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1 Motivation

Here, we provide further details on the assumptions and priors required to perform Bayesian
inference of infection histories with a model considering past infection outcomes of a pop-
ulation as a matrix of latent features. This also serves as a reference guide to understand
the impact of the different priors on inferred infection histories and attack rates in the ac-
companying serosolver package. Although the framework is motivated by and developed
for influenza, the antibody kinetics and infection history models are conceptually separate.
Deriving the full model is therefore first framed as a general statistical challenge: what is
a good model to represent multiple hidden infection states? As in the main text, vectors
are represented in bold, capital letters represent random variables and lower case letters
represent values of random variables.

2 Derivation of the full model

Infection events are not observed directly. Rather, exposure to antigens lead to the pro-
duction of antibodies that undergo longitudinal and cross-reactive kinetics, which can be
observed by taking serum samples. Note that we use the term ‘infection’ to mean any ex-
posure that elicits an antibody boost, though model extensions could distinguish between
different types of exposure (e.g. vaccination). The system we wish to describe is therefore
split into three conceptual levels: (i) the set of serological data (antibody titres) that we
observe; (ii) the true underlying (latent) antibody levels that gave rise to these observations;
and (iii) the underlying set of infections or exposures that gave rise to these true antibody
levels. In this section, we build the full serosolver model through these three levels.

2.1 Observations of latent antibody levels

Measurements of true underlying antibody levels are subject to noise in the observation
process. This may arise from observation error, assay preparation error, sample collection
variability etc. This observation process may be generically defined as:

Yi,t ∼ e(Xi,t,Θ) (1)

where e(Xi,t,Θ) represents the stochastic process of generating observations from the
latent antibody levels at time t, Xi,t; Yi,t represents the set of observed antibody titres; and
Θ represents the vector of all model parameters e.g. variance for a Gaussian observation
model. The likelihood of observing Yi,t given Xi,t and Θ is defined as P (Yi,t|Xi,t,Θ).

2.2 Generation of latent antibody levels from infections

An individual’s latent antibody levels, Xi,t, at time t are generated as a function of all
infections prior to or during time t (j ≤ t) and the antibody kinetics parameters, Θ. For
example, each infection may lead to a boost in antibody titres that accumulates with each
successive infection.

These unobserved infection events are modelled as latent binary states, Zi,j . Each latent
infection state is the outcome of a single Bernoulli trial, where zi,j = 1 indicates that
individual i was infected with the strain circulating during discrete time period j, and
zi,j = 0 indicates that they were not. We assume that there is only one strain that circulates
during each discrete time period, and j therefore refers to both the time period j and the
strain that circulated during that time. Strains may be antigenically identical in each
discrete time period or exhibit antigenic variation.

The antibody kinetics model describing the generation of latent antibody levels given
the vector of unobserved infection states is given as:

Xi,t = g(Zi,1, Zi,2, . . . , Zi,j≤t,Θ) (2)
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where g may be any arbitrary model function and Zi,j≤t denotes the last infection that
could have occurred at or before discrete time period t. In the main text model, the model
g captures deterministic antibody boosting, waning, and cross-reactivity. In this example,
Xi,t = [Xi,1,t, Xi,2,t, . . . , Xi,j,t], represents a vector of latent titres against each strain that
circulated during each possible exposure time j. Zi = [Zi,1, Zi,2, . . . , Zi,j≤t] to represent the
vector of infection states that could have been realised at or before the serum sample taken
at time t.

The likelihood of generating latent antibody levels, Xi,t, given the vector of latent infec-
tion states, Zi is defined as P (Xi,j |Zi,Θ). Note that when g is deterministic, P (Xi,j |Zi,Θ) =
1 for all values of Zi and Θ.

2.3 Infection history model

If we consider a system with n individuals who may be infected once in each of m distinct
time periods, then there are nm possible infection events. We are interested in jointly
inferring the posterior distributions outcomes of each of these nm infection events and a
set of antibody kinetics parameters using serological data. In terms of inference, only Y
is observed, so we must infer (or augment) the values of Z as latent features. We must
therefore define a model for the generation of Z defined broadly as P (Z) here. Throughout
this supplement, we discuss how the model for P (Z) may be chosen to capture different
assumptions about the epidemiological process that generates infections.

2.4 Full model

Through combining the three levels, the full inference problem can be framed as estimating
the following joint posterior distribution:

(3)
where ti represents the set of serum sampling times for individual i; jmin to jmax rep-

resents the range of times over which individuals may be infected; and Θ is the vector of
antibody kinetics parameters describing the link between Z and Y . P (Θ) can be repre-
sented by standard prior distributions.

