Although in the main text, we examined learning rates for binary outcomes
in the space of the latent variable where learning occurs, it is also possible, as
pointed out by a reviewer, to impute the learning rate implied by each such
update in observation space. Here, we consider this alternative metric of learning

rate in the observation space, o7, which is defined as below:

o _ S(m) = s(m—1)
at - 5t - ) (1)

where m;_1 and m; are the old and new mean prediction of the (latent) state
variable, s(m) = (14+exp (—m))~! is the sigmoid function, and J; is the prediction
€rror:

0 = op — s(my—_1). (2)

S1 Fig. shows that unlike the HGFs learning rate in the latent space, this
quantity, «y, increases during blocks of higher volatility in the probabilistic
learning task with binary observations, seemingly reflecting the theoretically
expected relationship between volatility and learning rate. However, this behavior
actually does not arise from the models top-down inferences about volatility,
but instead is directly contaminated by differences in prediction errors between
the blocks. As shown in the figure, it is present even when the models volatility
estimate is held fixed.

Here, we analyze the source of this contamination, demonstrating that oy is
contaminated by the absolute value of prediction error and therefore increases
following switches regardless of volatility (and even if volatility is fixed). Both
the binary VKF and binary HGF update their estimation according to the
following equation:

My = My—1 + 6y, (3)

where «; is the learning rate as defined in the main text (and plotted in Fig 6).
Note that «ay is different for the VKF and the HGF, but the update rule of my;
is the same as this equation for both models. Therefore, oy is given by:

ol = s(mi—1 + at:;tt) - S(Wt—l)_ (4)

The problem arises because the numerator of af depends on the second order

effects of §;. To see this, we expand s(my_1 + «;d;) using Taylor series around



me_—q1:
s(my_1 + apdy) = s(my_1) + 68" (my_1) + (u6;)?s" (my_1) + O(62)  (5)

where O(82) contains terms higher than second order, and s’ and s” are the first
and second derivatives of the sigmoid function, respectively. Substituting this
equation into the right-hand side of equation , of becomes:

o = o8’ (my_1) + 265" (my_1) + O(6y). (6)
The first and second derivatives of sigmoid are given by:

s'(m) = s(m)(1 = s(m)), (7)

and
S (m) = o/ (m)(1 - 25(m)). (8)

It can be easily seen that s’(m) is positive regardless of m, but the sign of
s”(m) depends on the last term on the right hand side of . Therefore, by
substituting s” in equation @, we see that the sign of second term in @ depends
on (1—2s(my—1))d¢, which is positive and large following switches in probabilistic

tasks (e.g. Fig 6). In particular, there are two types of switches:

e 0, =1 and m;_; is negative and relatively large, then both 1 — 2s(m;_1)

and J; are positive and large.

e 0; = 0 and m;_; is positive and relatively large, then both 1 — 2s(m;_1)

and §; are negative and large.

Therefore, of is influenced by the absolute value of prediction errors, |0;|, fol-
lowing switches, regardless of volatility and even if volatility or oy is fixed (S1
Fig).



