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1 Mathematical Development

1.1 Compartment-A evolution

In this section we highlight how to compute the evolution of the probability of having a given number
of cells in compartment A. This is a standard result, and included for completeness. We start with a
birth-death process with immigration

∅ µ1−→ A

A
b1−→ A+A

A
d1−→ ∅

We encode the dynamics of the stochastic process in the probability generating function

G(s, t) =

∞∑
n=0

snP(A = n) (1)

which evolves, due to the master equation, according to the following partial differential equation

Gt = [b1s(s− 1) + d1(1− s)]Gs + µ1(s− 1)G (2)

Writing this as
Gt − v ·Gs = µ1(s− 1)G (3)

and using the method of characteristics one has

G(s(0), t) = G(s(t), 0)eµ1

∫ t
0
(s(t′)−1)dt′ (4)

where s(t) evolves under the ordinary differential equation ṡ = v. In our case this is

ṡ = b1s(s− 1) + d1(1− s) (5)

If we start with no cells, then G(s, 0) = 1 and

G(s(0), t) = eµ1

∫ t
0
(s(t′)−1)dt′ (6)

Solving the differential equation

s(t) = 1 +
γ1(1− s(0))

b1(s(0)− 1)− (b1s(0)− d1)e−γ1t
(7)

with γ1 = b1 − d1. Then

µ1

∫ t

0

(s(t′)− 1)dt′ =
µ1

b1
ln

[
γ1

(b1s(0)− d1)− b1(s(0)− 1)eγ1t

]
(8)

giving

G(s, t) =

[
γ1

(b1s− d1)− b1(s− 1)eγ1t

]µ1
b1

(9)
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1.1.1 Probability distribution of A(t).

Next we expand in powers of s to get the probability distribution over time. First we write the term in the
bracket as

γ1
(b1eγ1t − d1) + b1s(1− eγ1t)

=
1− p
1− ps

(10)

with

p =
b1(eγ1t − 1)

(b1eγ1t − d1)
(11)

The generating function, with r = µ1

b1
is

G(s, t) = (1− p)r
[

1

1− ps

]r
(12)

so the expansion is simply a negative binomial since

(1− ps)−r =

∞∑
k=0

(
r + k − 1

k

)
(ps)k (13)

For non-integer r the binomial coefficient is defined as(
r + k − 1

k

)
=

Γ(r + k)

Γ(r)Γ(k + 1)
(14)

As mentioned in the main text (Eq. 5), the probability P (A(t) = k) of having k individuals at time t in
the first compartment is then

P (A(t) = k) = (1− p)r
(
r + k − 1

k

)
pk , K ∼ NB (r, p) (15)

with CDF

Pr(A(t) ≤ k) = 1− B (p; k + 1, r)

B (k + 1, r)
(16)

in terms of the Beta function B. With this we can assess the likelihood of a patient having a size range of
[UAi , L

A
i ] at time tAi

L(ΘA | OAi ) =
B
(
p;LAi + 1, r

)
B
(
LAi + 1, r

) − B
(
p;UAi + 1, r

)
B
(
UAi + 1, r

) (17)

As in the main text (Eq. 12), if we assume that immune individuals are distributed throughout the
population with proportion λ we then have a mixture model which has likelihood:

L(ΘA, λ | OAi ) =

{
λ+ (1− λ) Pr(LAi ≤ A(t) ≤ UAi ) if 0 ∈ [LAi , U

A
i ],

(1− λ) Pr(LAi ≤ A(t) ≤ UAi ) if 0 /∈ [LAi , U
A
i ]

(18)

1.2 Compartment-M evolution

1.2.1 Compartment-M generating function.

In this section we detail the computation of the probability generating function of the number of cells in
the second compartment. This is a minor modification of the result without immigration of [1], and is
included to define the functions which form the basis of our inference.
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We have a two-type branching process with immigration

∅ µ1−→ A

A
b1−→ A+A

A
d1−→ ∅

A
µ2−→ M

M
b2−→ M +M

M
d2−→ ∅

for which the probability generating function satisfies

Gt = [b1s1(s1 − 1) + µ2(s2 − s1) + d1(1− s1)]G1

+ [b2s2(s2 − 1) + d2(1− s2)]G2 + µ(s1 − 1)G (19)

where s(t) evolves under the ordinary differential equation ṡ = v. In our case this is