P (Xi,j |Zi,Θ) = 1 when the antibody kinetics model g is deterministic for all values of
Zi and Θ. The two components of the likelihood (the observation process and antibody
kinetics model) are therefore combined as f(Yi,t|Zi,Θ) in the main text. The full system
can be represented as a directed acyclic graph (Fig A1).

This problem falls within the remit of binary variable selection: a well described area
of research in the context of regression models and a challenging problem as the number
of binary variables and resulting model space grows large [1, 2, 3, 4]. Methods such as
Stochastic search variable selection and Reversible Jump Markov chain Monte Carlo are
well established for model selection tasks, but not sufficient to describe the present problem,
where binary outcomes are the result of complex, unobserved epidemiological processes that
must be taken into consideration. In particular, we must carefully consider that not all
infection events are independent. For example, individuals that are infectious at a given
time exert a force of infection on other individuals in the same population, and a priori we
do not know if an individual experienced many or few infections over their lifetime. Here,
we describe a number of priors that can take these processes into account and discuss their
implications on inferring individual infection histories and attack rates with the serosolver
package.

3



Fig A1. Directed acyclic graph representation of the full model. White circles
represent parameters/latent states of interest (Zi,j≤t shows the infection states with
respect to each possible infection time j before observation time t, Xi,t shows the set of
latent antibody titres at time t (immediately after a possible infection event), and Yi,t

shows the set of titre observations at time t). Grey circles represent deterministic latent
states, whereas the box around Xi,t distinguishes observable from latent states. Solid
arrows represent stochastic dependencies, dashed arrows represent deterministic
dependencies. The different model levels are shown within boxes.

3 Intuitive prior

Intuitively, an uninformative prior on an indicator random variable, Zi,j , might be that
zi,j = 1 occurs with fixed p = 0.5 and zi,j = 0 occurs with fixed q = (1 − p) = 0.5. More
generally:

P (Zi,j) = p
Zi,j

i,j (1− pi,j)1−Zi,j (4)

P (Zi) =

m∏
j=1

p
Zi,j

i,j (1− pi,j)1−Zi,j (5)

P (Z) =

n∏
i=1

m∏
j=1

p
Zi,j

i,j (1− pi,j)1−Zi,j (6)

If we consider an individual’s infection history Zi to be a sequence of binary variables,
Zi = [Zi,1, Zi,2, . . . , Zi,m]), then this prior implicitly assumes that the total number of
infections experienced by individual i is binomially distributed with mean pm. The total
number of infections across all n individuals in a given time period, j, is also binomially
distributed with mean pn, where p = pi,j for all individuals and all times. Setting pi,j = 0.5
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is equivalent to assuming that all infection histories are equally likely: an infection history
with all zi,j = 1 is as likely as one with all zi,j = 0, and as likely as any other individual
sequence of 1s and 0s.

Although intuitive, this set of assumptions results in a strong prior on the total number of
infections. For example, pm infections are substantially more likely than an infection history
with 0 or m total infections. Therefore, in the situation where there is relatively little data,
P (Z) would bias the inferred infection histories towards pm infections per individual and pn
infections per unit time. The posterior probability of an infection history with few infections
and large amounts of antibody boosting per infection would be far lower than of an infection
history with 0.5m infections and low antibody boosting.

In reality, for a disease like influenza, infections likely happen less frequently than every
other year, though frequency does vary between individuals. Similarly, although the total
number of infections in a given influenza season are well described by a binomial distribution,
the distribution of infections across multiple outbreaks is likely over-dispersed relative to
the binomial distribution due to between-outbreak variation in severity. A prior that allows
us to capture these features would therefore be more desirable.

4 Priors in serosolver

There are four options provided in serosolver for different infection probability priors. Each
option follows a different set of assumptions and definitions, leading to different implications
for infection history inference. Table S1 summarises each of these priors and the situations
when each one is advised, and the remainder of this section describes their derivations in
more detail. The implementation in serosolver for each of these priors is described in the
Appendix.

4.1 Prior 1, hyper-prior on per-time infection probability

Individuals may be from the same population, which implies that their risks of infection are
correlated. Under this prior we assume that individuals are infected by the same infection
process during a given time period (i.e. there is a force of infection on the population), and
that infection processes are independent across time periods. There is an intuition to this
approach which is revealed by the following question: given a sample of n individuals for
which we know all n infection states for time j, what is the prior predictive probability that
individual n + 1 was also infected during time j? If we know that 80% of the population
was infected at time j, then we should have some prior belief that individual n+ 1 was also
infected.

