
A Text S1 1275

A.1 Glossary of terms 1276

M The number of stimuli transmitted by a code.
�O The minimum distance of the code of order O.
�O The minimum distance of a code of order O after � is applied.
PO The representation energy used by a code of order O.
V The representation energy used by a code after � is applied.
DO The population size of a code of order O.
N The population size of the code after � is applied.
K The number of features that a stimulus has.
Ci The set of values that feature i can take on.
ni The size of set Ci; that is, ni = |Ci|
Gs

K
The set of all possible subsets of [1, ...,K] with size s; {X ⇢ [1, ...,K] :
|X| = s}

x A stimulus; a vector of length K, where xi 2 Ci for all i.
tO(x) The encoding function of order O. It takes a stimulus (x) and produces

the representation of that stimulus in a code of order O – also referred
to as the codeword. The representation is a vector of length DO of
ones and zeros.

� The amplifying transform. It is applied to the codeword (tO(x)) and
produces the amplified encoding; � is a matrix of size N ⇥ D and
must satisfy the constraints given in Linear transform (�) in Methods.

H The power in each column of �;
qP

N

i
�2
ij
= H for all j.

⌘ A noise term. Here, always Gaussian, with ⌘ ⇠ N(0,�2).
c(x) The amplified codeword corresponding to a given stimulus, c(x) =

�tO(x). It is a vector of length N .
r(x) The noisy amplified codeword corresponding to a given stimulus,

r(x) = c(x) + ⌘. It is a vector of length N .
f(r) The maximum likelihood decoding function for a particular code. It

solves the equation argmaxx P (r|x)P (x)/P (r).
x̂ The estimate of x, derived from a noisy representation, x̂ = f(r).

1277

A.2 Code distances 1278

We develop some general properties of the distances between stimulus representations in 1279

our codes here. These are useful in conclusively proving the minimum distance, as well 1280

as showing that each stimulus has the same neighbor structure as all the other stimuli 1281

in a particular code. 1282

Statement 1. The distance between two stimulus codewords is given by 1283

d(K,O, v) =

"
2

vX

i

✓
v

i

◆✓
K � v

O � i

◆# 1
2

(S.1)

where v is the number of features the stimuli differ in, O is the order of the code, and K 1284

is the number of features. 1285

Derivation. Using the set GO

K
with |GO

K
| =

�
K

O

�
, we see that when we change a feature 1286

i 2 [1, ...,K], by the definition of the indicator function and of our codes, we know that 1287
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one term (a product of indicator functions) in each feature combination that includes i 1288

will flip from 0 to 1 and another term will flip from 1 to 0. Thus, given the subset 1289

BO

i
= {b 2 GO

K
|i 2 b}, we obtain a distance of

p
2|BO

i
| from changing the value of 1290

feature i. When we change a second term, j, we obtain BO

j
= {b 2 GO

K
|j 2 b}. The 1291

distance between the two stimuli is then related to the size of the union of these two 1292

sets:
q

2|BO

i
[BO

j
|. 1293

So, to find the distance between two codewords, we need to count the number of 1294

features in which they differ and then find the distance, given the order of the code O 1295

and the number of stimulus features K. 1296

d(K,O, v) =

"
2

�����
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i

�����
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2

(S.2)

=
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K � v

O � i

◆# 1
2

(S.3)

where the second binomial coefficient counts the number of subsets containing exactly i 1297

of the v changed features and the first binomial coefficient counts the number of 1298

different ways i features could be chosen from the v changed features. Since our codes 1299

include all combinations, the identities of the features changed does not matter – only 1300

the number of them. 1301

Next, it will be useful to know that this distance function is increasing with v, as, 1302

combined with statement 1, it will allow us to find the minimum distance. 1303

Statement 2. The function d(K,O, v) is increasing with v. 1304

Derivation. We want to show that d(K,O, v)  d(K,O, v + 1). 1305

0  d(K,O, v + 1)2 � d(K,O, v)2 (S.4)

=

�����

v+1[

i

BO

i

������

�����

v[

i

BO

i

����� (S.5)

