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1. Model selection 

Model selection on the complexity 

 In the first round of model selection, we compared models with different complexity. Our 

household transmission model was mainly characterised by two components, the effective household 

contact 𝜂𝑘𝑙 = 𝛽
𝑐𝑘𝑙

𝐶𝑘
𝛾  and the risk of external infection 𝜀𝑘 . Models corresponding to all possible 

combinations of assumptions were compared based on the Widely-applicable Bayesian information 

criterion (WBIC) (1). WBIC has the same scale as the Bayesian information criterion. A difference of 

2 in WBIC is considered as an indication of statistical significance, while a difference greater than 5 

is deemed as strong support. Table S1 compares the candidate models and their WBIC.  

The parameters 𝑐𝑘𝑙  and 𝜀𝑘  were estimated as a single value 𝑐𝑘𝑙 = 𝑐  and 𝜀𝑘 = 𝜀  under 

“Homogeneous”/“Uniform” assumptions, respectively. We fixed 𝛾 at 0 in “DD” (density-dependent) 

models and 1 in “FD” (frequency-dependent), and freely estimated in “IM” (intermediate) models. In 

“Single parent-Y” models, fathers and mothers who do not live with a spouse were classified as an 

additional type “single parent” (thus the number of types was 6 in these models). The best model 

(Model 12) was selected with very strong support: ΔWBIC from the second-best model was 16.9. 

 

Model selection on the contact pattern matrix 

 After selecting the model complexity, we further tried to explore different contact pattern 

matrices 𝑐𝑘𝑙. Let the rows and columns of 𝑐𝑘𝑙 correspond to (Student, Sibling, Father, Mother, Other). 

Five parameters (𝑐CC, 𝑐FC, 𝑐MC, 𝑐OC, 𝑐AA) being denoted by numbers 1 to 5, the contact pattern matrix 

𝑐𝑘𝑙 in the previous model selection had the following structure: 

𝑐𝑘𝑙 =

[
 
 
 
 
1 1 2
1 1 2
2 2 5

3 4
3 4
5 5

3 3 5
4 4 5

5 5
5 5]

 
 
 
 

 (S1) 

Note that the diagonal elements for student, father and mother were displayed only for completeness 

and not used in the analysis (households in our dataset did not contain more than one 

students/fathers/mothers). Parameter estimates in Model 12 are shown in Table S2. In this contact 

pattern matrix, as all adults are assumed to share the same contact intensity. Meanwhile, the estimates 

of 𝑐FC and 𝑐OC are relatively similar. We explored variant models that further stratify 𝑐AA while 



𝑐FC and 𝑐OC are equated to keep the number of parameters unchanged (=5). 

 We considered the following submodels: Model 12a (intense contact within couples), Model 

12b (mother acting as a hub) and Model 12c (generation-assortative). 

𝑐𝑘𝑙 (Model 12a) =

[
 
 
 
 
1 1 2
1 1 2
2 2 4

3 2
3 2
4 5

3 3 4
2 2 5

4 5
5 5]

 
 
 
 

, 

𝑐𝑘𝑙(Model 12b) =

[
 
 
 
 
1 1 2
1 1 2
2 2 5

3 2
3 2
4 5

3 3 4
2 2 5

4 4
4 5]

 
 
 
 

, 

𝑐𝑘𝑙(Model 12c) =

[
 
 
 
 
1 1 5
1 1 5
5 5 2

3 5
3 5
2 5

3 3 2
5 5 5

2 5
5 4]

 
 
 
 

 

(S2) 

Estimated contact pattern matrices are shown in Tables S3-S5. Models 12a and 12c had much better 

WBIC than Model 12 (ΔWBIC = -14.4 and ΔWBIC = -17.3, respectively), while that of Model 12b 

was slightly worse than Model 12. Of the two models exhibiting improved WBICs, Model 12c was 

selected with a significant WBIC difference of 2.9. Parameter estimates other than 𝑐𝑘𝑙 did not vary 

between compared models to the first significant figure. 