Under this prior, the probability of infection is given as p = Φj . Φ is related to the
attack rate and therefore gives the probability of any individual in the population becoming
infected. Under this prior, the infection generating process is:

zi,j ∼ Bernoulli(φj) (7)

φj ∼ h(j) (8)

where h is any arbitrary function describing the distribution of Φ. The probability mass
function for an individual infection event in discrete time period j is therefore given by:

P (Zi,j |Φj = φj) = φ
Zi,j

j (1− φj)(1−Zi,j) (9)

Thus, the likelihood of observing a particular combination of infections at time j is given
by a Bernoulli model:

P ([Z1,j , Z2,j , . . . , Zn,j ]|Φj = φj) =
∏n
i=1 φ

Zi,j

j (1− φj)(1−Zi,j)

= φ
kj
j (1− φj)(nj−kj)
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where kj =
∑nj

i=1 is the total number of infections during discrete time period j and
nj is the number of individuals who could be infected during time period j. Retaining the
correlation between individuals and adding m infection times to the system, the likelihood
of Z conditional on Φ becomes:

P (Z|[Φ1 = φ1,Φ2 = φ2, . . . ,Φm = φm]) =

m∏
j=1

φ
kj
j (1− φj)(nj−kj) (10)

where Z is an n by m matrix representing the outcome of m possible infection events
for n individuals. The first example in Section 3 above makes the strong assumption that
Φj is fixed at 0.5 for all discrete times j. To avoid this strong assumption of binomially
distributed attack rates, we can assume that all Φ are unknown parameters to be estimated
by defining a prior on Φ. The updated full posterior is given as:

P (Z,X,Θ,Φ|Y ) ∝
n∏
i=1

(∏
t∈ti

P (Yi,t|Xi,t,Θ)
) jmax∏
j=1

P (Xi,j |Zi,Θ)P (Zi,j |Φj)P (Φj)P (Θ)

(11)
This structure opens up a number of useful possibilities. For example: Φ may be defined

as a function rather than a variable; different priors may be placed on different discrete times
j; Φ may be inferred explicitly. Fig A2 shows an update of Fig A1 taking into account the
infection generating process.

4.1.1 Prior on number of lifetime infections

Assuming that all P (Φ) are independent, the total number of lifetime infections for an
individual follows a binomial distribution with p = E(Φ). Using a beta prior for P (Φ)
with parameters α and β and assuming that α and β are equal for all j, then P (

∑
j Zi,j =

Zi,1 +Zi,2 + · · ·+Zi,m) follows a binomial distribution with mean α
α+β and N = mi, where

mi is the number of discrete time periods that individual i could be infected in. A binomial
prior is intuitive here: if the expectation of the attack rates for all discrete times j is p = 0.5,
then one would assume a priori that individuals are infected in every other time period.

4.2 Prior 2, beta prior on the probability of infection in each time
period j

The above prior allows for explicit control over the form of P (Φ), but also results in a
large number of additional nuisance parameters that must be estimated (each Φj). It is
possible to calculate the marginal distribution P (Z) under the above prior by integrating
out Φ. In terms of MCMC mixing, integrating over possible all possible Φj for each j
reduces the number of free parameters to be estimated rather than needing to estimate
each Φj . This is particularly useful because inferring posterior distributions for Φ and Z
simultaneously is practically difficult due to their correlation, particularly when m is large.
The reader is referred to related work on the Indian Buffet Process: a stochastic process
defining a probability distribution over sparse binary matrices with finite rows and infinite
columns [6]. This problem is the related case where binary matrices are not necessarily
sparse, and the number of columns can be considered finite. However, there is a potential
avenue for infection history inference where the number of infection periods (the number of
columns) is not necessarily fixed and finite, and we therefore refer to this work here.

Similar to prior version 1, we define a beta-Bernoulli model for the generation of Z as:

zi,j ∼ Bernoulli(φj) (12)

φj ∼ Beta(α, β) (13)
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Fig A2. Directed acyclic graph representation of the model with probability of
infection term. White circles represent parameters/latent states of interest (Zi,j≤t shows
the infection states with respect to each possible infection time j before observation time t,
Xi,t shows the set of latent antibody titres at time t (immediately after a possible
infection event), and Yi,t shows the set of titre observations at time t). Grey circles
represent deterministic latent states, whereas the box around Xi,t distinguishes observable
from latent states. Φt shows the probability of any individual becoming infected during
time t. Solid arrows represent stochastic dependencies, dashed arrows represent
deterministic dependencies. The different model levels are shown within boxes.