=

�����B
O

v+1 \
v[

i

BO

i

����� (S.6)

where the last line is the size of the set of values that are in BO
v+1 and not in any of the 1306

other BO

i
for i 2 [1, ..., v]. The relationship holds because a set cannot have a negative 1307

size. Thus, d(K,O, v + 1) � d(K,O, v) and therefore the function d is increasing in 1308

v. 1309

Finally, we will derive the maximum distance between any two codewords in a code. 1310

Intuitively, this will be when none of the same neurons are active for the two codewords. 1311

We can see this from our equations above by noticing that d(K,O, v) has a (potentially 1312
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non-unique) maximum at v = K (by statement 2) and 1313

d(K,O,K) =

"
2

�����

K[

i

BO

i

�����

# 1
2

(S.7)

=
⇥
2
��GO

K

��⇤ 1
2 (S.8)

=
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2
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K
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◆� 1
2

(S.9)

= [2PO]
1
2 (S.10)

After the linear transform, this becomes
p
2V , and therefore does not depend on code 1314

order. Finally, we identify this maximum distance as equivalent to the minimum 1315

distance of the O = K code after application of the linear transform: 1316

�K =

r
V

PK

�K (S.11)

=

r
V 2

K

K
(S.12)

by Eq (M.29) (S.13)

=
p
2V (S.14)

which demonstrates that all stimulus representations in the O = K code are at 1317

maximum distance from each other, by statement 2. 1318

A.3 Code neighbors 1319

For the UBE, it becomes necessary to know the number of codewords at minimum 1320

distance from any given codeword (N�(O)). 1321

Statement 3. The number of neighbors at minimum distance for a code of order O 1322

N�(O) is given by: 1323

N�(O) =

(
K(n� 1) O < K

nK � 1 O = K
(S.15)

Derivation. From the fact that the distance function is increasing with v (statement 2), 1324

we know that d(K,O, 1) is the minimum of d(K,O, v), but it may or may not be a 1325

unique minimum. 1326
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Thus, we want to find O such that d(K,O, 1) < d(K,O, 2), 1327

0 < d(K,O, 2)2 � d(K,O, 1)2 (S.16)

=
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(S.17)

=
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exploiting binomial identities to make all binomial terms equal (S.19)

=
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this is undefined for O = 1, which is undesirable (S.25)

=
K � 1

K � 1
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K �O

K � 1
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K � 1

O � 1

◆
(S.27)

This last expression is true when 1  O < K and false otherwise (i.e., when O = K). 1328

When it is true, it implies that changing one stimulus feature produces codewords at a 1329

closer distance than changing two stimulus features. Now, we must find how many 1330

stimuli differ by a single feature from a given stimulus. Any single feature of the K 1331

features could be changed, and it could be changed to any one of n� 1 different values 1332

(excluding its current value) – so, N�(O) = K(n� 1) for O < K. 1333

If O = K, then GK

K
= {{1, ...,K}} = BK

1 and since BK

i
cannot grow beyond the size 1334

of GO

K
, all codewords must be at the same distance. Thus, N�(O) = nK � 1 for 1335

O = K. 1336

Statement 4. The number of neighbors at a fixed distance does not depend on 1337

codeword identity. 1338

Derivation. We assume that the number of neighbors at a fixed distance does depend 1339

on codeword identity and show that this leads to a contradiction. We know that 1340

codeword distance does not depend on original codeword identity (statement 1), but 1341

does depend on the number of features that the stimuli differ by. Thus, for a set of 1342

codewords to have more neighbors at a particular distance than a different set of 1343

codewords, the corresponding set of stimuli must be able to differ in more ways from 1344

the corresponding set of other stimuli. Stimuli can differ by changing 1 to K of their K 1345

features to one of the n� 1 different values for each feature Ci. For a set of stimuli to 1346

be able to differ in more ways than a different set of stimuli, that set of stimuli must 1347

have either more features or more possible values for each feature. Either of these would 1348

contradict our definition of the stimuli (see Definition of the stimuli in Methods). 1349
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A.4 Sum of spikes representation energy 1350