 

Selection of the scaling factor 

In our baseline model, the total amount of contacts 𝐶𝑘 = ∑ 𝑐𝑘𝑙𝑙   was used to scale the 

effective household contact (i.e., 𝜂𝑘𝑙 ∝ 𝐶𝑘
−𝛾) to reflect heterogeneous contact patterns. On the other 

hand, previous modelling studies often used household size N in place of 𝐶𝑘 (2–5). Although 𝐶𝑘 and 

N are correlated (𝐶𝑘 and N-1 coincide in homogeneous settings) and may work as a good proxy with 

each other, we considered comparison between these two approaches to be of interest. We tested a 

variant of Model 12c where 𝐶𝑘 is replaced with N (i.e., 𝜂𝑘𝑙 ∝ 𝛮−𝛾), but the model performance was 

significantly worsened (ΔWBIC = 8.8). The estimated value of gamma did not change (γ = 0.52; CrI: 

0.34-0.75). The use of the total amount of contacts is preferred to household size as a scaling factor 

for the within-household transmission, and even when household size is used as variable, the semi-

density-dependent model may still be applicable. 

 

 

 

 



Table S1. WBIC of models with different sets of assumptions. 

Model ID 𝑐𝑘𝑙 𝜀𝑘 𝛾 Single parent WBIC ΔWBIC 

1 Hom Unif DD N 33269.16 2134.96 

2 Het Unif DD N 33054.70 1920.50 

3 Hom Unif FD N 33259.36 2125.16 

4 Het Unif FD N 32731.10 1596.90 

5 Hom Unif IM N 33243.32 2109.12 

6 Het Unif IM N 32277.92 1143.72 

7 Hom Strat DD N 31215.16 80.96 

8 Het Strat DD N 31151.08 16.88 

9 Hom Strat FD N 31205.44 71.24 

10 Het Strat FD N 31150.78 16.58 

11 Hom Strat IM N 31186.64 52.44 

12 Het Strat IM N 31134.20 0 

13 Hom Unif DD Y 33267.72 2133.52 

14 Het Unif DD Y 33061.14 1926.94 

15 Hom Unif FD Y 33256.72 2122.52 

16 Het Unif FD Y 32752.26 1618.06 

17 Hom Unif IM Y 33241.46 2107.26 

18 Het Unif IM Y 32182.18 1047.98 

19 Hom Strat DD Y 31223.68 89.48 

20 Het Strat DD Y 31167.16 32.96 

21 Hom Strat FD Y 31212.52 78.32 

22 Het Strat FD Y 31168.08 33.88 

23 Hom Strat IM Y 31194.82 60.62 

24 Het Strat IM Y 31151.98 17.78 

Hom: homogeneous mixing, Het: Heterogeneous mixing 

Unif: uniform risk of external infection, Strat: stratified risk of external infection 

DD: density-dependent, FD: frequency-dependent, IM: intermediate 

Single-Parent: whether the “single parent” category has a unique parameter. Y=Yes, N=No. 

WBIC: Widely-applicable Bayesian information criterion, ΔWBIC: WBIC difference from the best 

model 

 

 



Table S2. Estimated contact pattern matrix (𝑐𝑘𝑙) in Model 12. 

 Student Sibling Father Mother Other 

Student 
1.28 0.54 1.40 0.45 

Sibling 

Father 0.54 

1 Mother 1.40 

Other 0.45 

WBIC = 31134.20; ΔWBIC = 0 (baseline) 

 

Table S3. Estimated contact pattern matrix (𝑐𝑘𝑙) in Model 12a. 

 Student Sibling Father Mother Other 

Student 
0.97 0.39 1.09 0.39 

Sibling 

Father 0.39 
1 0.39 

Mother 1.09 

Other 0.39 0.39 1 

WBIC = 31119.78; ΔWBIC = -14.42 

 

Table S4. Estimated contact pattern matrix (𝑐𝑘𝑙) in Model 12b. 

 Student Sibling Father Mother Other 

Student 
1.25 0.49 1.37 0.49 

Sibling 

Father 0.49 1.01  1.01 

Mother 1.37 1 

Other 0.49 1.01  1.01 

WBIC = 31134.72; ΔWBIC = 0.54 

 

Table S5. Estimated contact pattern matrix (𝑐𝑘𝑙) in Model 12c. 

