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Supplementary Materials and Methods 

 
Localizer experiments. Retinotopy and functional localizer experiments were conducted 

to identify the seven visual areas analyzed in the study. 

The retinotopy experiments were conducted according to a conventional protocol [1, 2]. 

We used a rotating wedge and an expanding ring of a flickering checkerboard. The data 

were used to delineate the borders between visual cortical areas, and to identify the 

retinotopic map (V1–V4) on the flattened cortical surfaces of individual subjects. 

We also performed functional localizer experiments to identify the lateral occipital 

complex (LOC) [3], fusiform face area (FFA) [4], and parahippocampal place area (PPA) 

[5] for each individual subject. The localizer experiment consisted of 8 runs, with each 

run containing 16 stimulus blocks. In this experiment, intact or scrambled images (12 × 

12 degrees of visual angle) from face, object, house, and scene categories were presented 

in the center of the display. Each of eight stimulus types (four categories × two 

conditions) was presented twice per run. Each stimulus block consisted of a 15-s intact or 

scrambled stimulus presentation. The intact and scrambled stimulus blocks were 

presented successively (the order of the intact and scrambled stimulus blocks was 

random), followed by a 15-s rest period with a uniform gray background. Extra 33-s and 

6-s rest periods were added to the beginning and end of each run, respectively. In each 

stimulus block, 20 different images of the same type were presented for 0.3 s, followed 

by an intervening blank screen of 0.4 s. 

MRI acquisition for localizer experiments. fMRI data were collected using a 3.0-Tesla 

Siemens MAGNETOM Verio scanner located at the Kokoro Research Center, Kyoto 

University. An interleaved T2*-weighted gradient-echo echo planar imaging (EPI) scan 

was performed to acquire functional images covering the entire occipital lobe (retinotopy 

experiment: TR, 2000 ms; TE, 30 ms; flip angle, 80 deg; FOV, 192 × 192 mm; voxel size, 

3 × 3 × 3 mm; slice gap, 0 mm; number of slices, 30) or the entire brain (localizer 

experiment: TR, 3000 ms; TE, 30 ms; flip angle, 80 deg; FOV, 192 × 192 mm; voxel size, 

3 × 3 × 3 mm; slice gap, 0 mm; number of slices, 46). High-resolution anatomical images 
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of the same slices obtained for the EPI were acquired using a T2-weighted turbo spin 

echo sequence (retinotopy experiment: TR, 6000 ms; TE, 57 ms; flip angle, 160 deg; 

FOV, 192 × 192 mm; voxel size, 0.75 × 0.75 × 3.0 mm; localizer experiments: TR, 7020 

ms; TE, 69 ms; flip angle, 160 deg; FOV, 192 × 192 mm; voxel size, 0.75 × 0.75 × 3.0 

mm).  

MRI data preprocessing for data from the localizer experiments. The first 8-s of 

scans for experiments with TR = 2 s (retinotopy experiments) and 9-s of scans for 

experiments with TR = 3 s (localizer experiment) were discarded from each run to avoid 

MRI scanner instability effects. We then used SPM (http://www.fil.ion.ucl.ac.uk/spm) to 

perform three-dimensional motion correction on the fMRI data. The motion-corrected 

data were then coregistered to the within-session high-resolution anatomical images with 

the same slices as the EPI, and then subsequently to the whole-head high-resolution 

anatomical images. The coregistered data were then re-interpolated to 2 × 2 × 2 mm 

voxels. 

Region of interest (ROI) selection. V1, V2, V3, and V4 were identified using the data 

from the retinotopy experiments [1, 2]. LOC, FFA, and PPA were identified using the 

data from the functional localizer experiments [3–5]. The data from the retinotopy 

experiment were transformed into Talairach space and the visual cortical borders were 

delineated on flattened cortical surfaces using BrainVoyager QX 

(http://www.brainvoyager.com; RRID: SCR_013057). The coordinates of voxels around 

the gray-white matter boundary in V1–V4 were identified and transformed back into the 

original coordinates of the EPI images. The localizer experiment data were analyzed 

using SPM. The voxels showing significantly higher activation in response to intact 

object, face, or scene images in comparison with scrambled images (two sided t-test, 

uncorrected P < 0.05 or 0.01) were identified, and defined as LOC, FFA, and PPA 

respectively. A contiguous region covering the LOC, FFA, and PPA was manually 

delineated on the flattened cortical surfaces, and the region was defined as the higher 

visual cortex (HVC). Voxels from V1–V4 and the HVC were combined to define the 

visual cortex (VC). In the regression analysis, voxels showing the highest correlation 
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coefficient with the target variable in the training image session were selected to decode 

each feature (with a maximum of 500 voxels). 

Norm correction for decoded DNN feature vectors. Before reconstruction analysis, the 

DNN feature vector decoded from a given fMRI sample was multiplied by a scalar to 

match its norm to the mean across natural images.  

𝐲"#$%&'#( = 𝐲"&*
𝔼𝐯 𝑓 𝛟 𝐯
𝑓 𝐲"&*

1  

where 𝐲"&* is a decoded feature vector, and 𝐲"#$%&'#( is the feature vector after the norm-

correction. 𝐯 is a vector whose elements are pixel values of an image, and 𝛟 is the feature 

extraction function whose input is an image vector and output is the DNN feature vector 

for the input image. 𝑓 is a function whose definition is given later, and 𝔼𝐯 𝑓 𝛟 𝐯  

denotes the expectation of 𝑓 𝛟 𝐯  with respect to 𝐯 across natural images. The 

expectation was calculated using 10,000 natural images randomly selected from the 

ImageNet database (2011, fall release) [6]. 

