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Supplemental Results

Experiment eight: uncertainty and active learning

With the exception of experiment three, the results so far could also be accommodated by a

non-Bayesian hierarchy discovery account that simply searches for the “best” hierarchy as defined

by some utility or score function [1]. Indeed, our inference algorithm could be viewed as a form of

stochastic search over the space of possible hierarchies, with the (unnormalized) posterior simply

serving the role of a score function for comparing candidate hierarchies. Our hierarchical planner

also relies on a single point estimate of the hierarchy, which raises the question of whether a
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Experimental Design
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Figure S1. Uncertainty about hierarchy guides active learning.

A. The seven graphs shown to participants in experiment eight. Dashed lines indicate edges whose

status was unknown. Numbers are graph identifiers.

B. Results from experiment eight showing what fraction of participants chose to learn about edge

A in graphs 1-4 (left) and what fraction chose to learn about edge B in graphs 5-7 (right). Dashed

line is chance. Error bars are s.e.m. (40 participants).

C. Results from simulations showing that the model exhibited similar preferences. Notation as in

B.
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Bayesian account is warranted. While the results of experiment three show that the uncertainty in

the posterior can affect choices across participants (since the population can be seen as approximating

the posterior, with one sample hierarchy per participant), they do not address the question of

whether uncertainty is represented at the level of the individual participant.

In this experiment, we sought to explicitly validate the probabilistic aspects of our model by

showing that people can make choices based on the uncertainty of the posterior distribution over

hierarchies P(H|G). Previous work has demonstrated that both humans and animals have access

to their uncertainty [2], which they can report explicitly or leverage to direct their exploratory

choices towards informative options [3]. Most related to our study is work on active learning [4,

5] showing that people choose to learn in a way that maximally reduces their uncertainty about the

hidden structure of the environment. Applied to our model, this predicts that people would choose

to learn about aspects of the graph that maximally reduce their uncertainty over the hierarchy,

which we operationalize as the entropy of the posterior (see Methods).

Participants

We recruited 40 participants from the Harvard community. The experiment took around 5 minutes

and participants were not paid for their participation.

Design

We presented 40 participants with 7 graphs (“subway networks”; Figure S1A). In each graph, all

but two or three of the edges were observable (those edge were described as “tracks possibly under
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construction”). We then asked participants to indicate which of the currently unobservable edges

they would like to observe (i.e., to learn whether the edge is present or not). Participants could

only pick a single edge for each graph.

Procedure

Each participant was given a sheet of paper with instructions and the graphs in Figure S1A. The

graphs were presented in a different order. The instructions were as follows:

Imagine that you are a tourist visiting a new city and want to use the subway system to get around.

Unfortunately, the subway map you have is out of date, and several tracks on it are marked as

“Under Repair”. As it might help get you around faster, you decide to ask a passer-by if any of

these tracks have finished repair work. Each of the images below represent a subway network, with

the circles as stations and lines as tracks. For each subway system, there are 2 or 3 tracks in red,

representing tracks that are possibly under construction. Circle ONE track whose repair status

you want to find out about the most. There is no need to think too hard about each map!

Results and discussion

If participants only care about the flat graph G, then they should be indifferent between the

available choices since they all yield exactly one bit of information. Furthermore, if participants

maintain a single point estimate of the hierarchy without keeping track of uncertainty, they would

have no basis to estimate how informative each choice is for the purposes of hierarchy discovery.

In contrast, we found that participants showed a strong preference in 5 of the 7 graphs (Figure S1B;
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p < 0.02 for graphs 1,2,4,5,6; binomial tests, Bonferroni corrected for 7 comparisons).

The simulated choices of our model were largely in agreement with the empirical results (r =

0.76, p = 0.05, Pearson correlation). This suggests that people explore their environment in a

way that facilitates hierarchy discovery, in accordance with our Bayesian account. The main

discrepancy between our model predictions and the participants’ choices was for graphs 1 and 7.

