curve which solves β(1 − f)w∗

u + κf(1 − ε)w∗
t = β(1 − f)(1 − c)r∗u + κf(1 − c)r∗t , where [w∗

u, w
∗
t , r

∗
u, r

∗
t ]

denote the equilibrium values. This second curve, in words, is where the drug-treated population is infected
at the same rate by both drug-resistant and drug-sensitive strains.

For the parameters chosen here and used throughout the paper, it is impossible to have Rw0 < 1. For
sufficiently high c, we can have Rr0 < 1. However, this line in parameter space lies deep within the region
where the population is infected with the wild-type strain only.

Derivation of a multi-deme model

Here we derive the general case for the spread of wild-type and resistant strains of infection in a population
consisting of multiple connected demes (with connectivity described by adjacency matrix ∆), where demes
may have different sizes (Di) and different treatment levels (fi). The dynamics of infection are described by
the following system of equations
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Ṡui = −

k(Wui + (1− ε)Wti) + b
∑
j

∆ji(Wuj + (1− ε)Wtj)

+ (1− c)

k(Ruj +Rtj) + b
∑
j

∆ji(Rui +Rti)

Sui

+ g(Wui +Rui)

Ṡti = −

k(Wui + (1− ε)Wti) + b(
∑
j

∆ji(Wuj + (1− ε)Wtj))

+ (1− c)

k(Ruj +Rtj) + b
∑
j

∆ji(Rui +Rti)

Sti

+ g(Wti +Rti)

Ẇui =

k(Wui + (1− ε)Wti) + b
∑
j

∆ji(Wuj + (1− ε)Wtj)

Sui − gWui

Ẇti =

k(Wui + (1− ε)Wti) + b
∑
j

∆ji(Wuj + (1− ε)Wtj)

Sti − gWti

Ṙui = (1− c)

k(Ruj +Rtj) + b
∑
j

∆ji(Rui +Rti)

Sui − gRui
Ṙti = (1− c)

k(Ruj +Rtj) + b
∑
j

∆ji(Rui +Rti)

Sti − gRti
(S.11)

where Xit represents the total number of individuals in deme i infected with strain X (or susceptible, S)
who will be treated if infected, whereas Xiu is those who won’t be treated if infected.

Since the population size Di of each deme is constant and we assume it is predetermined who will get
treatment if infected, we can remove the equations for the susceptible individuals using Dit = fiDi =
Sit +Wit +Rit and Diu = (1− fi)Di = Siu +Wiu +Riu.

To derive a dimensionless form the the equations, we let xi = Xi/Di, and define σi = Di/D̄ where D̄ is
the average deme size. We define κ = kD̄ and β = bD̄, to derive the simplified and scaled equations

ẇui =

κσi(wui + (1− ε)wti) + β
∑
j

σj∆ji(wuj + (1− ε)wtj)

 (1− fi − wui − rui)− gwui

ẇti =

κσi(wui + (1− ε)wti) + β
∑
j

σj∆ji(wuj + (1− ε)wtj)

 (fi − wti − rti)− gwti

ṙui = (1− c)

κσi(rui + rti) + β
∑
j

σj∆ji(ruj + rtj)

 (1− fi − wui − rui)− grui

ṙti = (1− c)

κσi(rui + rti) + β
∑
j

σj∆ji(ruj + rtj)

 (fi − wti − rti)− grti

(S.12)
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In the limit of either 0% or 100% treatment in a deme, this system reduces to

ẇi =

κσi(1− εTi)wi + β
∑
j

σj∆ji(1− εTj)wj

 (1− wi − ri)− gwi,

ṙi = (1− c)

κσiri + β
∑
j

σj∆jirj

 (1− wi − ri)− gri.

(S.13)

In the limit of both constant deme size and 0% or 100% treatment in a deme, this system reduces to Eq.
3.

The apparent absence of multiple equilibria

Although the generic system of equations modeled by Eq. 3 admits multiple equilibria, we actually never
observed any dynamic phenomena other than a steady convergence to a single stable fixed point, even when
initial conditions were wildly different from that considered in the main text. It is not uncommon for infection
models to admit equilibria which are physically unrealizable, i.e., taking values outside the unit simplex —
it may therefore be the case that any other stable equilibria are simply unphysical.

However, to comprehensively demonstrate this fact — either theoretically or numerically — is outside
the scope of the current work. To prove such a result theoretically would necessarily draw on ideas of
nonlinear algebra or algebraic geometry, such as intersection theory, which are outside the present scope; to
demonstrate numerically that for all parameter sets and graph structures there is only one stable equilibrium
is computationally infeasible, even on graphs of a given small size.

To illustrate the idea that there seems to be only one stable equilibrium per system, we fixed an exact
distribution of treatment with ρ = 0.35 to be used on every random regular graph used in the main text. This
means that, since all nodes in all graphs are labelled (and the random regular graphs in the main text have
twenty demes each), seven labelled demes (here 1, 3, 8, 11, 15, 19, 20) were drug-treated irrespective of graph
structure. We then performed, for all 30 graphs, 100 trials with uniformly random initial conditions over
every deme, i.e., every deme can start with any possible arrangement of wild-type and resistant infectives
(so long as the sum of the two does not exceed 1). We then compared the equilibria seen with the equilibria
found for the initial condition used in the main body of the text.