To this point, we have used the squared distance or variance to characterize the 1351

relationship of spiking activity across the population to metabolic energy consumption 1352

in the form of representation energy. This is following decades of literature on neural 1353

coding [1] and communication theory [2]. However, there is some evidence to suggest 1354

that a sum of spikes, or L1, representation energy metric may be more appropriate for 1355

use in the brain [3]. To gain intuition into how this different metric for metabolic energy 1356

affects our results, we perform simulations and modify our analytical approximation to 1357

use this metric. The relevant approximation is now: 1358

PE 
KX

v=1

Nall(v)Q

✓
V

PO

d(K,O, v)

2�

◆
(S.28)

because H = V/PO for the linear transform. 1359

These results illustrate that, for large numbers of features K, some intermediately 1360

mixed codes, particularly with order close to 1, will provide worse performance than the 1361

pure code, but still that highly mixed codes always provide the best performance (see 1362

Fig S1). A further consideration of code performance with the L1 norm may be an 1363

interesting area for future research. 1364

A.5 Alternate noise models 1365

In the main text, we focus on additive, Gaussian noise. However, multiple other noise 1366

models have been proposed to be relevant to the brain, including Poisson, bit-flip, and 1367

input noise. We consider all of those briefly here. 1368

A.5.1 Poisson and bit-flip noise 1369

To this point, the noise in our neural channel has been Gaussian distributed, which 1370

allows us to vary the SNR down our channel independently of representation energy or 1371

firing rate. However, neural firing rates are often viewed, at least roughly, as following a 1372

Poisson process, which implies a particular SNR at different firing rates due to a strict 1373

relationship between mean firing rate and firing rate variance (though experimentally 1374

observed firing rate-SNR relationships have not followed the one expected from a 1375

Poisson process [4]). Thus, it is possible that due to the different firing rates of 1376

individual neurons used in our codes (as only the sum firing rate is held constant across 1377

codes), Poisson noise could change which code performs best. 1378

To address this concern, we perform simulations with Poisson, instead of additive 1379

Gaussian, noise, following: 1380

r(x) = f (�tO(x)) (S.29)

where f(x) produces a sample from a Poisson distribution with mean x and the linear 1381

transform � is proportional to the DO identity matrix. The results of these simulations 1382

are given in Fig S2A. We can see that, in this case, the qualitative performance of our 1383

codes relative to each other is not affected – and mixed codes still outperform pure 1384

codes. This is expected from previous work. 1385

However, pure Poisson noise, modeled in this way, may not be appropriate for the 1386

nervous system. In particular, for our function f(x), where x = 0 the result is 0 with 1387
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A B

C

Fig S1. Using sum-of-spikes instead of squared distance representation energy
improves the performance of higher-order codes, related to Fig 2. A (top) The
minimum distance per representation energy ratio (�O/PO) for distance representation
energy; and (bottom) the representation energy per population size ratio (PO/DO). B
Simulation of codes with O = 1, 2, 3, 4 for K = 4 and n = 4. (inset) Performance of the
codes relative to the approximation (dashed lines). C (left) Using our approximation,
we show that for different K (with n = 5) the SNR required to reach 0.1% decoding
error has its minimum at O = K. (right) The representation energy required by the
pure code relative to that required by the best mixed code (given by point color and
label) to reach 0.1% decoding error.

probability 1, as is the case for a Poisson distribution. In contrast, neurons observed in 1388

the brain almost always have a non-zero spike probability due to spontaneous activity. 1389

To model this spontaneous activity, we include a baseline firing rate in our noise model, 1390

taking 1391

r(x) = g (�tO(x)) (S.30)

where g(x) = f (min (x, rspont)), rspont is the spontaneous firing rate in the neural 1392

population, and f(.) is defined as above. Thus, all neurons will have a non-zero 1393

probability of emitting noise spikes at all representation energies. The result of the 1394

simulations for these conditions are given in Fig S2B. Here, mixed codes still tend to 1395

perform better than pure codes. However, the O = K mixed code performs worse 1396

relative to other mixed codes than with either Gaussian or pure Poisson noise. 1397