This is likely due to other factors also playing a role in human choices, such as graph geometry or

connectivity. In addition, since the model parameters were tuned based on simulations of previous

studies that did not assess the effects of uncertainty, it could be that the model weighs various

aspects of the graph differently from participants when computing the posterior, which would result

in different uncertainty estimates. We leave the fine-tuning of model parameters as the subject of

future work. In addition, there are several possible alternative explanations of these results. For

example, people could be choosing the line that has the greatest potential to reduce the average

shortest path between states. Alternatively, participants might have simply tried to enquire about

the connections that would lead to isolated subnetworks.

Supplemental Discussion

Cognitive architectures

The earliest attempts to develop a formal theory of planning date back to the work of Newell

and Simon [6, 7] who laid the foundational concepts of planning and problem-solving both in

human and in artificial intelligence research. Simon [8] framed problem-solving as an interaction

between the participant and the environment, and planning as a search through a state space
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that represents the structure of the problem, with operators (or actions) performing transitions

between states. In parallel, the seminal work of Miller, Galanter, and Pribram [9] highlighted the

hierarchical organization of human action plans, which they linked to people’s highly structured

representations of the world. Miller, Galanter, and Pribram [9] also proposed the existence of a

fast-access, limited-capacity working memory that loads information from a large-capacity “dead

storage” system, concepts later formalized as the short-term and long-term memory stores in

Newell, Simon, et al. [7]’s production systems. These earlier attempts led to the development

of contemporary cognitive architectures such as Soar [10, 11] and ACT-R [12, 13], which aim to

capture all aspects of human cognition. Both of these systems can perform hierarchical problem-solving

in complex domains based on subgoals, however the subgoals have to be supplied manually.

Chunking (referred to as compilation in ACT-R) is implemented by caching or memoizing the

solutions to these subgoals [14].

Our approach builds on concepts developed in this tradition. In our model, hierarchical behavior

directly arises from the hierarchical representation of the environment. The two memory systems

we assume also mirror the short-term/long-term memory stores in these earlier cognitive accounts.

Additionally, the form of action chunking we propose as a future addition to the model (see Future

directions) is similar in spirit to the chunking mechanisms in Soar and ACT-R. In principle, our

hierarchy discovery method could be integrated with these production systems to allow them to

decompose the problem space and identify subgoals automatically.
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Information-theoretic approaches

Closely related to our study is work by McNamee, Wolpert, and Lengyel [15] proposing an

alternative approach to hierarchically decomposing the environment for planning under working

memory limitations. Similarly to our proposal, they divide the state space into clusters (or modules)

and assume planning first occurs at a high-level (across modules), and is subsequently refined at a

lower level (within modules). They define an optimal modularization of the state space as the one

which minimizes the expected information-theoretic description length of planning trajectories.

Intuitively, this means that the average hierarchical plan in the modularized state space is as simple

as possible. Unlike the analysis of Solway et al. [16], this method does not require knowing the

optimal behaviors in advance and can also accommodate different task distributions. This implies

that it could account for effects based on graph topology and task distribution (see Table 2 in

the main text). Unlike our model, it does not account for effects of the reward distribution and

uncertainty. By framing the process of hierarchy discovery in terms of Bayesian inference, our

model can be used to make predictions about how beliefs evolve during learning (see experiment

three and Future directions), and how plans and choices will change correspondingly. Performing

Bayesian inference incrementally in this way can also be used to investigate the neural correlates of

hierarchy discovery and to understand the underlying neural computations (Figure S2E,F). Indeed,

our model does not appeal to a strict definition of optimality (in the sense of producing a hierarchy

that is provably optimal), and hence the two approaches can be seen as complementary, with our

model explaining how hierarchy is discovered and the analysis of McNamee, Wolpert, and Lengyel

[15] validating the hierarchies learned by our model and by people.
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Another information-theoretic method for clustering state spaces was proposed by Maisto, Donnarumma,

and Pezzulo [17]. Their approach relies on an extension of the CRP that allows clustering based on

similarity between states, which can be defined via a prespecified kernel function. Using different

kernels, they demonstrate clustering based on bottlenecks, goal states, paths, or other aspects of

the graph structure. Their approach relies on algorithmic probability theory to define the kernels

(see also [18]). This involves precomputing all possible paths between each pair of states, which

renders planning unnecessary. Nonetheless, this approach could provide a useful tool to analyze

the optimality of the hierarchies inferred by our model.