 Student Sibling Father Mother Other 

Student 
1.04 0.43 1.16 

0.43 
Sibling 

Father 0.43 
   1 

Mother 1.16 

Other 0.43 1.97 

WBIC = 31116.88; ΔWBIC = -17.32 (best model) 

 



2. Source-stratified risk of infection and risk attributable to the introduction of influenza into 

a household 

We quantified the risk of infection attributable to external and within-household infection 

from the parameter estimates. Three family compositions were selected as model cases: (a) “nuclear 

family”: father, mother and two children, (b) “many-siblings family”: father, mother and four children, 

and (c) “three-generation family”: father, mother, two children and two grandparents. We assumed that 

one of the children in each model case households was “student”, and the others were “siblings”. The 

overall risk of infection for type k individual is given by  

𝑟𝑘 = ∑
𝑛𝑘

𝑁𝑘
𝜋(𝒏;𝑵, 𝜺, 𝐻)

𝒏

, (S3) 

(the sum is taken for all possible 𝒏), and  𝑟𝑘 − 𝜀𝑘 corresponds to the additional infection risk due 

to within-household transmission. 

We also compared the risk of infection after the introduction of influenza into households 

with the initial overall risk. We defined post-introduction risk as the conditional probability that an 

individual experience infection by the end of the season, given that one index case is already observed 

in the same family. Here, for simplicity, we limited the analysis to introductions by primary school 

students (i.e., individual type “student”) only. 

Suppose that k=1 corresponds to the type “student”. Post-introduction risk obtained by modifying the 

formula for 𝑟𝑘 as 

𝑟𝑘
pos

= ∑
𝑛𝑘

𝑁𝑘
∙
𝜋(𝒏;𝑵, 𝜺 + 𝑯1, 𝐻)

𝑆1(𝒏, 𝜺)
{𝒏|𝑛1=0}

. (S4) 

𝑯1 is the (additional) force of infection arising from the infected student, i.e., (𝑯1)𝑘 =
𝑐𝑘1

𝐶𝑘
𝛾. The sum 

is taken for all possible 𝒏 whose first component 𝑛1 = 0 (because the force of infection from the 

student is incorporated in 𝜢1). Note that by dividing ℎ(𝒏;𝑵, 𝜺 + 𝜢1, 𝛨) by 𝑆1(𝒏, 𝜺), we can yield 

the conditional probability that 𝒏  individuals (other than the “student”) are infected given the 

presence of the force of infection 𝜢1. 

 

3. Sensitivity analysis 

Procedures for the sensitivity analysis 

(i) Ascertainment bias 

In order to account for potential ascertainment bias, we incorporated reporting probabilities 

into the model. We assumed that infections are reported with a certain probability pk . Epidemiological 

properties, such as infectiousness, were assumed to be identical between reported and unreported cases. 

The likelihood of observing a household final size outcome (𝒏;𝑵) given the reporting probability 

vector 𝒑 is obtained by using the binomial distribution: 



𝐿(𝜺,𝛨, 𝒑; (𝒏;𝑵)) = ∑ ℎ(𝒏′;𝑵, 𝜺, 𝛨)∏Bin(𝑛𝑘; 𝑛′𝑘 , 𝑝𝑘)

𝑘𝒏′≥𝒏

. (S5) 

The sum ∑  𝒏′≥𝒏 is taken for all vector n’ satisfying 𝑛𝑘 ≤ 𝑛𝑘′ ≤ 𝑁𝑘  (∀𝑘). 

In this sensitivity analysis, we assumed that the reporting probability p for children (“student” and 

“sibling”) is 0.8. The reporting probability for adults was varied from 0.5 to 0.8. 

 

(ii) Different susceptibility in children 

Susceptibility to influenza infection was differentiated between children and adults. Let 𝜎 

be the susceptibility of children relative to that of adults. The effect of 𝜎 was employed in the model 

by differentiating the transmissibility 𝛽 as 

𝛽𝑘 = {
  𝛽𝜎  (𝑘 = "Student", "Sibling")

𝛽  (otherwise)
. (S6) 

Five different values of 𝜎 : 0.75, 1.25, 1.5, 1.75, 2.0 were tested. 𝜎  = 0.75 corresponds to the 

assumption that children may have less risk of infection per exposure (e.g., due to potentially high 

vaccination coverage). The value of 𝜎 greater than 1 reflects the assumption that children are more 

vulnerable than adults. 

 

(iii) Multiple counting of households 

We identified all the possible combinations of respondents who might be from the same 

household by the following process. (1) Respondents were classified by their school and family 

composition. We assumed that siblings usually go to the same primary school. (2) Data were matched 

up, and consistency was checked between the sex and grade of the respondent and the reported 

composition of siblings. For instance, a second-grade boy who has no older brother should not be from 

the same household as a fourth-grade girl who has an older brother (the girl’s older brother should also 

be the boy’s older brother). Here, we assumed that siblings should be in different grades, and neglected 

the possibility of twins or siblings in the same grade. (3) Individuals potentially from the same 

household were grouped together. Combination of grouping was chosen so that as many individuals 

as possible are grouped together in total. Individuals in each matched group were assumed to be from 

the same household, and their data were integrated to represent one household data. Respondents were 

classified as “students”, and siblings who were not found in the dataset was classified as “siblings”. 

