
Additional information
Here we present some additional information for those readers interested in the
mathematical details of the “Climbing Escher’s stairs: a way to approximate
stability landscapes in multidimensional systems”.

Gradient conditions for a system with an arbitrary number
of dimensions
Dynamics in equation (2) and the condition for the crossed derivatives (3) can
be straightforwardly generalized (see equations (A.2) and (A.1)) to systems with
an arbitrary number of state variables ~x = (x1, ..., xn). Particularly, if and only
if our system of equations dxi

dt = fi(~x) satisfies the condition for all i:

∂fi
∂xj

=
∂fj
∂xi

: i 6= j (A.1)

then a potential V (~x) exists related to the original vector field:

dxi

dt
= fi(~x) = − ∂V

∂xi
: i = 1..n (A.2)

and such a potential can be computed using a line integral:

V (~x) = V (~x0)−
∫

Γ

n∑
i=1

fi(~x)dxi (A.3)

where the line integral in (A.3) is computed along any curve Γ joining the
points ~x0 and ~x.

It is important to note that the number of equations (N) described in con-
dition (A.1) grows rapidly with the dimensionality of the system (D), following
the series of triangular numbers N = 1

2 (D − 1)D. Thus, the higher the dimen-
sionality, the harder it may get to fulfill condition (A.1). As a side effect, we see
that one-dimensional systems have zero conditions and their stability landscape
is thus always well-defined.

Correspondence with the Helmholtz decomposition
Our decomposition (15) is an approximation of the Helmholtz decomposition.
The Helmholtz decomposition is defined as the decomposition of the field in a
gradient term and a curl, or divergence-free term. This decomposition is known
to be unique.

The gradient nature of ~fg(~x) has already been established in the Methods
section. Thus, in order to prove the correspondence, we only need to show that
~fng(~x) is a divergence-free field, that is, ~∇ · ~fng = 0. The divergence represents
one of the many generalizations of the concept of derivative in systems with
2 and more dimensions, and it is a central concept from vector calculus [21].
The divergence operator ~∇· of a field in cartesian coordinates is defined as the
sum of the derivative of each element respective the corresponding coordinate
(see equation (A.4) for an example using the two-dimensional field ~F (x, y) =
(Fx(x, y), Fy(x, y))).
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~∇ · ~F =
∂Fx

∂x
+

∂Fy

∂y
(A.4)

When applied to ~fng, defined as in equation (15), the divergence equals the
sum of the diagonal elements of Jskew. The diagonal elements of any skew
matrix are all zero (see (8)), and thus, the divergence of ~fng is zero too.

Detailed example of application
To calculate the value of V at, for instance, the point (x3, y2) of a grid, we
should begin by assigning 0 to the potential at our arbitrary starting point (i.e.:
V (x0, y0) = 0 by definition). Then, we need a trajectory that goes from (x0, y0)
to (x3, y2), iterating over the intermediate grid points (see figure A.1).
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Figure A.1: Path used to go from point (x0, y0) to (x3, y2). Note that this
is not the only possible path. Our algorithm converges to the same potential
regardless of the path chosen thanks to neglecting the skew part of the Jacobian
in our linearization process.

In the first step we go from (x0, y0) to (x1, y0). The new potential is thus
(using (17)):

V (x1, y0) ≈ V (x0, y0) + ∆V (x1, y0;x0, y0)

The next two steps continue in the horizontal direction, all the way to
(x3, y0). The value of the potential there is:

V (x3, y0) ≈ V (x0, y0)+∆V (x1, y0;x0, y0)+∆V (x2, y0;x1, y0)+∆V (x3, y0;x2, y0)

Now, to reach our destination (x3, y2) we have to move two steps in the
vertical direction:
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V (x3, y2) ≈ V (x0, y0) + ∆V (x1, y0;x0, y0) + ∆V (x2, y0;x1, y0) + ∆V (x3, y0;x2, y0)+

+∆V (x3, y1;x3, y0) + ∆V (x3, y2;x3, y1)

Generalizing the previous example we see that we can compute the approx-
imate potential at a generic point (xi, yj) using the closed formula (18). Both
our example and formula (18) have been derived sweeping first in the horizontal
direction and next in the vertical one. Of course, we can choose different paths
of summation. Nevertheless, because we are building our potential neglecting
the non-gradient part of our vector field, we know that our results will converge
to the same solution regardless of the chosen path.
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