Structure learning and other notions of hierarchy

Frank and Badre [19] proposed an alternative notion of hierarchy in terms of action rules at

different levels of abstraction [20, 21]. In their framework, low-level rules map stimuli to responses,

whereas high-level rules dictate which stimulus dimensions are relevant for the low-level rules. For

example, a low-level rule might say “if the traffic light is red, don’t walk”, while a high-level rule

might say “when crossing the street, pay attention to the color of the traffic light”. This implements

a form of state aggregation, which in RL refers to the grouping together of different states and

then treating them as a single state, for example by assigning the same values and actions to all

states in the group [22, 23]. Note that this is different from state clustering in our model, which

still treats each state within the cluster as distinguishable from the rest. By determining which

stimulus dimensions are relevant for responding, the high-level rules implicitly render all states

with the same value for the particular stimulus dimension as indistinguishable for the purposes of
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responding according to low-level rules (for example, “a red light on the sunny day” versus “a red

light on a rainy day” both elicit the same response). This drastically reduces the total number of

stimulus-response mappings (low-level rules) that need to be learned and allows generalization to

previously unseen stimuli.

The connectionist model proposed by Frank and Badre [19] implements error-driven learning at

these different levels of abstraction in parallel loops that map onto the corticostriatal hierarchy,

with more anterior regions representing rules at increasing levels of abstraction. Despite its ability

to account for a range of behavioral and neural data, this approach is fundamentally restricted

to learning stimulus-response mappings only, and as such falls into the category of model-free

RL since it has no notion of a transition structure over which to plan. As discussed previously,

model-free RL – even with state aggregation – cannot account for the results of experiments one

through five since the predominant response (6→ 5) was never reinforced, nor would it support

the kind of goal-directed planning presented here. In fact, state aggregation would likely not

be possible in these experiments, since there is only a single stimulus dimension (the name of

the current station). In their model, the term hierarchy is used to denote a hierarchy of rules

that amounts to a compressed mapping from one stimulus to one action. This is fundamentally

different from our notion of a hierarchy, in which a hierarchy of states supports the flexible

generation of multistep action plans that achieve distant goals. It also differs from the traditional

notion of HRL, which refers to a temporal hierarchy, with options consisting of sequences of

primitive actions. While in theory the notion of a high-level rule could be extended to include

options, the model they propose can only learn to ignore stimulus dimensions and as such can only
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compress stimulus-response mappings, whereas to the contrary, options require an expansion of

the stimulus-response space.

Partial observability

Closely related to state discovery models is work in RL on partially observable environments [24].

In this scenario, the agent never directly observes its current state but must instead infer it from

observations as it interacts with the environment. Formally, the environment is represented by a

partially observable Markov decision process (POMDP) in which states, actions and rewards are

represented similarly to MDPs, with the key difference that states additionally generate observations.

The agent then uses these observations to infer a probability distribution over states – the belief

state – which it uses for decision making. Building on RL and Bayesian principles, POMDPs

provide a normative way to maximize reward under uncertainty. Correspondingly, they have

been used to account for a wide range of behavioral and neural results in the animal learning

and decision making literature [25, 26]. Recently, neurophysiological evidence from rodents [27,

28, 29] has shown that midbrain dopaminergic firing is consistent with a RL signal computed over

such a belief state, thus grounding the POMDP framework in the well-established brain circuits

for reward-based learning.

