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S2 Appendix: Detailed description of clustering

metrics

Our method proceeds in the following general steps:

1. Given the data and a certain parameter value ϕ within a provided range

[ϕmin, ϕmax], calculate a clustering measure F (ϕ).

2. Repeat step 1 in each of n null communities, F̃i(ϕ), i = 1, 2, . . . , n, and take the

mean, F̃ (ϕ) = 1
n

∑
i F̃i(ϕ).

3. The difference G(ϕ) = F (ϕ)− F̃ (ϕ) is the “gap” at that parameter value.

4. Repeat steps 1-3 for all parameter values within [ϕmin, ϕmax].

5. The gap statistic is the extremum (maximum or minimum) of the gap function,

G = extr
ϕ

G(ϕ).

6. Obtain a z-score and a p-value by repeating steps 1-5 on each of the null

communities, which provides a null distribution for G. The z-score is then

Z = (G− µG̃) / σG̃ and the p-value is P = 1
n

∑
i I(G̃i ≥ G), where G̃i is the gap

statistic obtained for the i-th null assemblage, µG̃ and σG̃ are the mean and

standard deviation of those values, and index function I is 1 if its argument is

true and 0 otherwise.
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Note that this recipe works with different clustering measures, F . Here we use two:

k-means dispersion [1] and Ripley’s K function [2, 3]. In the k-means version, the

parameter ϕ is the number of clusters, and the value ϕ̂ at which the gap is maximal is

the estimated number of clusters in the community. In the Ripley’s K version, ϕ is the

trait distance between pairs of individuals, and the value at which the gap is minimal is

the average distance between clusters.

Note also that we can use any number of traits to describe our species, as long as we

can define a “distance” between species (e.g. Euclidean distance in a high-dimensional

trait space, or simple trait differences on a single trait axis).

Gap statistic via k-means

Here the parameter ϕ is the candidate number of clusters k, and we use the k-means

clustering algorithm [1]. For a given k, the algorithm finds the partition of individuals

into k groups that minimizes the within-group dispersion. Let Dk be the total pairwise

squared distance between members of each group, i.e., Dk =
∑k

C=1

∑
i,j∈C ninjd

2
ij ,

where C refers to a cluster, ni is the abundance of species i, dij is the trait distance

between species i and j. The k-means algorithm finds the species-to-cluster assignment

that minimizes Dk. (In our model, all conspecific individuals have the same trait value,

and therefore necessarily belong in the same cluster. For efficiency we modified the

k-means algorithm to arrange all individuals of a species together.)

The algorithm starts with randomly chosen trait values in the local community as

possible cluster centers, then puts species into the cluster whose center is the closest to

them, then recalculates cluster centers, and so on until the algorithm converges or

subsequent changes in Dk fall below a specified threshold. Since the result can depend

on the starting point, we carry out this procedure from a variety of randomly chosen

cluster centers, and take the final cluster arrangement with the lowest Dk across

different starting points. If a cluster ended up empty in this approach, the arrangement

was not included in calculating the minimum Dk, and was replaced with a different one.

We assessed the number of starting points needed by verifying that the resulting Dk

changed little if more starting points were added. This number was relatively similar

across model scenarios. We used a single starting point for 1 cluster (for which the
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arrangement is independent of the number of starting points), 1,000 starting points for

2-5 clusters, 5,000 starting points for 6-10 clusters, 10,000 starting points for 11-15

clusters, and 100,000 starting points for 16-20 clusters. The exception was the habitat

partitioning model, where empty clusters occurred frequently, and hence we used fewer

starting points to maintain reasonable computational time.

We then set F (ϕ) = Fk = log(1/Dk) as the clustering measure to be maximized

with the Gap statistic. Note that it does not make sense to compare Fk directly across

different k’s because Fk necessarily increases with k, as the average within-cluster

distance is always lower for higher numbers of clusters. By comparing against null

assemblages, the gap method finds the biggest increase in goodness of fit beyond what is

expected from the increase in k. The reason we use log(1/Dk) rather than simply 1/Dk

is that the expected increments in 1/Dk with increasing k are multiplicative rather than

additive (see [4] for more details).

See S1 Box for a step-by-step recipe for this metric.

