
Although in the main text, we examined learning rates for binary outcomes
in the space of the latent variable where learning occurs, it is also possible, as
pointed out by a reviewer, to impute the learning rate implied by each such
update in observation space. Here, we consider this alternative metric of learning
rate in the observation space, αo

t , which is defined as below:

αo
t =

s(mt)− s(mt−1)

δt
, (1)

where mt−1 and mt are the old and new mean prediction of the (latent) state
variable, s(m) = (1+exp (−m))−1 is the sigmoid function, and δt is the prediction
error:

δt = ot − s(mt−1). (2)

S1 Fig. shows that unlike the HGFs learning rate in the latent space, this
quantity, αo

t , increases during blocks of higher volatility in the probabilistic
learning task with binary observations, seemingly reflecting the theoretically
expected relationship between volatility and learning rate. However, this behavior
actually does not arise from the models top-down inferences about volatility,
but instead is directly contaminated by differences in prediction errors between
the blocks. As shown in the figure, it is present even when the models volatility
estimate is held fixed.
Here, we analyze the source of this contamination, demonstrating that αo

t is
contaminated by the absolute value of prediction error and therefore increases
following switches regardless of volatility (and even if volatility is fixed). Both
the binary VKF and binary HGF update their estimation according to the
following equation:

mt = mt−1 + αtδt, (3)

where αt is the learning rate as defined in the main text (and plotted in Fig 6).
Note that αt is different for the VKF and the HGF, but the update rule of mt

is the same as this equation for both models. Therefore, αo
t is given by:

αo
t =

s(mt−1 + αtδt)− s(mt−1)

δt
. (4)

The problem arises because the numerator of αo
t depends on the second order

effects of δt. To see this, we expand s(mt−1 + αtδt) using Taylor series around
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mt−1:

s(mt−1 + αtδt) = s(mt−1) + αtδts
′(mt−1) + (αtδt)

2s′′(mt−1) +O(δ2t ) (5)

where O(δ2t ) contains terms higher than second order, and s′ and s′′ are the first
and second derivatives of the sigmoid function, respectively. Substituting this
equation into the right-hand side of equation (4), αo

t becomes:

αo
t = αts

′(mt−1) + α2
t δts

′′(mt−1) +O(δt). (6)

The first and second derivatives of sigmoid are given by:

s′(m) = s(m)(1− s(m)), (7)

and
s′′(m) = s′(m)(1− 2s(m)). (8)

It can be easily seen that s′(m) is positive regardless of m, but the sign of
s′′(m) depends on the last term on the right hand side of (8). Therefore, by
substituting s′′ in equation (6), we see that the sign of second term in (6) depends
on (1−2s(mt−1))δt, which is positive and large following switches in probabilistic
tasks (e.g. Fig 6). In particular, there are two types of switches:

• ot = 1 and mt−1 is negative and relatively large, then both 1− 2s(mt−1)

and δt are positive and large.

• ot = 0 and mt−1 is positive and relatively large, then both 1− 2s(mt−1)

and δt are negative and large.

Therefore, αo
t is influenced by the absolute value of prediction errors, |δt|, fol-

lowing switches, regardless of volatility and even if volatility or αt is fixed (S1
Fig).

2