The prior probability of P (Φj = φj) is defined as:

P (Φj = φj) =
φα−1
j (1− φj)β−1

B(α, β)
(14)
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where B(α, β) is the Beta function:

B(α, β) =

∫ 1

0

φα−1
j (1− φj)β−1dφj (15)

=
Γ(α)Γ(β)

Γ(α+ β)
(16)

Zi,j is independent of all other entries in Z, conditional on Φj which are also assumed
to be independent of all other entries in Φ. P (Zi,j) can then be calculated directly without
representing Φ by integrating over all Φ, giving the marginal likelihood of the entire infection
history matrix Z as:

P (Z) =

m∏
j=1

∫ 1

0

( n∏
i=1

P (Zi,j |Φj = φj)
)
P (Φj = φj)dφj (17)

=

m∏
j=1

B(kj + α, β + nj − kj)
B(α, β)

(18)

In the MCMC framework, new values for each Zi,j may be sampled directly from this
prior as:

P (Zi,j = 1|Z−i,j , α, β) =
P (Zi,j = 1,Z−i,j)

P (Z−i,j)
(19)

=
α[kj+1]β[nj−kj ]

(α+ β)[nj+1]

(α+ β)[nj ]

α[kj ]β[nj−kj ]
(20)

=
kj + α

nj + α+ β
(21)

Giving the proposal probability of zi,j = 1 and zi,j = 0 otherwise, where kj is the number
of infections during time j less zi,j , and nj is the number of individuals alive during time j
less individual i. The acceptance probability then just becomes the ratio of likelihoods in
the Metropolis step.

Values for α and β may be chosen to give a prior on the attack rate with known properties:
E(kj) = n α

α+β and Var(kj) = n αβ
(α+β)2 [1 + (n − 1) 1

α+β+1 ]. When α = β, the attack rate

prior has an expectation of 0.5n, and the variance may be decreased by increasing α and β.
For example, values of α and β that have a desired mode and certainty may be chosen by
solving the following:

α = Mo(c− 2) + 1 (22)

β = (1−Mo)(c− 2) + 1 (23)

where Mo is the desired mode, and c is analogous to the number of prior observations
(i.e. c = 2 corresponds to having seen two prior outcomes). Values for α and β that have a
particular mean with the largest possible variance are found by solving:

α = φ̄2 1− φ̄
σφ − 1

φ̄

(24)

β = α
1

φ̄− 1
(25)

where φ̄ is the desired mean attack rate, and σφ is the maximum variance for Φ that
results in a uni-modal distribution of Φ. Note that values of α and β may be set that lead
to a multi-modal distribution of Φ e.g. α = β = 1

2 .
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4.2.1 Prior on number of lifetime infections

The implicit prior on an individual’s number of lifetime infections is the same as in Section
4.1: the beta prior on P (Φ) with parameters α and β results in a binomial distribution on
the total number of lifetime infections with mean α

α+β and N = mi, where mi is the number
of discrete time periods that individual i could be infected.

4.3 Prior 3, beta-binomial prior on the total number of lifetime
infections

Under this prior, each individual’s prior probability of infection is drawn from a Bernoulli
distribution with independent success probability, pi, for all i, but the same pi for individual i
across all discrete times j. This prior captures the idea that individuals may have a tendency
to get infected more or less frequently, but the probability of an individual becoming infected
is independent of all other individuals. Similar to prior version 2, we model this with a
beta-Bernoulli distribution where the probability of infection is a random variable Λi. This
process is modelled as:

zi,j ∼ Bernoulli(λi) (26)

λi ∼ Beta(α, β) (27)

This places a beta prior on the per-time probability of infection, assuming that all
individuals’ infection probabilities are independent and not identically distributed (i.e. each
individual has a unique Λi). The prior probability of a particular infection history for
individual i, Zi, is therefore given by a standard beta-Bernoulli distribution with probability
Λi. It is possible to marginalise over Λi to define P (Zi) directly.

If the prior on Λi follows the beta distribution (B):

P (Λi) =
1

B(α, β)
Λα−1
i (1− Λi)

β−1 (28)

and the likelihood of Zi given Λi = λi is:

P (Zi|Λi = λi) = λkii (1− λi)mi−ki (29)

then the marginal distribution of P (Zi) is:

P (Zi) = EP (P (Zi)|Λi) (30)

=

∫ 1

0

λkii (1− λi)mi−kiP (λi)dλi (31)

=
B(α+ ki, β +mi − ki)

B(α, β)
(32)

=
α[ki]β[mi−ki]

(α+ β)[mi]
(33)

where Zi = [Zi,1, Zi,2, . . . , Zi,m], ki is the total number of infections experienced by
individual i (

∑m
j=1 Zi,j), mi is the number of discrete time periods that individual i could

be infected in, and r[x] denotes the ascending power r(r+1) . . . [r+(x−1)]. The probability
mass function for the total number of infections ki is therefore given by:

P (ki,mi|α, β) =

(
mi

ki

)
B(α+ ki, β +mi − ki)