For low representation energy (as in the shaded gray area of Fig S2B, where there 1398

will be only, on average .2 to 3.2 spikes of signal across the population), these 1399

Poisson-with-baseline simulations approximate the conditions of binary bit-flip noise 1400

(though the flip probability is not symmetric), and indicate that mixed codes 1401

outperform pure codes in those conditions as well. 1402

In summary, the pattern of our results holds for numerous different response noise 1403
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(i.e., channel-noise) distributions. This underlines the generality of the results derived 1404

from our three code metrics. 1405

A B

Fig S2. Channels with pure Poisson and Poisson-with-baseline noise have similar
performance to those with Gaussian noise, related to Fig 2. A The error rate (PE) as a
function of representation energy (V ) for codes with pure Poisson distributed noise,
K = 3 and n = 5. B The error rate (PE, axis same as on the left) as a function of
poisson SNR for codes with Poisson-with-baseline distributed noise. Poisson SNR is
defined as

p
V/rspont, with K = 3, n = 5, and rspont = .2. Representation energy

ranges from .2 to 10, as on the left. Low values were chosen for both representation
energy and rspont to allow an analogue to the binary bit flip case. The gray shaded area
is the region where .2 to 3.2 spikes of signal are expected across the population and few
neurons will fire more than once.

A.5.2 Input noise 1406

Noise in a neural system affects both the output of, as modeled in the main text and 1407

above, and the input to that system. Here, we investigate how input noise affects the 1408

robustness of codes with different levels of mixing. Previous work on mixed codes has 1409

argued that codes with more mixing are especially sensitive to input noise, and thus may 1410

make it difficult to recognize highly mixed representations of similar stimuli as similar 1411

to each other [56]. In our framework, it is true that mixed codes map similar stimuli to 1412

distant locations in response space (in part, this is what is meant by having large 1413

minimum distance, and the discrimination-generalization tradeoff discussed in [56]). 1414

However, when the provided input is either the “true” stimulus or one of the 1415

adjacent stimuli in stimulus space (i.e., input noise is local), as would be the case if the 1416

input was from a decoder that makes local errors (e.g., with low mean squared-error), 1417

code order does not affect robustness to input noise for decoding. This is because, while 1418

the input noise can create very different representations in response space for high-order 1419

codes, the decoder maps those different representations back to nearby areas of stimulus 1420

space, creating errors only as large as the noise in the input. This result is counter to 1421

the intuition provided by previous investigations of mixed codes with random 1422

stimuli [56]. We illustrate this without any output noise in Fig S3A, B. 1423

We also simulate non-local input noise, where the input is assumed to be an O = 1 1424

code stimulus representation that is subject to bit-flip noise. In this case, the O = K 1425

code has the highest MSE, as expected from the previous literature, while both O < K 1426

codes that we simulated have the same MSE. To explore why this is, we consider the 1427

consequences of a single input bit-flip. There are two possibilities: 1428

1. With probability K

Kn
= 1

n
, the bit-flip will change a 1 to a 0 for one of the features. 1429
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• For an O = K code, this means that none of the neurons will fire and the 1430

response without output noise will be a vector of all zeros. Thus, the decoded 1431

stimulus will be completely random with respect to the original stimulus. 1432

• For an O < K code, only subpopulations that do not represent the 1433

bit-flipped feature will be active. The code will operate as a code of the same 1434

order on a stimulus space with K � 1 features, and will have only K�O

K
of 1435

the representation energy of the original code. Thus, all codes will infer 1436

random values for the bit-flipped feature, and will encode the rest of the 1437

values according to a code of this nature, which will lead to reduced 1438

performance for higher order codes (though this reduction is partly corrected 1439

by the greater reliability of those codes as in Fig S3D). 1440

2. With probability 1� 1
n
, the bit-flip will change a 0 to a 1 for one of the features. 1441

For all codes, this will result in a second codeword becoming equally likely in our 1442

decoder, and lead to a 50% chance of error due to this input perturbation. It will 1443

also increase the representation energy used by the code. 1444

In simulations of codes with K = 3 and n = 5, we see that the input bit-flip noise 1445

produces a base mean squared-error even without any output noise (Fig S3C), due to 1446

the effects described above. The O = 1 and O = 2 codes have equivalent performance, 1447

while the O = 3 = K code performs worse (again, following the pattern described 1448

above). However, when we simulate the full channel over a variety of SNRs at a fixed 1449

input bit-flip probability (Fig S3D), code performance replicates the broad trends of our 1450

