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Simulation	analyses	

Here, we explain three models that were used frequently in our simulation analyses. For simulation analyses 

presented in Figures 1-2, data have been generated by two different models, Kalman filter (KF) and a 

reinforcement learning (RL) model. These models were also used in other simulations. Both models 

estimate the value of each action 𝑎", 𝑄" 𝑎" , and take an action among two choices on every trial according 

to a softmax rule with the parameter 𝛽 > 0. Both models learn using a prediction error signal, 𝛿", the 

difference between the seen and expected reward: 

𝛿" = 𝑟" − 𝑄"(𝑎") 

where 𝑟" is the reward. The RL model then updates its action value according to the prediction error: 

𝑄"-. 𝑎" = 𝑄" 𝑎" + 𝛼𝛿" 

where 0 < 𝛼 < 1 is the learning rate. The update rule of the KL model is slightly different as it contains a 

dynamic learning rate (or Kalman gain), 𝐾", depending on the current estimate of variance, 𝑉"(𝑎"): 

𝑄"-. 𝑎" = 𝑄" 𝑎" + 𝐾"𝛿" 

where 

𝐾" =
𝑉"(𝑎")

𝑉"(𝑎") + 𝜔
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where 𝜔 > 0 is the observation noise. The variance also gets updated on every trial: 

𝑉"-. 𝑎" = 1 − 𝐾" 𝑉"(𝑎") 

Note that all methods assume that parameters are normally distributed. Therefore, we used the 

sigmoid function, 𝛼 = 𝜎 𝛼 = 1 + 𝑒89 8., to transform the normally-distributed learning rate, 𝛼, to the 

unit range. We used the exponential function to transform normally-distributed parameters corresponding 

to 𝜔 and 𝛽. For simulation analyses presented in Figures 1-2, these values were used as the group mean: 

RL, we used 𝛼 = 0.1, 𝛽 = 2; Kalman filter	𝜔 = 2, 𝛽 = 2. For generating synthetic datasets for 

simulations, the parameters of the group of subjects assigned to each model was drawn from a normal 

distribution (with the standard deviation of 0.5). Next, for generating each individual dataset, we first 

generated two Gaussian random-walk (in the range of [-1 1]) sequences of 100 trials (corresponding to two 

actions). The learning rule of the corresponding model with the generated individual parameters were then 

used to generate a sequence of reward time-series for each action (both action values initialized at zero). 

Those reward time-series were then binarized and used to generate choice data given the corresponding 

model according to the softmax rule with the individual softmax parameter. The number of trials for all 

simulation was T=100, unless it is specified otherwise. The same procedure was employed for generating 

individual synthetic datasets in all simulations.  

The dual-α RL model is similar to the RL model, with the only difference that two different learning 

rates, 𝛼- and 𝛼8 (both in the unit range), have been used for updating action values depending on whether 

the prediction error is positive or negative. Again, the sigmoid function was used to transform the normally 

distributed parameters into the unit range. For simulation analyses presented in Figures 3-6, these values 

were used as the group mean: RL,	𝛼 = 0.1, 𝛽 = 1; dual-α RL: 𝛼- = 0.8, 𝛼8 = 0.4, 𝛽 = 3.  

For simulation analysis presented in Figure 7, these parameters used for the RL: 𝛼 = 0.3, 𝛽 = 3. 

In scenario 1, the outliers were generated using the RL model with a very low decision noise parameter, 

i.e. 𝛼 = 0.3, 𝛽 = 0.1. In scenario 2, the outliers were generated using RL with a low learning rate and a 

low decision noise parameter 𝛼 = 0.1, 𝛽 = 0.1.  

These parameters were used for all scenarios presented in Figure 8: the same parameters for the RL 

and the dual-α RL that used for generating data in Figures 3-6, the same parameters for the Kalman filter 

that used for generating data in Figure 1. These parameters used for the actor-critic RL: 𝛼@ = 0.1, 𝛼A =

0.6, 𝛽 = 3. For simulation analysis of the two-step task (Figure 9), we used parameters of the hybrid model 

reported in [1] (or the corresponding subset for the model-based or the model-free accounts) to generate 

data (201 trials). 30, 10 and 10 artificial subjects were generated using the hybrid, model-based and pure 
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model-free accounts. For generating the individual datasets, the outcome associated with each of the four 

second-stage options were generated according to a Gaussian random walk (the same sequences used in [2] 

were used here).  