Our model can be seen as an extension of the POMDP framework, with clusters (high-level states

in H) acting as hidden states and low-level states in G acting as observations. However, our model

differs from the standard POMDP definition in two ways. First, as latent cause models, POMDPs

assume observations are independent given the state, whereas our model relies on the relations
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between states (E) in order to infer the clusters. Second, unlike latent cause models, POMDPs

usually assume a prespecified state space, whereas our model allows for a theoretically unbounded

number of clusters, recruiting more clusters as dictated by the data. The second property of our

model makes it similar to an infinite POMDP [30], which dynamically expands the state space

as more observations are acquired. The first way that our model differs from POMDPs suggests

that the analogy between observations and low-level states might be inappropriate, and that our

model can be better thought of as a particular kind of infinite hierarchical MDP, in which states

are fully observable but there is additional hidden structure which is not observable. Viewed in

this way, our model does not support partial observability, a limitation which could be remedied

by making the low-level states unobservable and having them generate observations, which would

drive inferences about the states, which would in turn drive inferences about the clusters. While

this would complicate the inference process, it would bring our model more closely in line with

the POMDP framework, making it more applicable in a world in which agents only receive partial

information about their state in the environment.

Action chunking and motor sequences

Our work is closely related to the notion of hierarchical control and motor sequencing [31, 32,

33], which studies the behavioral effects predicted by hierarchical action plans. Our work speaks

directly to that literature by proposing one particular way in which the representations that support

such hierarchical planning might be learned. Indeed, our hierarchical planner is reminiscent

of the tree traversal process described by Rosenbaum, Kenny, and Derr [31], and our reaction
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time analysis suggests that participants indeed executed sequences of actions in accordance with

hierarchical motor sequencing, with action plans generated according to the hierarchical representations

predicted by our model.

Our work is also intimately related to a broad literature on chunking in sequence learning [34], also

referred to as action chunking. Action chunking refers to the “gluing” of consecutive actions that

are reinforced repeatedly into a stereotyped action sequence that is executed as a single behavioral

unit. One of the most robust findings in the animal learning literature is the emergence of such

stereotyped action sequences after extensive training on a particular task. It is thought to occur as

control is transferred from a goal-directed system that chooses actions based on their anticipated

consequences to a habitual system that executes entire action sequences in response to perceived

stimuli [35].

Action chunking has a distinct neural signature, with bursts of neural activity emerging at key

choice points as an animal becomes proficient at a particular task [36, 37, 38]. This so-called

task-bracketing activity first appears in prelimbic cortex – often associated with goal-directed

behavior – and then gradually shifts to infralimbic cortex and dorsolateral striatum – often associated

with habitual behavior [39]. Task-bracketing has also been measured in midbrain dopaminergic

neurons that project to striatum [38], with a difference between the fraction of direct and indirect

pathway neurons that code for the initiation and termination of action sequences [40]. Neural

activity representing action sequence boundaries has also been measured in striatum and prefrontal

cortex of macaques [41, 42]. Similar task-bracketing activity has also been observed in songbirds

[43] and humans [44, 45], suggesting a conserved neural mechanism. One interpretation of these
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results is that task-bracketing activity reflects start/stop signals that gate overtrained action sequences,

particularly since it appears to be causally involved in the initiation and termination of action

chunks [46].

Executing entire sequences as single behavioral units could be beneficial if the cost of processing

the outcome of each action is outweighted by the benefit of acting fast at the risk of making

mistakes [47]. In its current form, our model only captures state chunking (the creation of state

clusters), however it can straightforwardly accommodate action chunking using some form of

caching or memoization (see Future directions). In fact, our model makes a distinct prediction

about the structure of action chunks, namely that they will fall within the boundaries defined by

state chunks (Figure S2C in S1 Appendix). In other words, we predict that state abstraction will

drive temporal abstraction: agents will first carve up their environment into clusters of states (state

chunks), which in turn will constrain the sequences of actions (action chunks) that are learned,

which in turn will operate within the state chunks. This stands in contrast to accounts which

assume that the agent first learns useful action sequences and then learns state representations

consistent with those sequences post-hoc [48]. This translates into specific predictions about the

neural activity of brain regions thought to support action chunking.