There are many possible metrics which would illustrate the relative closeness of all the equilibria seen.
In S17 Fig we have elected to plot the maximum matrix norm (the 2-norm) of the difference between the
equilibrium seen in any of the 100 trials and the equilibrium from the main text. That is to say, all of the
trial equilibria differ in norm from the main-text equilibrium by an amount not more than that plotted in the
figure for a given graph structure. The parameters used were our default: κ=0.25, β=0.05/day, g=0.1/day,
ε=0.9, c=0.2.

In all of these cases, the maximum norm deviation is extremely small. This could be due to two possible
reasons. The first is due simply to aggregated numerical error from the many steps involved of a) calculating
the equilibrium (which involves a threshold of stopping when the time-derivatives in all demes fall below a
certain threshold, which can allow for some very small freedom in what an “equilibrium” is in a given trial),
b) calculating the matrix norm (which amplifies these small errors). The second explanation is that while
multiple stable equilibria may exist, they are extremely close together, with almost clinically-unmeasurable
differences in the rates of wild-type and resistant infections within a given deme in a given community.

Model with effects of treatment on recovery rates

To demonstrate the robustness of the results described in the main text, we explored a second model in
which the drug, rather than inhibiting the spread of the infection, instead speeds up recovery. The effect of
treatment is to increase the rate of recovery from g to g+ τ . In this model formulation a perfectly efficacious
drug would correspond to τ → ∞ (instantaneous clearance of infection). A finite value of τ takes into
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account the fact that it takes some time for an infected individual to seek a clinician, obtain a prescription
for drug, and clear the infection as a result of treatment.

This model matches qualitatively with that discussed in the main text, in that in reproduces the spatial
motifs in the same way. The two models are also quantitatively quite similar for reasonably-akin parameter
sets. Here we reproduce the main results for this alternative model.

A single well-mixed deme

Here, the system can be written as

ẇu = κ (wu + wt) ((1− f)− wu − ru)− gwu,
ṙu = κ(1− c)(ru + rt)((1− f)− wu − ru)− gru,
ẇt = κ(wu + wt)(f − wt − rt)− (g + τ)wt,

ṙt = κ(1− c)(ru + rt)(f − wt − rt)− grt.

(S.14)

The basic reproductive ratio R0 for each strain alone is

Rw0 =
k

g

(
1− fτ

g + τ

)
,

Rr0 =
κ(1− c)

g
.

(S.15)

For the purpose of comparing this model, the value of τ for which Rw0 in the main model (with our
baseline ε = 0.9) equals Rw0 in this alternative model is τ = 0.9. This system admits only three stable,
physical (having fractions of treated individuals between 0 and 1) solutions: one in which all infections die
out (Rw0 < 1, Rr0 < 1), one in which only wild-type infections persist (Rw0 > 1, Rr0 < Rw0 ) and one in which
only resistant infection persists (Rr0 > 1, Rw0 < Rr0). There is no possibility for coexistence. The condition
for resistance to persist (instead of wild type)is c < fτ

g+τ .

Two connected demes

In this model, the equivalent of Eq. S.9 can be written as

ẇu = (κ(1− f)wu + βfwt)(1− wu − ru)− gwu,
ṙu = (1− c)(κ(1− f)ru + βfrt)(1− wu − ru)− gru,
ẇt = (β(1− f)wu + κfwt)(1− wt − rt)− (g + τ)wt,

ṙt = (1− c)(β(1− f)ru + κfrt)(1− wt − rt)− grt.

(S.16)

Using the next-generation technique, we were able to derive the values of R0 in a two-deme system for
the alternative model, as an analog to Eq. S.10:

Rw0 =
1

2

κ

g

(1− fτ

g + τ

)
+

√(
1− fτ

g + τ

)2

− 4

(
1− β2

κ2

)
f(1− f)

g

g + τ

 ,

Rr0 =
1

2

κ

g
(1− c)

(
1 +

√
1− 4

(
1− β2

κ2

)
f(1− f)

)
.

(S.17)

The expressions are slightly more complicated, but the curves generated are similar to the main text.
S7 Fig shows the analog of Fig 3. As in the main text, here the boundaries of the coexistence region are
the curves Rw0 = Rr0 (lower boundary) and the implicit curve where more wild-type than resistant infected
individuals are produced per unit time in the drug-treated deme (upper boundary).
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Multi-deme population

The scaled version of the multi-deme model presented in Eq. 3 for the case of treatment acting on the
recovery rates is

ẇi =

κwi + β
∑
j

∆jiwj

 (1− wi − ri)− (g + Tiτ)wi,

ṙi = (1− c)κ

ri + β
∑
j

∆jirj

 (1− wi − ri)− gri.

(S.18)
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