For the analysis presented in Figures 10A, 11A and 12A, data were generated using the same 

learning rate and decision parameters used for generating data in Figure 1. For the analysis presented in 

Figure 11B, data have been generated using the same parameters used for generating data in Figure 3 and 

the bias 𝑏 = 0. In all simulations presented in Figures 10-11, the bias parameter, 𝑏, was generated using 

random draws form a normal distribution with the standard deviation 1. For the analysis presented in Figure 

12, random numbers from the skewed distribution was drawn from the Pearson system of distributions with 

mean 0, variance 1, skewness –0.5 and kurtosis 3 (i.e. the kurtosis of the normal distribution) using the 

MATLAB function pearsrnd (Statistics and Machine Learning Toolbox). 

Implementation	of	NHI	and	HPE	

The NHI method is based on a Laplace approximation of the joint distribution of data and 

parameters, separately for each model and subject. Specifically, NHI relies on a maximum-a-posteriori 

(MAP) estimate of parameters. Formally, if 𝜇E and 𝑉E are prior mean and variance, respectively, and ℓ(ℎ) =

𝑝 𝑥J 𝑀L, ℎ 𝑁(ℎ|𝜇E, 𝑉E), in which 𝑥J is the 𝑛th dataset, 𝑀L denotes the 𝑘th model and ℎ is the 

corresponding parameter vector (with the size 𝐷L), then NHI quantifies model evidence of model 𝑘 for 

subject 𝑛, 𝐿TUVLJ , as: 

𝐿TUVLJ = log 𝑓LJ +
1
2
𝐷L log 2𝜋 −

1
2
log |𝐴LJ|, 

where, 

𝜃LJ = argmaxb	ℓ(h) 

𝐴LJ = −∇∇ log 	ℓ h 𝜃LJ 

𝑓LJ = 	ℓ 𝜃LJ . 

We then used values of 𝐿TUVLJ  across subjects to do the random-effects model selection and obtain model 

frequency given data and exceedance probability [3,4].  

Similar to HBI and NHI, we used the Laplace approximation for quantifying model evidence by 

the HPE. Suppose that 𝜇L and 𝑉L are group mean and variance, respectively in the last iteration of the 

algorithm (see [5,6] for a full explanation of the algorithm). We defined ℓ(ℎ) = 𝑝 𝑥J 𝑀L, ℎ 𝑁(ℎ|𝜇L, 𝑉L) 
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and obtained values of  𝜃LJ, 𝐴LJ and 𝑓LJ using the same equations as above. Similar to [5,6], we used the 

Bayesian Information Criterion (BIC) to penalize models due to group parameters. Thus, the model 

evidence for the 𝑘th model, 𝐿UefL , is given by the sum of (Laplace-approximated) log-evidence across all 

subjects plus the BIC-penalty of 2𝐷L (the mean and the diagonal variance) group parameters: 

𝐿UefL = −𝐷L log𝑁 + log 𝑓LJ +
1
2
𝐷L log 2𝜋 −

1
2
log |𝐴LJ| ,

T

Jg.

 

Thus, the NHI relies on prior parameters 𝜇E and 𝑉E, which, for all models and parameters, were 

assumed 𝜇E=0 and 𝑉E = 6.25. This means that the prior mean for parameters constrained in the unit range, 

such as learning rate, was in the middle of their theoretical range. The value of prior variance is chosen to 

ensure that parameters can vary in a wide range with no substantial limitation due to the prior. In particular, 

a prior variance of 6.25 ensures that the difference between the maximum and minimum penalty is less than 

one chance-level choice in 90% of the theoretical range of a parameter constrained in the unit range. For 

such a parameter, the minimum penalty occurs at the mean, log 𝑁(0|0, 𝑉E), and the penalty for 𝑥 =

logit	 0.95  is log 𝑁(𝑥|0, 𝑉E), where the logit function is the inverse of sigmoid function used for 

transforming unit-range parameters. Therefore, the relative penalty is given by 

𝐶(𝑉E) = log𝑁 𝑥 0, 𝑉E − log𝑁 0 0, 𝑉E  

Assuming that 𝐶 𝑉E = log 0.5, we obtain 𝑉E = 6.25. This value for prior variance also indicates 

that exponentially-transformed variables (such as decision noise) can vary between 0.05 and 19.00 with 

no substantial effect of prior (with the same criterion defined above). 

These MAP estimates were also used to initialize both HPE and HBI methods. Non-linear 

derivative-based optimization method (Quasi-Newton algorithm as implemented in the fminunc routine in 

MATLAB, ©Mathwork, version R2014b) was used. 
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