
Code and Applications to Yeast Growth Rate
Study

Source all needed functions and activate needed pack-
ages

source('MLfitToGrowthRate.aOFl.R')
source('LLlambdaOFlEXP.R')
source('MAplotYobsYexp.R')
source('SSUandLSUrRNA.R')
colLib<-rep(c("red","green","blue"),each=3)

To install and activate needed Bioconductor packages, uncomment
#source("https://bioconductor.org/biocLite.R")
#biocLite("EDASeq") #Shouldn't need to do this again
#library(EDASeq)
#biocLite("DESeq2")
#library(DESeq2)

1 Analysis of differential gene expression in yeast
growth rate study data

1.1 RNA and spike-in count data and spike-in molecular proper-
ties

Read in spike-in and RNA and count data frames, YmatSIyeast.txt, and YmatRNAyeast.txt,
respectively. Column labels are conditions. Labels C12a–C12c signify 3 replicates for C-
limited growth at a rate (per cell) of 0.12,h-1 ; C12 and C30 correspond to growth rates of 0.20
and 0.30,h-1, respectively. Row labels for the spike-in data frame are the spike-in identifiers;
row label for the RNA data frame are transcript identifiers. Undetected transcripts and
spike-ins have already been removed.
YmatSI<- as.matrix( read.table(file="YmatSIyeast.txt") )
YmatRNA<-as.matrix( read.table(file="YmatRNAyeast.txt") )

Read in a data frame containing the spike-in amounts (attomoles) added to each sample from
which RNA was extracted. The data frame also has columns for molecular properties: length
(nt), GC content, and DeltaG (Kcal/mol), the folding energy.
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ERCC<-read.table(file="ERCCyeast.txt")
ERCC<-ERCC[rownames(YmatSI),]

Define a factor vector, named groupC, with levels corresponding to the condition for each
column of the count matrices above.
groupC<-as.factor(rep( c("C12", "C20","C30"),rep(3,3) ))

Inspect library sizes and the ratio of total spike-in count to total RNA count (roughly 0.1–0.2).
LibSizeSI <- colSums(YmatSI) #spike-in library sizes
LibSizeRNA<- colSums(YmatRNA) #RNA library sizes
Ratio<-LibSizeSI/LibSizeRNA
data.frame(LibSizeSI,LibSizeRNA,Ratio)

## LibSizeSI LibSizeRNA Ratio
## C12a 411491 1871150 0.21991342
## C12b 404867 2171203 0.18647128
## C12c 417375 2570950 0.16234271
## C20a 259158 2567382 0.10094252
## C20b 194145 1755252 0.11060805
## C20c 237054 1748464 0.13557843
## C30a 174424 1992288 0.08754959
## C30b 133603 1935219 0.06903766
## C30c 168501 1591541 0.10587286

1.2 Computation of maximum likelihood νj calibration factors,
and normalization counts

For sake of convenience, and later use, extract a vector of attomoles for each spike-in, and
compute corresponding molecules per cell, given that there are 107 cells in this study. Also
compute conversion factor to convert from attomoles to molecules per cell.
Nvec<- ERCC[,"attomoles"] #total amol of each spike-in

#in sample to be sequenced
names(Nvec)<-rownames(ERCC)
AttomoleToMoleculesPerCell<-(1.e-18)*(6.22e23)*(1.e-7)
MoleculesPerCell<-Nvec*AttomoleToMoleculesPerCell
names(MoleculesPerCell)<-names(Nvec)

Compute spike-in proportions. Choose as the reference spike-in, the one with the largest
proportion; record its proportion and attomoles; and compute the library-specific νj calibration
factors:
f.vec<-rowSums(YmatSI)/sum(YmatSI) #fraction of total spike-in

#counts accounted for by each spike-in
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INDmax<-which(f.vec==max(f.vec)) #index of spike-in
#with largest proportion, to be used as
#the reference spike-in

f.ref<-print(f.vec[INDmax]) #fraction (empirical proportion) for reference

## ERCC-00130
## 0.2716534
n.ref<-print( Nvec[names(f.vec[INDmax])] ) #corresponding amol

## ERCC-00130
## 3000
nu <- (f.ref/n.ref)*LibSizeSI #for counts to nominal amol conversion
Zmat<-YmatRNA%*%diag(1/nu) #normalization giving amol
colnames(Zmat)<-colnames(YmatRNA)

1.3 Realtive yield coefficients, αi

Relative yield coefficients for the spike-ins are given by:
alphas<-(n.ref/Nvec)*(f.vec/f.ref)