MSE analysis in the main text (Fig 3). In particular, the mixed codes show a faster 1451

decay of mean squared-error as SNR increases, but the full-order code decays to a larger 1452

mean squared-error baseline than either of the other codes. This baseline mean 1453

squared-error is entirely due to the input noise, and cannot be reduced by increase of 1454

the code SNR. As in the case without input noise, increasing the response field size (�rf) 1455

of the neurons in the code is likely to increase performance and correct some of the 1456

errors made due to input noise. The degree to which this changes performance will be 1457

explored in future research. 1458

A.6 The rate-distortion bound and mutual information 1459

calculation 1460

To calculate the rate-distortion bound (RDB) for our source distribution, we use a 1461

Python implementation of the iterative Blahut-Arimoto algorithm [5,6]. Since the 1462

optimization problem is convex, the algorithm is guaranteed to converge on the right 1463

solution, given enough iterations. To ensure an adequate number of iterations, we 1464

terminate the algorithm only when successive steps are less than 10�10 change in error 1465

probability magnitude. 1466

To evaluate our codes alongside the RDB, we must calculate the mutual information 1467

between the stimulus distribution X and the distribution of our stimulus estimates X̂. 1468

So, 1469

I(X; X̂) = H(X̂)�H(X̂|X) (S.31)
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A B

C D

Fig S3. Code order does not have an effect on sensitivity to local input noise, related
to Fig 2. For all panels, K = 3, n = 10. A The mean squared-error (MSE) of different
codes as a function of input noise without output noise, represented as the probability
of each feature taking on the value above or below its “true” value. B The same as A
but for the O = 3 code with different RF sizes. C An additional simulation with
non-local input noise – where bits in an input O = 1 code are randomly flipped with the
probability given on the x-axis. The error rate of the resulting O = 1, 2, 3 codes with
the same parameters as above is plotted. D A simulation with non-local input noise and
output noise. The result here is similar to that without input noise in Fig 3, except that
the O = 3 code has a higher error rate at high SNR due to its increased sensitivity to
input noise, shown in C.

where 1470

H(Y ) = �
X

y2Y

P (y) log2 P (y) (S.32)

H(Y |Z) = �
X

z2Z

P (z)
X

y2Y

P (y|z) log2 P (y|z) (S.33)

=
X

z2Z

P (z)H(Y |Z = z) (S.34)

To compute these quantities, we rely the observation that P (X) = P (X̂). That is, both 1471

distributions are uniform, with P (x̂) = P (x) = 1
nK . This can be seen from the fact that 1472

none of our codewords have more (or fewer) neighbors at any given distance than any of 1473

our other codewords (see statement 4). 1474
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Using this, 1475

I(X; X̂) = H(X̂)�H(X̂|X) (S.35)

= H(X)�H(X̂|X) (S.36)

= K log2 n�
X

x2X

P (x)H(X̂|X = x) (S.37)

Since P (x) = 1
nK and P (X̂|X = x) has the same entropy for all x, following from the 1476

observation above, it is enough to estimate 1477

I(X; X̂) = K log2 n�H(X̂|X = x) (S.38)

for a particular x. We do this via numerical simulations (see Full channel details in 1478