Gap statistic via Ripley’s K

The approach with Ripley’s K [2] is to count the number of pairs of individuals within

each distance in trait space and determine whether or not it deviates significantly from

what we would expect if the same set of abundances were randomly distributed among

the present species. In particular, we look for significant open spaces between clusters,

i.e. distances at which Ripley’s K is surprisingly low. The parameter ϕ here is therefore

the trait distance d.

Ripley’s K function at distance d is defined as K(d) =
∑

i6=j I(dij<d)NiNj∑
i6=j NiNj

, where Ni

is the abundance of species i, dij is the distance in trait space between species i and j,

and function I(.) is the indicator function, equal to 1 if its argument is true and 0

otherwise. We then calculate Ripley’s K in each of our null assemblages, and define the

Ripley’s K clustering measure as the standardized K function: F (d) = K(d)/σK̃(d),

where σK̃(d) is the standard deviation of the null values. The standardization

compensates for the natural increase in the variance of K(d) at large d (see Fig 1). The

gap function is then G(d) = K(d)/σK̃(d) − µK̃(d)/σK̃(d).

Because we are interested in significantly low counts, we define our Ripley gap
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statistic as the minimum value of G(d) across candidate distances, G = min
d
G(d). This

is analogous to our implementation with the k-means algorithm (see Table 1 for a direct

comparison between the two implementations).

Fig 1 shows the metric at work on an example of a Lotka-Volterra community, a

community under neutral competition and environmental filtering, and a purely neutral

community. When the community has significant open spaces (Fig 1A), i.e. a lower G

than the null communities, it suggests multiple clusters in trait space of high abundance

species, with a dearth of species in between them. This is what we would expect from a

community shaped by niche differentiation. When instead it is significantly lacking in

gaps (Fig 1B), that indicates a single clump of abundant species, as could be expected

when the environment filters for a single trait value.

Note that while k-means and Ripley’s K can characterize a community in terms of

clustering structure, the gap statistic tells us whether that structure is significant

compared to a null model. Furthermore, while clustering measures will typically depend

on a parameter (number of clusters in the case of k-means, distance between clusters in

the case of Ripley’s K), the gap statistic removes the parameter by comparing the data

to the null model across the parameter’s range.
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Table 1. Comparison of our two implementations of the gap method. Both
apply the gap method using different measures of dispersion. W (k) is the k-means
dispersion for k clusters; K(d) is Ripley’s K at trait distance d; F (k) (F (d)) is the
dispersion for k clusters (distance d); I is the indicator function, equal to 1 if its
argument is true and zero otherwise; Ni is the abundance of species i; G(k) (G(d)) is
the gap function for k clusters (distance d); µX̃ and σX̃ are the mean and standard

deviation of quantity X taken across the null communities; d̂ is the distance at which
G(d) = G. n is the number of null communities.

k-means Ripley’s K

Clustering measure Fk = log(1/W (k)) F (d) = K(d)/σ̃K(d)

Gap function Gk = Fk − µF̃k
G(d) = F (d)− µF̃ (d)

Gap statistic G = max
k

Gk G = min
d
G(d)

Estimated number of
clusters

k such that Gk = G
Number of abundance-peaks
within distance d̂ of each other

Z-score Z = (G− µG̃) / σG̃ Z = (G− µG̃) / σG̃

P-value P = 1
n

∑
i

I(G̃i ≥ G) P = 1
n

∑
i

I(G̃i ≥ G)

December 8, 2018 5/6

http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00293/abstract
http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00293/abstract


Fig 1. Top: Abundances plotted against trait values in a sample replicate of (A) the
Lotka-Volterra niche model, (B) environmental filtering without a niche mechanism,
and (C) the neutral model. A1-C1: Ripley’s K vs. trait distance in the same replicates.
Values for the observed community are plotted in black. The %95 confidence interval of
K(d) among the null communities (obtained by reshuffling abundances across species) is
shaded in gray. A2-C2: same results with mean null value at each distance subtracted
out, K(d)− µ̃K(d). A3-C3: rescaled by the variance at each distance
G(d) = K(d)/σ̃K(d)− µ̃K(d)/σ̃K(d). The red line is the threshold for a significantly
low gap statistic (p < 0.05), and the triangle indicates the distance with the most
surprisingly low density of pairs, i.e. the distance d where the Ripley gap statistic G is
achieved, G(d) = G.
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