B(α, β)
(34)

which is the beta-binomial distribution. This prior makes the following assumptions:
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1. Each pi comes from a single draw from the same beta distribution;

2. All Λi are equal for a given i (i.e. all zi,j are drawn from the same Bernoulli distribu-
tion);

3. All pj are independent for a given j (i.e. each pj is drawn from a different distribution
for each j).

Formulating the prior in this way allows an explicit prior to be defined through α and β
on the total number of infections in a particular infection history Zi, with E(ki) = m α

α+β

and Var(ki) = m αβ
(α+β)2 [1+(m−1) 1

α+β+1 ]. An intuitive uniform prior on an infection history

would therefore be that any total number of lifetime infections is equally likely, which is the
case where α = β = 1. In addition, as limα = β →∞, P (k,m|α, β)→ Binom(k,m), where
any infection history is equally likely. A more informative prior on Zi is also possible by
choosing values for α and β that give a desired mean and variance on the total number of
infections per individual.

4.3.1 Prior on attack rates

The assumption of independent individuals and a beta-Bernoulli prior on the total number
of lifetime infections places a binomial prior on the attack rate within a given time period j
across n individuals. The marginal likelihood of infection in an individual’s infection history
is the same across all individuals, such that:

P (Zi,j = 1|Pi,j = pi,j) = pi,j (35)

P (Pi,j = pi,j) =
pα−1
i,j (1− pi,j)α−1

B(α, β)
(36)

P (Zi,j = 1) =

∫ 1

0

P (Zi,j = 1|Pi,j = pi,j)P (Pi,j = pi,j)dpi,j (37)

=

∫ 1

0

pi,j
pα−1
i,j (1− pi,j)α−1

B(α, β)
dpi,j (38)

= E(pi,j) (39)

=
α

α+ β
(40)

Individuals are independent and therefore all pi,j are independent across j, and α and
β are the same for all individuals i. It then follows that P (

∑
Zj = Z1,j +Z2,j + · · ·+Zn,j)

is binomially distributed with probability α
α+β and N = n, the number of individuals.

Importantly, P (
∑

Zj) is binomially distributed with mean 0.5n for all α = β, even in the
case where α = β = 1.

This prior would suggest that the infection status of individual n + 1 during time j
follows the Bernoulli distribution with pj = α

α+β , and the overall number of infections kj
follows the binomial distribution with the same pj and N = nj . This does fulfil a number of
desirable properties: (i) if we know that a proportion α

α+β of the population were infected,

then the expectation of the attack rate prior would also be α
α+β ; (ii) certainty in the attack

rate estimate should increase with increasing n. However, with large n and this binomial
prior, the majority of the probability density for the attack rate is in a relatively small region
of parameter space, resulting in a prior that strongly influences the posterior, and might
therefore swamp the likelihood. Furthermore, given that E(pj) = α

α+β , then necessarily
p1 = p2 = · · · = pm for all m.
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4.4 Prior 4, beta prior on the probability of any infection event

The final and perhaps most truly “uninformative” prior comes from the assumption that all
infections are independent and identically distributed events; belonging to a common group
or time period is considered irrelevant and the order does not matter. In this case:

zi,j ∼ Bernoulli(φ) (41)

φ ∼ Beta(α, β) (42)

Such that:

P (Φ = φ) =
φα−1(1− φ)β−1

B(α, β)
(43)

P (Zi,j |Φ = φ) = φZi,j (1− φ)1−Zi,j (44)

and the marginal likelihood of Z is:

P (Z) =

∫ 1

0

( m∏
j=1

n∏
i=1

P (Zi,j |Φ = φ)
)
P (Φ = φ)dφ (45)

=
B(k + α, β + nm− k)

B(α, β)
(46)

where k is the total number of infections across all years and individuals and nm is the
total number of possible infection events. This gives the conditional probability that an
individual was infected at a given time, and also a distribution to draw new infection states
from:

P (Zi,j = 1|Z−i,j , α, β) =

∫ 1

0

P (Zi,j |Φ = φ)P (Φ = φ|Z−i,j)dφ (47)

=
k−i + α

nm−i + α+ β
(48)

This assumption has the desirable property of placing a beta prior on both the total
number of infections over a lifetime for a given individual and on the total number of
infections during a given time. However, these properties are traded off against the strong
and potentially unrealistic assumption that infection events are conditionally independent
across both time and individuals.