ṡ1 = b1s1(s1 − 1) + µ2(s2 − s1) + d1(1− s1)

ṡ2 = b2s2(s2 − 1) + d2(1− s2) (20)

which we need to solve for s since when we start with no cells, G(s, 0) = 1 and

G(s(0), t) = eµ1

∫ t
0
(s1(t

′)−1)dt′ (21)

The second line of Eq. (20) can be solved easily∫ s2(t)

s2(0)

dτ

(1− τ)(d2 − b2τ)
=

∫ t

0

dt′ (22)

since
d2 − b2

(1− τ)(d2 − b2τ)
=

b2
b2τ − d2

− 1

τ − 1
(23)

so we have
[ln(b2τ − d2)− ln(τ − 1)]

s2(t)
s2(0)

= −γ2t (24)

in terms of the growth rate γ2 = b2 − d2 of the second compartment. The solution for s2 follows as

s2(t) =
d2(s2(0)− 1)− (b2s2(0)− d2)e−γ2t

b2(s2(0)− 1)− (b2s2(0)− d2)e−γ2t
(25)

leading to

1− s2(t) =
γ2

b2(1− z)
, z =

(b2s2(0)− d2)

b2(s2(0)− 1)
e−γ2t =

[
1 +

γ2
b2(s2(0)− 1)

]
e−γ2t (26)

Following [1] we define x = 1− s1 to arrive at the differential equation

ẋ = −b1x2 + γ1x+
µ2γ2

b2(1− z)
(27)

with γ1 = b1 − d1 − µ2 the growth rate of the first compartment. We rescale x = X
b1

to remove the first
coefficient

Ẋ = −X2 + γ1X +
µ2b1γ2
b2(1− z)

(28)
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and put it directly in the form in [1]. First they make the substitution

X =
d

dt
lnZ (29)

transforming to the differential equation

Z̈ = γŻ +
µ2b1γ2
b2(1− z)

Z (30)

The solution for Z can then be taken directly from [1] though we need to keep track of the fact that we
divide X by b1 which also affects κ which becomes

κ =
b1(s1 − 1)− ω

γ2z0
(31)

with

ω = −γ1
2

+

√
γ21
4

+
µ2b1γ2
b2

(32)

The solution for Z is then
Z(t) = z

ω
γ2 Φ(z) (33)

with
Φ(z) = F1(z) + Cz1−cF2(z) (34)

with
F1(z) = 2F1(a, b; c; z) , F2(z) = 2F1(−a,−b; 2− c; z) (35)

in terms of the hypergeometric function with parameters

a =
ω

γ2
, b =

ω + γ1
γ2

, c = 1 + a+ b (36)

and

C =
κF1(z0)− F3(z0)

(1− c− κz0)F2(z0) + z0F4(z0)
(37)

with

F3(z) = 2F1(1 + a, 1 + b; 1 + c; z)
ab

c
, F4(z) = 2F1(1− a, 1− b; 3− c; z) ab

(2− c)
(38)

For our generating function with no starting cells we then just need to compute

G(s, t) = eµ1

∫ t
0
(s1(t

′)−1)dt′ = e−r
∫ t
0
Xdt′ = e−r[lnZ]t0 =

(
Z(0)

Z(t)

)r
(39)

G(s, t) =

(
F1(z0) + Cz0F2(z0)

F1(z) + Czeγ2ctF2(z)
eωt
)r

(40)

where we recall

z0 =

[
1 +

γ2
b2(s2 − 1)

]
, z = z0e−γ2t (41)

For the probability generating function only of cells in the second compartment, we can marginalize out
the first compartment by setting s1 = 1 so that κ simplifies to

κ = − ω

γ2z0
(42)

and we define
G(s, t) = G(s, t)|s1=1,s2=s (43)

The approximation of the CDF of compartment M at time t starting from Eq. 40 is derived in the main
text (Eq. 10).
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1.2.2 Probability of no cells in the compartment M .