Because sex, school and grade were not used in the parameter estimation, individual-level details of 

the grouping arrangement (who was grouped with whom) did not affect the subsequent analysis. 

Through this whole process, 1,294 individuals identified as candidates potentially from multiple-

counted households were processed, reducing the number of households from 10,486 to 9,763 (-6.9%). 

Note that this is an extreme case where as many consistent siblings as possible are grouped together, 

and that the reality may lie between the two extremes (no-grouping and maximum-grouping). 



 

(iv) Case censoring 

Participants reported in the survey the total number of siblings, siblings in four categories 

(older brother, older sister, younger brother or younger sister) and whether siblings in each category 

had influenza. Let 𝜧 = (𝑀1, 𝑀2,𝑀3, 𝑀4)  and 𝒎 = (𝑚1,𝑚2, 𝑚3, 𝑚4)  be the true composition of 

siblings and the number of siblings with an influenza episode in each category (1: older brother; 2: 

older sister, 3: younger brother; 4: younger sister), respectively. Due to the questions in the survey, the 

dataset did not include either M or m. Instead, we have 𝛭 = ∑ 𝑀𝑖𝑖  and censored sibling data 𝑴′ 

(𝛭𝑖
′ = min (𝑀𝑖, 1)) and 𝒎′ (𝑚𝑖

′ = min (𝑚𝑖 , 1)), as the questions on sibling categories were yes-no 

questions. 

We constructed a modified likelihood function to address this censoring issue. The basic 

idea was to generate all possible patterns of M and m that are consistent with the observation and 

aggregate the corresponding probabilities to obtain the likelihood for the censored data. First, we 

defined a conditional probability 𝜋(𝑴;𝑀) , the probability that the true sibling composition is M 

given M. Assuming that the probability of being the n-th child in given M siblings is equally 
1

𝑀+1
 and 

that the sex of a child is evenly distributed, we get 

𝜋(𝑴;𝑀) =
1

(𝑀 + 1) ∙ 2𝑀
(
𝑀1 + 𝑀2

𝑀1
) (

𝑀3 + 𝑀4

𝑀3
)𝜎(𝑴,𝑀), (S7) 

where 𝜎(𝑴,𝑀) is an indicator function that takes 1 if M is consistent with M (i.e., ∑ 𝑀𝑖𝑖 = 𝑀), and 

0 otherwise. 

Let 𝜋(𝒎;𝑴, 𝜑) be the probability of observing a sibling outcome pattern m given M. This 

is also conditional to the existence of other family members and their outcomes, and those conditions 

are represented by φ. 

Using 𝜋(𝑴;𝑀) and 𝜋(𝒎;𝑴, 𝜑), the likelihood of observing {𝑴′,𝒎′} given M and φ is 

𝑙(𝑴′,𝒎′;𝑀, 𝜑) = ∑𝜋(𝑴;𝑀)

𝑴

𝜎(𝑴,𝑴′)∑𝜋(𝒎;𝑴,𝜑)

𝒎

𝜎(𝒎,𝒎′), (S8) 

where 𝜎(𝑴,𝑴′) and 𝜎(𝒎,𝒎′) are indicator functions checking if m and M are consistent with the 

observation. 

Since we assume all siblings exhibit identical epidemiological behaviour, considering the 

effect of loss of distinguishability, 𝜋(𝒎;𝑴, 𝜑) is substituted with 

𝜋(𝒎;𝑴, 𝜑) =
∏ (

𝑀𝑖

𝑚𝑖
)𝑖

(
𝑀
𝑚

)
𝜋(𝑚;𝑀, 𝜑), (S9) 

where 𝑚 = ∑ 𝑚𝑖𝑖 . 𝜋(𝑚;𝑀,𝜑) is equivalent to π in equation (1) in the main text, and thereby we get 

the likelihood accounting for possible case censoring in siblings. 