5 Choice of prior

To illustrate the impact of different prior assumptions on infection history and antibody
kinetics parameter inference, we ran simulation-recovery experiments in an antigenically
variable pathogen system (e.g. influenza) for (i) a beta prior on the per-time probability
of infection (Section 4.2), (ii) a beta-binomial prior on total number of lifetime infections
(Section 4.3.1) and (iii) a beta prior on the probability of any infection event (Section 4.4)
with varying amounts of titre data and beta prior parameters. The simulated sero-survey
designs are described in Table A1. For each prior version, we considered three data scenar-
ios: (i) sparse data, only one serum sample and titres against 9 antigenically related (but
distinct) viruses taken; (ii) full data, one serum sample and titres against each of the 41
antigenically related viruses (one per year); (iii) additional data, 5 serum samples taken at
random intervals between 2000 and 2009, with 41 antigenically related viruses tested for
each serum sample. These three data scenarios represent a range of low data contribution
to the posterior up to extremely high data contribution. For each data scenario and prior
version, we tested 4 beta prior assumptions: (i) neutral prior with α = β = 1

3 ; (ii) a uniform
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prior with α = β = 1; (iii) weakly informative prior with prior probability of infection mode
of 0.15 and high variance, with α = 1.3 and β = 2.7, conceptually similar to a prior informed
by 4 previous infection observations; (iv) strongly informative prior with prior probability of
infection mode of 0.15 and low variance, with α = 15.7 and β = 84.3, conceptually similar
to a prior informed by 100 previous infection observations. We ran the MCMC framework
to generate 5 chains of 1000000 iterations for these scenarios with a 200000 iteration burn
in period.

Data set parameters Model parameters
n 200 Parameter Description Value Prior lower bound Prior upper bound Estimated
Year min 1968 µl Long term antibody boosting 1.8 0 8 Yes
Year max 2009 µs Short term antibody boosting 2.7 0 8 No
m 41 σl Long term cross reactivity 0.1 0 1 Yes
Time resolution (infection states) annual (48) σs Short term cross reactivity 0.03 0 1 No
Number of serum samples per individual 1/1/5 τ Suppression 0.05 0 1 Yes
Number of viruses tested 9/41/41 ω Waning 0.8 0 1 Yes
Number of titre measurement repeats 1 ε Measurement error 0.8 0 25 Yes
Total number of measurements Varied α Infection history prior 1

3/1/1.3/15.7 NA NA No
First sample year 2000 β Infection history prior 1

3/1/2.7/84.3 NA NA No
Final sample year 2009
Minimum age (years) 10
Maximum age (years) 75
Infection history prior Priors 2, 3 and 4

Table A1. Simulation settings to compare different infection history prior assumptions.

Fig A3 shows how placing priors on the per-time probability of infection and the overall
probability of infection recovers unbiased estimates of the long-term boosting parameter µl
for all data and prior scenarios, whereas the prior on per-individual probability of infection
is only unbiased with a large amount of data or strong prior information. Under this survey
design, using prior versions 2 (beta prior on the per-time probability of infection) or 4 (beta
prior on the overall probability of infection) would be recommended for estimating long-term
dynamics and attack rates. This is supported by Fig A4, where recovering the true attack
rates shows little bias under all scenarios for prior versions 2 and 4, but strong bias in all
but the strongest data scenario for prior version 3 (beta-binomial prior on total number
of lifetime infections). Attack rate estimation becomes increasingly precise with increasing
data availability.

Figs A6–A7 show the ability of these different priors to infer the same individual’s in-
fection history using the ‘full data’ scenario. Prior versions 2 and 4 are able to accurately
recover the timing of the individual’s infections even under the neutral and uniform priors.
Prior version 3 does not recover constrained posterior estimates for the cumulative infection
history under all but the strongest prior (Fig A6). However, under the more data rich sce-
narios, prior version 3 is able to recover unbiased estimates of the true cumulative infection
history, despite bias in the inferred attack rates (not shown).
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 lifetime infections, additional data
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 lifetime infections, sparse data
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Fig A3. Posterior distribution of long-term boosting parameters µl under different prior
and data scenarios. Horizontal dashed line shows true parameter value µl = 1.8, shaded
regions show inferred posterior distribution with medians and 95% credible intervals are
shown as solid horizontal lines. X-axis shows assumed beta prior parameters. Left-hand
column shows results under prior version 2 (beta prior on the probability of any infection
in discrete time period j, Φj); middle column shows results under prior version 3
(beta-binomial prior on total number of lifetime infections, Λi); right-hand column shows
results under prior version 4 (beta prior on probability of any infection event, Φ).
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Fig A4. Accuracy of estimated attack rates under the various priors, prior strengths and
data scenarios. Violin plots show posterior distribution of inferred attack rate minus the
true attack rate. Horizontal lines show posterior medians and 95% credible intervals. Blue
violin plot shows attack rate prior - 0.15. X-axis shows decreasing contribution of the data
relative to the prior. Top labels show assumed infection history prior version. Right labels
show prior parameter settings.
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Fig A5. Simulation-recovery of one individual’s infection history using prior version 3
(beta prior on attack rates, Φj) with various strength priors, full data. Simulation with
200 individuals, 41 viruses tested for each individual, one blood sample taken. Y-axis
shows the cumulative number of infections for this individual over time. Red line and
shaded region shows posterior median and 95% credible intervals. Blue line shows the true
cumulative number of infections over time.
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Fig A6. Simulation-recovery of one individual’s infection history using prior version 3
(beta-binomial prior on total number of lifetime infections, Λi) with various strength
priors, full data. Simulation with 200 individuals, 41 viruses tested for each individual, one
blood sample taken. Y-axis shows the cumulative number of infections for this individual
over time. Red line and shaded region shows posterior median and 95% credible intervals.
Blue line shows the true cumulative number of infections over time.
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Fig A7. Simulation-recovery of one individual’s infection history using prior version 4
(beta prior on any infection event) with various strength priors, full data. Simulation with
200 individuals, 41 viruses tested for each individual, one blood sample taken. Y-axis
shows the cumulative number of infections for this individual over time. Red line and
shaded region shows posterior median and 95% credible intervals. Blue line shows the true
cumulative number of infections over time.
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6 Appendix