Neural implementation

We speculate about how the computational processes proposed here might be implemented in

neural circuits, and which brain regions might perform the computations. We also simulate within-trial

and across-trial neural signals that could be used to identify the key brain areas involved in hierarchy
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Figure S2. Hierarchy discovery and hierarchical planning in the brain.

A. Example neural circuit encoding the low-level graph G (bottom), the high-level graph H (top), and the cluster

assignments c from experiment one (Figure 9A). Circles denote units representing graph nodes. Lines denote

bidirectional excitatory synapses representing edges and cluster assignments. Number are unit identifiers.

B. Example (idealized) circuit activity during the test trial 6→ 1. Each row represents the activity of the corresponding

unit over the course of the trial. States along the X-axis denote the current state following a transition. Gray denotes

intermediate levels of activation representing the current state of the agent, akin to hippocampal place cell activity.

Black denotes high levels of activation during planning, akin to hippocampal preplay.

C. (Top) Example (idealized) “start” activity at the initiation of each action chunk in dorsolateral striatum (DLS), with

action chunks assumed to fall within the boundaries of the state chunks (clusters) in A. (Bottom) For comparison,

primary motor cortex (M1) activity at key presses corresponding to transitions. Time course corresponds to B.

D. Example neural circuit illustrating hierarchy discovery via local Hebbian plasticity. (Left) Low-level graph with a

single edge (1,2) has nodes 1 and 2 assigned to cluster 4 and node 3 is assigned to cluster 5. (Right) Observing edges

(1,3) and (2,3) causes transient activation of nodes 1,2,3 and cluster 4, strengthening the connection between node 3

and cluster 4 and hence reassigning node 3 to cluster 4.

E. Simulated Bayesian update of the (approximate) posterior P(H|D) over the course of learning the graph from

simulation four (Figure 7A), which could take place in posterior parietal cortex (PPC).

F. Representational dissimilarity matrix showing the difference in the (approximate) posterior P(H|D) between pairs

of trials during the same simulation as in E.
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discovery and hierarchical planning.

First, consider the flat graph G only. A straightforward way to encode G in a neural circuit would

be to have a single unit (a neuron, such as a place cell, or an ensemble of neurons) represent each

node u∈V and excitatory synapses between pairs of units (u,v) represent the edges E (Figure S2A,

bottom). The graph structure could be learned via local Hebbian plasticity: when two units

are activated right after each other (for example, during a transition between the corresponding

states), the synapse between them is potentiated. In order to perform (flat) BFS to find the

shortest path from node s to node g, an external input can successively probe each neighbor of

s by transiently activating the corresponding unit, triggering a “forward sweep” of activation that

propagates through the circuit until it reaches and activates the unit of the goal state g. The neighbor

of s that activates g in the least amount of time is the next node along the shortest path to g, so the

agent can then physically transition to that state and repeat the process again and again, until finally

reaching the goal state g. Assuming some form of short-term synaptic depression or ion channel

inactivation that prevents the sweep from going backwards [49], this implements precisely BFS.

Similar schemes have been proposed to support forward trajectory planning in the hippocampus

[50, 51].

The hierarchical graph H could then be incorporated into the circuit by designating its own set

of units and synapses, corresponding to the nodes V ′ and edges E ′, respectively. The cluster

assignments c could also be implemented as synapses between the units of G and the units of H.

In an elegant way, the inferred hierarchy would be isomorphic to the neural circuit that represents

it (Figure S2A). This could straightforwardly extend to deeper hierarchies and is consistent with
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the presence of place cells and grid cells with different receptive field sizes in the hippocampus

and entorhinal cortex [52, 53]. HBFS can be implemented in the exact same way as BFS, with

the difference that now the forward sweep can take “shortcuts” through the higher levels of the

hierarchy, thus significantly reducing the time it would take to activate the goal unit g. Note

that this performs almost the exact same computation as HBFS, with the small difference that

transitions “up” the hierarchy (i.e., computing cu and cv on line 1 in Algorithm 1) also count as

transitions along the path.