Methods for details). 1479

impossible

possible

A B

Fig S4. The mixed codes come close to or achieve the rate-distortion bound while the
pure code does not, related to Fig 2. A A schematic of the rate-distortion bound. The
bound is a function on the information rate-error rate plane dividing a region of possible
codes from a region of impossible codes. The bound depends only on the stimulus
distribution and distortion type, it does not depend on any code properties. Thus, we
evaluate codes relative to the bound. If a code achieves the bound, that means it
achieves the most efficient possible mapping from stimulus information to distortion –
i.e., it uses the fewest possible bits to achieve a particular error rate. The rate-distortion
bound goes to zero as I(X; X̂) approaches H(X) since the mutual information between
the stimulus and its estimate cannot exceed the entropy of the stimulus. B For K = 3,
n = 5 and a uniform probability distribution over the stimuli, we evaluated codes with
different levels of mixing relative to the rate-distortion bound (red). We show that the
two mixed codes O = 2 and O = 3 achieve or come close to achieving the rate-distortion
bound, while the pure code does not. (inset) The transformation from SNR to I(X; X̂)
for each of the codes is fairly similar, though the mixed codes are slightly less efficient
at low SNR and slightly more efficient at high SNR.

A.7 Representation energy required to reach a .1% error rate 1480

We also compared codes on the basis of how much representation energy they required 1481

reach a .1% error rate given a fixed noise variance. These results are given in Fig S5, for 1482

noise variance �2 = 10. 1483
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A B

Fig S5. Mixed codes require less representation energy to achieve the same error rates
as pure codes, related to Fig 2. For both plots, n = 5 and the noise variance �2 = 10. A
The amount of representation energy required to reach a 1% error rate for codes of all
orders given various numbers of features K. The code requiring the least energy is
always the O = K or O = K � 1 code. B The percent more representation energy
required by the pure code to reach a 1% error rate compared to the optimal mixed code.
The order of the optimal mixed code is indicated by the text above each marker.

A.8 Additional results on response fields 1484

Generalizing our current framework to allow flexibly sized response fields (RFs) requires 1485

only a reformulation of the indicator function. Instead of performing an equality 1486

operation, it should instead perform a set membership operation, as 1487

[i 2 J ] =

(
0 i /2 J

1 i 2 J
(S.39)

where the set J is, in this case, a contiguous sequence of feature values of length �rf. 1488

Following this, for our main results, �rf = 1. Now, we explore how choosing �rf > 1 1489

changes our results. 1490

A.8.1 Effects on minimum distance, representation energy, and 1491

population size 1492

Population size and representation energy change with RF size to ensure that full 1493

coverage of the stimulus set is maintained. To achieve this, we arrange the code 1494

dimensions in a series of �rf overlapping lattices, where each lattice has non-overlapping 1495

RFs in a grid pattern. This strategy is not guaranteed to be the most efficient tiling of 1496

the space, but it is simple to implement and analyze – and it approximately meets the 1497

theoretical estimate of the dimensionality of the most efficient tiling [53]. This RF tiling 1498

does, however, cause the stimuli on the edge of stimulus space to behave different from 1499

the stimuli near the center. In particular, stimuli within the RF-width of the maximum 1500

or minimum feature value for one or more features will have fewer neighbors than other 1501

stimuli and will therefore have lower error probabilities than more central stimuli. Thus, 1502

for our simulations with �rf > 1, the fact that we sample stimuli uniformly rather than 1503

with some other distribution does have a mild effect on our results. However, since the 1504

number of edge stimuli is a feature of the stimulus space, not the code, the proportion 1505

of edge to non-edge stimuli is the same across codes, thus different codes do not benefit 1506

more from the sampling of additional edge stimuli. 1507
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The increase of �rf has the following effects on our three principle code metrics. 1508

Dimensionality: 1509

DO =

✓
K

O

◆
�rf

✓
n

�rf
+ 1

◆O

(S.40)

Power: 1510

PO =

✓
K

O

◆
�rf (S.41)

Minimum distance: 1511

�O =


2

✓
K � 1

O � 1

◆� 1
2

(S.42)

Note that minimum distance is not affected. 1512

A.8.2 The optimal �rf for a given total energy 1513

For a fixed K, O, n, and E, we want to find the �rf that maximizes minimum distance. 1514

For E = ✏V +DO, and using �(K,O,�rf, V ) as an expression for minimum distance 1515

after application of � to produce a code with power V , we can write the problem as: 1516

L = �

✓
K,O,�rf,

E �DO
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(S.43)
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and now, to find the maximum, we will take the derivative @L