To compute the probability of having no cells in compartment M , we simply set s2 = 0 so that

z0 =
d2
b2

z = z0e−γ2t , κ = − ωb2
γ2d2

(44)

The probability is therefore

P (M(t) = 0) =

(
F1(z0) + Cz0F2(z0)

F1(z) + Czeγ2ctF2(z)
eωt
)r

(45)

We can then describe the number of incident cases at age t, as I(t), and size of the at-risk population at
age t, as R(t), to construct the likelihood of the parameters, Θ, given the data OI(t) = (I(t), R(t)) at age t.

LM(t)=0(Θ|OI(t)) =

(
R(t)

I(t)

)
P (M(t) = 0|Θ, t)I(t)(1− P (M(t) = 0|Θ, t))(R(t)−I(t)) (46)

This likelihood is used in the main text (Fig. 4) and represents the best-case likelihood prior to our
approximation for the size distribution of M(t)

1.2.3 Probability of no cells in compartment M conditioned on compartment A.

G(s1,M(t) = 0) =

(
F1(z0) + Cz0F2(z0)

F1(z) + Czeγ2ctF2(z)
eωt
)r

(47)

which now we want to expand in powers of s1 through the dependence in κ. Since κ is linear in s1 we can
write the generating function in the format

G(s1,M(t) = 0) =

(
J

K − Ls1
eωt
)r

(48)

where the s1 in the numerator cancels while we have formulae for the remaining coefficients:

J = γ2z0z
c [(c− 1)F1(z0)F2(z0)− z0F1(z0)F4(z0) + z0F3(z0)F2(z0)] (49)

K = z0z
cF1(z) [(γ2(c− 1)− b1 − ω)F2(z0)− γ2z0F4(z0)]

zc0zF2(z) [(b1 + ω)F1(z0) + γ2z0F3(z0)] (50)

L = b1 [zc0zF1(z0)F2(z)− z0zcF1(z)F2(z0)] (51)

The conditional distribution of compartment A given that there are no cells in compartment M is then
just re-normalising by P (M(t) = 0) for which we set s1 = 1 to get

G(s1 |M(t) = 0) =

(
K − L
K − Ls1

)r
(52)

which is the PGF of a negative binomial distribution with p = L
K and r = µ1

b1
. With this result we can use

Bayes’ theorem to obtain the conditional probability of no cells in compartment M conditioned on the
number of cells k in compartment A as follows:

P (M(t) = 0 | A(t) = k) =
P (A(t) = k |M(t) = 0)P (M(t) = 0)

P (A(t) = k)
. (53)

This is then used to provide predictions of the existence of cancer given detected adenoma size in the main
text (Figs. 6 and 9).
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2 Number of cells in an observation

The size data provided in the CORI and SEER databases correspond to endoscopist-reported size in mm
of the largest dimension of the finding. Assuming a half-ellipsoid shape and 108 cells per cm3 of volume we
convert this to a number of cells with the formula

Cell number = 105
4π

3

(
size

2

)3
1

2
. (54)

Each dimension of the ellipsoid is taken to be size
2 mm.

3 Figures

Figure A: Illustration of CORI and SEER data.
(A) Complete millimeter-binned CORI data, color indicates number of observations in a particular
bin. Opaque bins greater than 49.5 years and black dashed line indicate data omitted in the fitting of
compartment A. (B) Incidence rates of colorectal cancer as computed from the SEER registry. Colored
lines indicate consistent registry, gender, birth year, and race. Opaque lines and black dashed lines indicate
region of SEER data, below age 40 and above age 60, not utilized in the fitting of compartment M .
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Figure B: Illustration of pseudo population rates.
Light pink (top bar) is the proportion of the population which are at-risk at a given age, R̂(t). Dark pink
(mid-bar) is the proportion of the population which are incident cases at a given age, Î(t). Middle pink
(bottom bar) is the proportion of the population which have already been diagnosed with cancer by age t,
P̂(t).
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Figure C: Age vs. Size in mm.
Color indicates number of observations for each age-size pair. We see rapidly increasing average size until
age 50, when screening begins, then the size distribution seems to stay constant.
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