1.4 To compare observed spike-in counts to those expected ac-
cording to the multinomial model in MA plot-like format:

DifferenceMeasures<-MAplotYobsYexp(YmatSI,f.vec,ylims=c(-4,4))
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 ŷ
−

lo
g 2

 y

DifferenceMeasures

## $MeanLog2FoldDiff
## [1] -0.05595079
##
## $MeanFoldDiff
## [1] 0.9619603

1.5 Diagnostic RLE plots and simple correction for unwanted vari-
ation

For for purposes of RLE (relative log error) plots and removal of unwanted variation (library
preparation errors), filter count matrix to ensure that each transcript was detected in all
conditions. Add 1 to count matrix to be log transformed.
Jfilter <- apply(YmatRNA, 1, function(x) length(which(x>0))>6)
YmatRNAplus1<-YmatRNA[Jfilter,] + 1
ZmatPlus1<-YmatRNAplus1%*%diag(1/nu)
colnames(ZmatPlus1)<-colnames(Zmat)

1.5.1 RLE plots before correcting for unwanted variation

plotRLE(ZmatPlus1, col=colLib, outline=FALSE, ylim=c(-2, 2), las=2)
#From the EDASeq package

mtext("Relative Log Expression", cex=1.5, side=2, line=2.6)
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1.5.2 Compute δj correction factors to account for library preparation errors
and apply to νj normalized abundances

meanLogZplus1<-t(apply(log(ZmatPlus1), 1,
function(x) tapply(x,groupC,mean)))

MeanMatLogZplus1<-t(apply(meanLogZplus1,1,function(x) rep(x,each=3)))
aux<-colMeans(log(ZmatPlus1) - MeanMatLogZplus1)
delta<-exp(aux) #The correction factors
Zmat<-Zmat%*%diag(1/delta)
colnames(Zmat)<-colnames(YmatRNA)

1.5.3 RLE plots for adjusted abundance values, counts normalized by (νjδj)

ZmatPlus1Corrected<-ZmatPlus1%*%diag(1/delta)
colnames(ZmatPlus1Corrected)<-colnames(Zmat)
plotRLE(ZmatPlus1Corrected, col=colLib, outline=FALSE, ylim=c(-2, 2), las=2) #From the EDASeq package
mtext("Relative Log Expression", cex=1.5, side=2, line=2.6)

1.6 Hypothesis testing for dependence of abundance on growth
rate

Maximum likelihood fit of a model in which abundance depends exponentialy on GR. The
function MLfitToGrowthRate.aOFl below maximizes the sum over replicates of the log
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Figure 1: RLE plot RNA abundances after removal of unwanted variarion.

likelihoods (same as probabilities) of the observed counts under H0: no dependence of
abundance on growth rate; and under under HA: abundance depends exponentially on growth
rate. The test satistic is the standard log of the ratio of maximum likelihoods test. The
output of MLfitToGrowthRate.aOFl, mlfit.out is a list: mlfit.out$pValML gives the pvalues,
and mlfit.out$EstA gives the vector of sample estimates of (θ0, θ1) in Eq~S28, under HA.

The maximum likelihood fit is done under the assumption of fixed negative binomial shape
parameter a for each condition. The a-value for each library is comupted by maximizing
over a the marginal likelihood of all observed counts within each condition, as described in
the text. The function below that does this can be run by supplying to the function, as
inputs, the matrix of RNA counts, YmatRNA; the 3-column matrix of mean abundances
(one column for all the transcripts in each of 3 conditions), meanZ; and a vector of length 3
for the inial guesses of the 3 shape parameters (a-values), a0.vec, e.g., a0.vec<-c(20,20,20).
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meanZ<-t(apply(Zmat, 1,function(x) tapply(x,groupC,mean)))
a.vec<-c(23,34,24) #Marginal maximum likelihood values for

#shape parameters for the 3 yeast growth rates
#S7 Appendix

lambda<-rep(c(0.12,0.2,0.3),each=3) #Growth rate (GR)
#in divisions per hr

mlfit.out<-MLfitToGrowthRate.aOFl(Y=YmatRNA,
norm.const=delta*nu,Z=Zmat,

lambda=lambda,a.vec=a.vec,print.level=0)
pVal<-mlfit.out$pValML #p-values for H0: exponential

#constant is equal to zero
q<-p.adjust(mlfit.out$pValML, method="BH") #adjusted p-values
FDR<-0.01 #False discivery rate
sum(q<FDR) #Number of transcripts significantly regulated by GR

## [1] 4302
phi.sig<-mlfit.out$EstA[q<FDR,] #significant exponential growth

#rate coefficients
phi_1.sig<-mlfit.out$EstA[q<FDR,2]

1.6.1 Histogram of exponential constants in model for dependence of abundance
on growth rate, Fig 2

hist(phi_1.sig,breaks=500,freq=FALSE,cex.lab=2,
cex.axis=2, xlab=NA, ylab=NA, xlim=c(-30,30))

mtext(expression(paste(phi[1],' (h)')),side=1,line=2.5,cex=2,
adj=0.515)

mtext("Density", side=2, line=2.5, cex=2)
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Histogram of phi_1.sig
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1.6.2 Regulation of Ribosomal RNA, SSU rRNA and LSU rRNA

To plot experimentally measured log abundance versus growth rate and compare to that
predicted for the model:
SSUandLSUrRNA(phi_1.sig, Zmat)
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Fig 5A of the paper
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Fig 5B of the paper
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