@�rf
, 1517

@L
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K✏

@L

@�rf

"
E

�rf
�
✓
K

O

◆✓
n

�rf
+ 1

◆O
#

(S.46)

=
2O

K✏

"
� E

�2
rf

+

✓
K

O

◆
O

✓
n

�rf
+ 1

◆O�1 n

�2
rf

#
(S.47)
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and now setting the LHS to zero, 1518
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See Fig S6F for a plot of this function. This formalization does ignore benefits of 1519

�rf,opt > 1 for reducing the number of nearest neighbors of high order codes. 1520

A.8.3 Effects on error distribution 1521

Increasing RF size has the effect of pulling the distribution of squared-error distortion 1522

more concentrated toward zero, while increasing the overall probability of an error (see 1523

Fig 3D). The increase in overall probability of an error for fixed SNR can be understood 1524

by the expression for code power given above, where an increase in RF size increases the 1525

power consumption of the code without producing a change in minimum distance. 1526

However, increasing RF size does produce a change in the number of codewords at 1527

minimum distance and at succeeding distances. To see this, we can focus on the O = K 1528

case: with �rf = 1, we know that all other codewords are nearest neighbors to a given 1529

codeword (Eq (S.15)) because only one dimension is active for each codeword. If, 1530

instead, we have �rf = 2, we know that each RF has a volume of �K

rf feature values, but 1531

their intersection must be of size 1. Thus, either active RF can be changed to �K

rf � 1 1532

different RFs to still form a valid codeword. Thus, the number of nearest neighbors is 1533

2
�
2K � 1

�
. With �rf = 2, all stimuli except the nearest neighbors will be at the same, 1534

further distance. 1535

A.9 Error-reduction by mixed selectivity in the continuous 1536

case 1537

Here, we adopt continuous stimulus features and RFs to test how well the benefits of 1538

mixed codes generalize to the continuous case (also see [37] for a deeper investigation of 1539

the continuous case). In particular, with stimuli x 2 X composed of K features, 1540

xi ⇠ U (0, ni). Instead of the flat, discrete RFs defined in Additional results on 1541

response fields in Text S1, we use Gaussian RFs, 1542

r(x|�w, c) = exp

 
�
P

DO

i
(xi � ci)

2

2�2
w

!
(S.53)

which are then scaled by the amplifying transform � as described in Linear transform 1543

(�) in Methods. The rest of the channel is identical to the channel described previously, 1544
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Fig S6. Changing response field (RF) size changes code properties, related to Fig 3. a
The number of dimensions required to implement the code decreases by several orders of
magnitude. b The power of the code increases by several orders of magnitude. c The
tradeoff between minimum distance and code power remains constant if all codes are
given the same RF size. d The RF size maximizing minimum distance under the total
energy constraint differs between codes. e The code providing the highest minimum
distance with �rf = 1 (left) and �rf = �rf,opt (right) as computed in Eq (S.52). They are
only marginally different. f The optimal RF size for codes of different orders given
features with different numbers of possible values. g Histogram of the differences in
code order giving the highest distance from e.

including the additive noise. RFs are tiled in the same way, though now their width �w 1545

is independent of �rf, which dictates their tiling – as in Additional results on response 1546

fields in Text S1. 1547

Our simulations show similar results to the discrete case (Fig S7), with higher order 1548

codes yielding lower MSE across all of the SNRs we investigated. Thus, the broad 1549

advantage of mixed codes apply in the continuous case as well. However, increasing RF 1550

size produces higher MSE, which is the opposite of our results in the discrete case. 1551

Future work is needed to discover why this is, and in what other ways the continuous 1552

case differs from the discrete case. 1553
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Fig S7. The benefits of mixed codes broadly generalize to continuous stimuli and RFs,
related to Fig 3. A The MSE of codes of all orders with K = 3. The higher-order codes
provide better performance than the lower-order codes. B MSE increases with RF size,
which is contrary to the result in the discrete case (Fig 3d). C The cumulative
distribution function of squared error for the three codes and for three different RF sizes.
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