 



Results of the sensitivity analysis 

The estimates from the sensitivity analysis were compared in Figure S1. Equally lowering 

the reporting probability for children and adults slightly increased some of the parameters while the 

overall relative magnitude was almost conserved. When the reporting probability for adults was set 

lower than children, parameters which involve adults increased and those involving children decreased 

(Figures S1A and S1B). Increasing the relative susceptibility in children resulted in lower child-

involved contact intensities (Figures S1C and S1D). Multiple counting of data reported by students 

from the same household did not seem to have affected the result, but some changes were caused by 

addressing censored cases in siblings, which may be resulted from the possibility of unobserved sibling 

cases (Figures S1E and S1F). Except that the contact intensity between children was substantially 

lowered by either underreporting of adults or high susceptibility in children, the relative trend 

remained almost similar throughout our sensitivity analysis. Especially, the risk of external infection 

in children and the contact intensity between children and adults remained at a sufficient level, such 

that the secondary transmission from children is still of paramount importance. The exponent 

parameter γ was stable throughout the sensitivity analysis (median within 0.50 ± 0.02), except that it 

was slightly higher (0.59; CrI: 0.39-0.79) when the case censoring (iv) was considered. 



 

Figure S1. Parameter estimates from the sensitivity analysis. The estimated risk of external infection 

and relative intensity of household contacts are compared with the baseline estimates. The relative 

intensity of contacts in the figures is multiplied by the relative change in the estimated transmissibility 

parameter β for comparability. 

(A), (B) Various reporting probabilities in children (𝑝C) and adults (𝑝A). 

(C), (D) Various ratios between susceptibility in children (𝛽C) and adults (𝛽A). 

(E), (F) Estimates from the modified dataset addressing multiple counting of households and censoring 

of cases in siblings. 

 



4. Model fit 

To evaluate the goodness-of-fit of our model, the model prediction was compared with the 

observed data. Let 𝜃  be the set of median parameter estimates. 𝜋(𝒏;𝑵, 𝜃) , the probability of 

observing outcome pattern n given household composition N, is obtained from Equation (1) in the 

main text. Assuming that the distribution of N in dataset D is given as observed (𝜋𝐷(𝑵)), the predictive 

distribution of the outcome patterns (𝑵𝑖, 𝒏𝑖) (approximated by the point estimate 𝜃) is  

𝜋(𝑵𝑖 , 𝒏𝑖; 𝜃) = 𝜋(𝒏𝑖; 𝑵𝑖 , 𝜃)𝜋𝐷(𝑵𝑖), (S10) 

Figure S2 compares the predictive distribution with the actual frequency in the dataset. The 95% 

intervals are approximated by the 95% quantiles of a binomial distribution 

𝐹𝐷(𝑵,𝒏) ∼ Binom(𝐹𝐷(𝑵), 𝜋(𝒏;𝑵, 𝜃)), (S11) 

where 𝐹𝐷 is the frequency in data D of size 𝑆𝐷. The predicted and observed frequency show good 

accordance despite the relatively modest parameter space dimension (=11). The similarity between the 

two distributions are also supported by the empirical Kullback-Leibler divergence of 0.05, where 

KL̂ = ∑
𝐹𝐷(𝑵, 𝒏)

𝑆𝐷
⋅ log (

𝐹𝐷(𝑵, 𝒏)

𝜋(𝒏;𝑵, 𝜃)𝐹𝐷(𝑵)
)

𝑑

. (S12) 

 

Figure S2. Comparison between the predicted and observed household final outcomes. 

Red dots correspond to the observed relative frequency of data (household compositions and final 

outcomes of the household members), where the x-axis denotes the numbering of outcome patterns 

(𝑵,𝒏). With the sample size of ~10,000, 10-4 on the y-axis denotes frequency 1; dots for frequency 0 

are shown on the x-axis. The black line indicates the probability of observation predicted by the model, 

and the shaded area shows 95% intervals. Both x- and y-axes are on a logarithmic scale. 



We also compared the predicted and observed distributions of the final attack size (the total 

number of household cases during the season) for specific compositions in Figure S3. The observed 

distribution was right-skewed from the “binomial scenario”, where within-household transmission is 

not present and individuals are assumed to be exposed to the external risk of infection only. 

 

Figure S3. The observed and predicted final attack size distributions. 

Red dots and black lines denote the observed and predicted relative frequencies. Blue lines represent 

“binomial scenario”, where within-household transmission is not present. Eight major household 

compositions (accounting for 84% of the total households in the dataset) are shown. 