When the input of the function 𝑓 is a DNN feature vector from a convolutional layer, we 

first calculate the standard deviation of the feature value across the units in each channel, 

and then the mean of this standard deviation across all channels is treated as the output 

value of 𝑓. When the input is a DNN feature vector from a fully-connected layer, the 

standard deviation of the feature value across the units in the layer is treated as the output 

value of 𝑓.  

If 𝑓 is the vector norm, our norm-correction exactly matches the given decoded vector 

with the mean norm across natural images. In this study, we adopted the definition of 𝑓 

explained above, because our norm-correction procedure led to slightly better 

reconstructions compared with the exact norm matching used in the early stages of the 

analysis, which were performed using independent preliminary data. 
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Optimization methods for reconstruction. The cost function for our reconstruction was 

minimized by limited-memory BFGS (L-BFGS) [7–9], or by gradient descent with 

momentum [10]. Each of these algorithms is explained in this section. 

Given a DNN feature vector decoded from brain activity, an image was generated by 

solving the following optimization problem [11]. 

𝐯∗ = 	 argmin
𝐯

1
2 𝜙:

' 𝐯 − 𝑦:
' =

>?

:@A

2  

													= argmin
𝐯

1
2 𝚽 ' 𝐯 − 𝐲 '

=
= 											 3 				 

where 𝐯 ∈ ℝ==F×==F×H is a vector whose elements are pixel values of an image (224 × 

224 × 3 corresponds to height × width × RGB color channel), and 𝐯∗ is the reconstructed 

image. 𝜙:
('):	ℝ==F×==F×H → ℝ is the feature extraction function of the i-th DNN feature in 

the l-th layer, with 𝜙:
(')(𝐯) being the output value from the i-th DNN unit in the l-th layer 

for the image 𝐯. 𝐼' is the number of units in the l-th layer, and 𝑦:
(') is the value decoded 

from brain activity for the i-th feature in the l-th layer. For simplicity, the same cost 

function was rewritten with a vector function in the second line. 𝚽('):	ℝ==F×==F×H → ℝ>? 

is the function whose i-th element is 𝜙:
(') and 𝐲(') ∈ ℝ>? is the vector whose i-th element 

is 𝑦:
('). 

In each iteration of the L-BFGS algorithm, the image was updated by 

𝐯NOA = 𝐯N − 𝐇N𝐠N 4  

where 𝐯N and 𝐯NOA are the vectors before and after the t-th update, 𝐠N is the gradient of the 

cost function at 𝐯N, and 𝐇N is an approximation of the inverse hessian of the cost function 

at 𝐯N.  

For each update, this gradient was calculated by the backpropagation algorithm as 

follows. Here, we define the backpropagated error 𝛿T
(U) as 
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𝛿T
U =

𝜕𝐸
𝜕𝑢T

U 5  

where 𝐸 is the cost function to be minimized and 𝑢T
(U) is the input to the j-th unit in the 

m-th layer in the forward path. Using the chain rule, 𝛿T
(U) can be calculated as a weighted 

sum of the backpropagated errors for the units in the (m + 1)-th layer: 

𝛿T
U = 𝑓 U Z 𝑢T

U 𝑤\T
UOA 𝛿\

UOA 	
>]^_

\@A

6  

where the function 𝑓(U)a is the derivative of the activation function between the m-th 

layer and (m + 1)-th layer. 𝑤\T
(UOA) is the weight between the j-th unit in the m-th layer 

and the k-th unit in the (m + 1)-th layer. 

The backpropagated error for a unit in the last layer is given by  

𝛿T
' = 𝑢T

' − 𝑦T
' , 7  

and the gradient 𝐠N is obtained as 𝛿A
(d), 𝛿=

(d),⋯ , 𝛿==F×==F×H
(d) f

, which can be numerically 

calculated using the chain rule. 

The calculation of the inverse hessian with a size of 𝐼'	×	𝐼' is intractable because it 

requires huge memory. To avoid the memory problem, the inverse hessian was 

approximated based on the history of 𝐠N and 𝐯N following the update rule of the L-BFGS 

algorithm [8]. Each image was generated by 200 iterations and the spatially uniform 

image with the mean RGB contrast values of natural images was used as the initial image. 

Also, the cost function was minimized by gradient descent with momentum [10]. In each 

iteration of the algorithm, the image was updated by  

𝐯NOA = 𝐯N + 𝛍N	, 8  

𝛍NOA = 𝑚𝛍N − 𝜂N𝐠N. 9  
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𝐯N and 𝐯NOA are the vectors before and after the t-th update. 𝐠N is the gradient of the cost 

function at 𝐯N, and 𝛍N is a weighted average of the gradients from step 0 to t. The next 

update is determined based on the history of 𝐠N to prevent 𝐯N from oscillating around 

shallow local minima of the cost function. 𝑚 is a parameter called the decay rate, and we 

set this to 0.9. 𝜂N is the learning rate. Each image was generated by 200 iterations and 𝜂N 

was linearly reduced from 2.0 to 0.0. The spatially uniform image with the mean RGB 

contrast values of natural images was used as the initial image for optimization.  

For each update, the gradient 𝐠N was calculated by the backpropagation algorithm with 

the procedure the same as for the L-BFGS algorithm. 

Notes for supplementary movies. To reconstruct visual images, we first decoded 

(translated) measured brain activity patterns into deep neural network (DNN) features, 

and then fed these decoded features into a reconstruction algorithm. Our reconstruction 

algorithm starts from a given initial image and iteratively optimizes the pixel values so 

that the DNN features of the current image become similar to those decoded from brain 

activity. The videos can be viewed from our repository: 

https://www.youtube.com/user/ATRDNI 
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