6.1 Proposal algorithm under prior version 1, hyper-prior on prob-
ability of infection

In serosolver ’s MCMC algorithm, all Φ are treated as unknown parameters under this prior
and therefore sampled alongside Θ. Proposals for Z are made through a random scan across
n and m, with a proposed transition of flipping the binary entry for Zi,j i.e. Z ′i,j = 1 if
Zi,j = 0, and Z ′i,j = 0 if Zi,j = 1. The sampling algorithm for Z under prior version 1
(Section 4.1) is as follows:

1. With probability hist switch prob:

(a) Randomly select a time point j

(b) Randomly select another time point between 1 and move size time points away
from j with uniform probability.

(c) Randomly select year swap propn*n individuals

(d) For each of these selected individuals, swap the values of Zi,j and Zi,l, adhering to
restrictions of birth times (i.e. ignore swap when individuals cannot be infected
before they are born)

(e) Increase/decrease Φj and Φl proportional to the number of infections gained/lost

(f) Let Z and Φ represent the infection history matrix and probability of infection
terms before this proposal step, and Z′ and Φ′ represent these terms after the
proposal step. Set Z = Z′ and Φ = Φ′ with the following acceptance ratio:

A((Z′,Φ′), (Z,Φ)) = min(1,
P (Z′,Θ,Φ′|Y )

P (Z,Θ,Φ|Y )
) (49)

2. Otherwise:

(a) Select a random proportion hist sample prob of n individuals

(b) For each individual, i, propose a new infection history Z′i by performing one of
the following steps:

i. Perform a “flip” step with probability 1 - swap propn:

A. Select inf propn*mi time points, where mi is the number of time points
that individual i could be infected

B. Perform a binary flip on each of these times, Z ′i,j = 1− Zi,j
ii. Otherwise, perform a “swap” step:

A. Randomly select a location j

B. Select a random location, l, 0 to move size time steps away with equal
probability

C. Set Zi,l = Zi,j and Zi,j = Zi,l

(c) For each sampled individual, independently accept or reject the proposed new
infection state with the acceptance ratio:

A((Z′i,Φ
′), (Zi,Φ)) = min(1,

P (Z ′i,Θ,Φ|Yi)

P (Zi,Θ,Φ|Y )
) (50)

If hist opt is set to 1 by the user, then step 2 above is automatically tuned, whereby
hist sample prob is increased or decreased to achieve a desired acceptance rate (usually be-
tween 0.25 and 0.4). It is also possible to manually tune move size, swap propn, year swap propn
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and hist switch prob to improve the acceptance rate of the other proposal steps, though sero-
solver does not currently do this automatically. The acceptance rate of steps 1 and 2 above
are printed at regular intervals during the MCMC procedure, which the user may use to
tweak these inputs. Further automated tuning remains a direction for further development
of the package.

6.2 Proposal algorithm under prior version 2, beta prior on attack
rates

The proposal algorithm for prior version 2 is similar to that of prior version 1, but rather
than performing a “flip” step, infection history entries are proposed in a Gibbs-like fashion
conditional on the infection status of all other individuals at that time point.