The hierarchy could be learned similarly to G, with local Hebbian plasticity strengthening the

synapses between units of H (for example, during boundary transitions) as well as the synapses

representing the cluster assignments between G and H. To illustrate this, consider the example in

Figure S2D (left), with units 1,2,3 representing nodes in G and units 4,5 representing nodes in H.

On the left, there is only one edge between nodes 1 and 2 and hence these two nodes are clustered

together (c1 = c2 = 4), separately from node 3 (c3 = 5). However, once the edges (1,3) and (2,3) are

observed (Figure S2D, right), this would transiently activate units 1,2,3 together, which (because

of nodes 1 and 2) would transiently activate unit 4, leading to potentiation of the synapse between

3 and 4. Assuming some form of local homeostatic plasticity that constrains the total synaptic

weight of each unit, this would weaken the synapse between 3 and 5, effectively reassigning 3 to

the same cluster as 1 and 2 (c1 = c2 = c3 = 4).

Note that this implements a kind of “soft” hierarchy, with the same node potentially being strongly

associated with one cluster and weakly associated with other clusters. This could be one way to

take into account a probability distribution over hierarchies rather than a single point estimate.
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Indeed, allowing all synaptic weights to have continuous values rather than forcing them to be

binary can keep track of probability distributions over the edges E and E ′ as well. In fact,

this could also allow the neural circuit to take into account stochastic transitions: transitions

that have low probability will simply have the corresponding synapses potentiated less often,

resulting in weaker weights. This addresses the limitation of our graph-theoretic approach to only

support deterministic transitions, thus extending the framework to support regular MDPs. The

continuous range of the synaptic weights would naturally be taken into account by our “neural”

HBFS algorithm: the forward sweep will simply be less likely to propagate through weaker

synapses. In effect, this will perform a kind of simultaneous, parallel sampling of an entire set

of possible trajectories in a way that is drastically more efficient than sampling trajectories one by

one (linear versus exponential time). Investigating the theoretical properties of such a mechanism

could be the subject of future work.

A neural circuit with the above-mentioned properties could naturally be implemented in the hippocampus

and the surrounding cortex. Hippocampus has long been known to encode locations in physical

space [54] and has been hypothesized to encode a cognitive map that applies across various

non-spatial domains [55]. Recent studies have shown that this is indeed the case, with encoding

of non-spatial task-relevant variables such as sound frequency in rodents [56] and even abstract

conceptual domains in humans [57]. The units we hypothesize could thus be implemented in the

hippocampus-entorhinal circuit, with HBFS taking the form of hippocampal preplay (Figure S2B)

which is known to occur at decision points and is predictive of future behavior [58].

While our model only discovers state chunks, action chunking could straightforwardly be incorporated
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by caching (or memoizing) the output of BFS and/or HBFS for regularly occurring subgoals (see

Future directions). The acquisition of action chunks after extensive training in animals is associated

with the emergence of characteristic start/stop signals in basal ganglia circuits [36, 37, 38, 40,

46]. Our model makes the distinct prediction that action chunks and the corresponding start/stop

signals will fall within state chunk boundaries (Figure S2C), rather than be dictated purely by

the temporal statistics of action sequences. This prediction could be validated empirically by

subjecting animals to similar training and test protocols as our participants while measuring neural

activity in dorsolateral striatum.

If the probability distribution over hierarchies is implicitly encoded in synaptic weights, as proposed

above, then it would be difficult to read it out directly from neural activity. Alternatively, the

distribution could be encoded in neural activity patterns, for example using probabilistic population

codes or neuronal sampling [59] . This would be consistent with our previous work [60] which

found a neural signature of the Bayesian update of the posterior over hidden structures in a frontroparietal

network of brain regions, as well as representations of the full posterior in several brain areas.

