Algorithm pseudo-code

ALGORITHM 1: Regression Selection

Given the bioactivity vectors for all targets, $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m \in \mathbf{R}^n$, and the size of informer set n_A ; Split the data into 5 folds, each fold with roughly the same number of targets; for $K = 1, \ldots, 5$ do Take the K-th fold of the data as the test data, and the rest as the training set: for j = 1, ..., n;▷ pre-processing do Linearly scale the features such that $(\mathbf{x}_i)_i$ for all *i* in the training set lie in the range [0, 1]; end for k = 2, 3, ... do Cluster the training data to k categories using kmeans++ with 100 repeats; Select the informer set A with n_A features by the greedy heuristic based on the regularized logistic regression model (3); Train a new logistic regression model (5) using the selected coordinates A; Use the logistic regression model to predict on the test set through (7)and evaluate the performance; end end Rescale the whole data set just as in the cross validation procedure; Use the best k selected by cross validation to cluster the data; Use the greedy heuristic to select the informer set A with size n_A ; Train the logistic regression model (5) on the whole informer set A with all targets;

ALGORITHM 2: Coding Selection

Given the binary bioactivity data $Z = \{z_{i,j}\}_{i \in I, j \in J}$; Given a Monte Carlo sample size B; Fix informer set size n_A ; Fix a grid \mathcal{K} of cluster sizes Kfor $K \in \mathcal{K}$ do for $b = 1, \ldots, B$ do Sample a set A_b uniformly at random from size- n_A subsets of J; Compute the code words (unique rows) of sub-matrix $Z_{A_b} = \{z_{i,j}\}_{i \in I, j \in A_b};$ Let L_{A_b} equal the number of code words; if $L_{A_b} \geq K$ then Sample a partition π_b of the code words of size K blocks, uniformly at random \mathbf{end} if $L_{A_b} < K$ then Set π_b to be the unique partition having L_{A_b} blocks and constant code words within each block end Calculate $f_{K,\lambda}(A_b, \pi_b) = \sum_{S_k \in \pi_b} \left(\sum_{i, i' \in S_k} \left\{ 1 - \frac{\sum_{j \in A_b^c} z_{ij} z_{i'j}}{\sum_{j \in A_b^c} z_{ij} \lor z_{i'j}} \right\} \right) - \lambda L_{A_b}$ end end

Rank compounds $j \in J$ by

$$f_j = \sum_{K \in \mathcal{K}} \frac{1}{B} \sum_{b=1}^B \mathbb{1}(j \in A_b) f_{K,\lambda}(A_b, \pi_b)$$

Select the best (lowest scoring) n_A compounds as the informer set. Prioritize: Rank non-informer compounds as in Eq. (10).

ALGORITHM 3: Adaptive Selection

Input

- initial bioactivity data $X = \{x_{i,j}\}_{i \in I, j \in J}$
- a base informer set size $n_0 = 8$; final informer set size $n_A > n_0$.

Cluster targets

- Calculate a cluster number K using Eq. (12)
- Cluster targets I into K clusters using kmeans applied to all rows of X

Construct a base informer set A_0

• Fit a generalized linear model predicting multi-class cluster labels using R package glmnet, with the group LASSO penalty, and setting the penalty parameter to identify n_0 compounds that are best cluster label predictors

Adaptively expand

for Informer sets of size increasing by one until size n_A do

Add one extra compound j to A_o by Equation (13);

$$rgmin_{j
otin A_o} \sum_{k
otin A_o\cup\{j\}} \|oldsymbol{x}_{\cdot k} - oldsymbol{c}_n\|_2$$

where $\boldsymbol{c}_n = \frac{1}{|A_o \cup \{j\}|} \sum_{k \in A_o \cup \{j\}} \boldsymbol{x}_{\cdot k}$. end

Prioritize: Rank non-informer compounds as in Eq. (10).