1. With probability hist switch prob:

(a) Randomly select a time point j

(b) Select another time point between 1 and move size time points away from j with
uniform probability, where j 6= l

(c) Randomly select year swap propn*n individuals and filter for individuals that
were alive during both time points

(d) For each of these selected individuals, swap the values of Zi,j and Zi,l

(e) Let Z represent the infection history matrix before this proposal step, and Z′

represent it after. Set Z = Z′ with the following acceptance ratio:

A(Z′,Z) = min(1,

∏
i f(Yi|Z ′i,Θ)P (Z ′i)∏
i f(Yi|Zi,Θ)P (Zi)

) (51)

2. Otherwise:

(a) Select a random proportion hist sample prob of n individuals

(b) For each individual, i, propose a new infection history Z′i by performing one of
the following steps:

i. Sample new values for Zi with probability 1 - swap propn as follows:

A. Select inf propn*mi time points, where mi is the number of time points
that individual i could be infected. For each time point, j:

B. Calculate the number of infected individuals less the selected individual
kj = (

∑
x Zx,j)− Zi,j

C. Calculate the number of individuals that could be infected during time
j, nj

D. Set Zi,j = 1 with probability
kj+α

nj+α+β , and Zi,j = 0 otherwise

E. Accept the proposed move with the acceptance ratio, noting that by sam-
pling directly from the prior P (Z) that this cancels out in the Metropolis
ratio:

A(Z′i,Zi) = min(1,
f(Yi|Z′i,Θ)

f(Yi|Zi,Θ)
) (52)

ii. Otherwise, perform a ”swap” step:

A. Select a location j

B. Select a location, l, 0 to move size time steps away with equal probability

C. If Zi,l 6= Zi,j , set Zi,l = Zi,j and Zi,j = Zi,l with the acceptance ratio:

A(Z′i,Zi) = min(1,
f(Yi|Z′i,Θ)P (Z′i)

f(Yi|Zi,Θ)P (Zi)
) (53)
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As in prior version 1, if hist opt is set to 1 by the user then hist sample prob is tuned to
achieve a user-specified acceptance rate. It is also possible to manually tune move size and
swap propn.

6.3 Proposal algorithm under prior version 3, beta prior on per-
individual infection probability

In practice, assuming that all j are exchangeable, it is possible to sample Zi,j from the
prior directly in a Gibbs-like fashion, which leads to far more efficient proposals. Rather
than either moving to a proposed location or staying in the previous location, we can think
about the proposal steps as offering the algorithm two choices, to either add or remove and
infection:

1. For an individual i, choose a random location, j, from the infection history vector, Zi

2. Remove element j to give Zi,−j

3. There are now two potential moves to get back to a vector with the same dimensions
as Zi. Set Zi,j = 1 or Zi,j = 0.

Let Z′i be the case where Zi,j = 0 and Zi be the case where Zi,j = 1. More generally,
the proposals can be drawn from:

P (propose Zi) =
g(Zi|Zi,−j)

g(Zi|Zi,−j) + g(Z′i|Zi,−j)
(54)

In the case of the binomial prior on k (where P (Zi,j = 1) = 0.5 when α = β = ∞),
we would have a proposal such that g(Zi|Z′i) = g(Z′i|Zi) = g(Z′i|Z′i) = g(Zi|Zi). In this
case, the probability of proposing Z′i is the same as the probability of proposing Zi (i.e.
50/50). However, if we explicitly define g(Zi|Zi,−j) and g(Z′i|Zi,−j) then we can control
the proposal distribution and therefore sample from the prior:

g(Zi|Zi,−j , α, β) = f(Zi,j = 1|Zi,−j , α, β) (55)

g(Z′i|Zi,−j , α, β) = f(Zi,j = 0|Zi,−j , α, β) (56)

f(Zi,j = 1|Zi,−j , α, β) =
P (Zi)

P (Zi,−j)
(57)

=
α[k+1]β[m−k]

(α+ β)[m+1]

(α+ β)[m]

α[k]β[m−k]
(58)

=
α+ k

α+ β +m− 1
(59)

f(Zi,j = 0|Zi,−j) = 1− f(Zi,j = 1|Zi,−j , α, β) (60)

=
β +m− k − 1

α+ β +m− 1
(61)

where k =
∑

Zi,−j , and α and β are the left and right parameters of the beta distribu-
tion. Following this proposal (which is equivalent to sampling from the prior for Zi,j , the
proposal is accepted based on the Metropolis acceptance probability:

A(Znew,Zold) = min(1,
P (Y |Znew,Θ)

P (Y |Zold,Θ)
) (62)
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6.4 Proposal algorithm under prior version 4, beta prior on overall
probability of infection

The proposal algorithm for prior version 4 is identical to prior version 2, with only three
changes:

1. In step 2(b)(i)B, kj is replaced with k−ij = (
∑
x

∑
y Zx,y)− Zi,j

2. In step 2(b)(i)C, nj is replaced by nm

3. P (Z) is the prior as described in Section 4.4
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