Our model falls within the framework of structure learning and is thus likely to recruit the same

underlying neural mechanisms. This prediction can be tested by generating regressors that track

Bayesian updates of the posterior P(H|D) during learning (Figure S2E) and using them to identify

neurons or brain areas that might implement the actual hierarchy discovery process. In addition,

representational similarity analysis [61] could be used to identify areas that maintain the (approximate)

posterior P(H|D) (Figure S2F).
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Supplemental Methods

Active learning

Drawing on the active learning framework from the causal inference literature [62, 63], we assume

the agent will chose to learn about edges of G in a way that provides maximal information about

H. Maximizing information about H is equivalent to minimizing uncertainty about H, which can

be quantified as the entropy of H:

H(H|D) =− ∑
Hdisc

∫
P(H|D) logP(H|D)dHcont (19)

Where Hdisc = (V ′,E ′,c,b) are the discrete components of H, Hcont = (p′, p,q) are the continuous

components of H, and D is the data observed so far. We use H to denote the entropy of a mixed

random variable with discrete and continuous components [64].

Computing the entropy in this way is neither computationally feasible nor psychologically plausible.

Following previous authors [65], we assume the agent has a subjective probability distribution

over possible hierarchies H which can be represented by a set of samples [H(1), ...,H(M)] with

multinomial probabilities [p(1), ..., p(M)] (∑m p(m) = 1). If the samples are drawn from the posterior

P(H|D), the agent can approximate the entropy as:

H(H|D)≈−∑
m

p(m) log p(m) (20)
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Note that while this is not a proper estimate of the entropy, it can serve as a basis for rational

hypothesis testing. In our simulations, we used MCMC to generate the samples from the (approximate)

posterior and set the subjective probabilities according to p(m) ∝ P(H(m)|D) ∝ P(D|H(m))P(H(m)).

We use au,v to denote the action of observing edge (u,v), i.e. finding out whether (u,v) ∈ E. Since

there is no way to know in advance what the outcome would be, the agent has to minimize the

expected entropy over the two possible outcomes:

H(H|D,au,v) =H(H|D,(u,v) ∈ E)Pr[(u,v) ∈ E|D]

+H(H|D,(u,v) /∈ E)Pr[(u,v) /∈ E|D] (21)

We can compute the probability of each outcome by marginalizing over H and using the sampling

approximation:

Pr[(u,v) ∈ E|D] = ∑
Hdisc

∫
Pr[(u,v) ∈ E|H]P(H|D)dHcont (22)

≈ 1
M ∑

m
Pr[(u,v) ∈ E|H(m)] (23)

Where Pr[(u,v)∈E|H] is p or pq, according to the generative model. Pr[(u,v) /∈E|D] is approximated

analogously.

The agent then chooses the action that minimizes the expected entropy:

20



a = argmin
a

H(H|D,a) (24)

Neural simulations

The example within-trial circuit activations in Figure S2B in S1 Appendix were generated manually,

assuming a hierarchy like the one in Figure S2A (responding to the decomposition in Figure 9A).

We assumed HBFS is executed at every cluster boundary and that the entire path within the cluster

is traversed in a single action sequence that is executed as a single behavioral unit, akin to an action

chunk.

To generate the Bayesian update in Figure S2D, we simulated online inference on the graph

from the Towers of Hanoi puzzle (Figure 7A), using a particle filter with M = 100 particles

[H(1), ...,H(M)] , each initialized from the prior P(H). We started with an empty graph and added

edges one by one, with single edge added on each trial. We approximated the posterior P(H|D)

with multinomial probabilities [p(1), ..., p(M)], where p(m) ∝ P(H(m)|D) ∝ P(D|H(m))P(H(m)) and

∑m p(m) = 1.

Following our previous work [60], we quantified the Bayesian update after each observed edge

by computing the Kullback-Liebler divergence between the multinomial approximation to the

posterior before and after the update. We additionally performed 10 iterations of MCMC (as

described in the inference section) for each particle after each trial in order to rejuvenate the

particles [66]. Similar approximations to online Bayesian inference have been used in previous

studies [67]. To generate the dissimilarity matrix in Figure S2E, as in our previous work [60],
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we computed the cosine distance between the approximate posterior for each pair of trials in the

simulation.
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