Main Route		Secondary Route	
Firing Neurons	$\Delta T \text{ (ms)}$	Firing Neurons	$\Delta T \text{ (ms)}$
$eh_1 \rightarrow ih_1$	3.4 ± 0.2	$eh_1 \rightarrow ih_1$	3.3 ± 0.1
$ih_1 \rightarrow ih_2$	7 ± 2	$ih_1 \rightarrow ih_2$	9 ± 4
$ih_2 \rightarrow eh_2$	37 ± 2	$ih_2 \rightarrow eh_2$	33 ± 4
$eh_2 \rightarrow eh_1^*$	5 ± 2	$eh_2 \rightarrow (eh_3 - eh_4)$	6.6 ± 0.6
$eh_1^* \rightarrow (eh_3 - eh_4)$	1.5 ± 1.0	$(eh_3 - eh_4) \to eh_1^*$	0.2 ± 0.2

Table 1. Model - Routes leading to PBs Spike time delays ΔT between two successive firing of the neurons forming the functional clique along the main and secondary route leading to bursting. Neurons eh_3 and eh_4 are assumed to fire essentially at the same time, since eh_4 fires almost immediately after eh_3 within 0.03-0.04 ms. Notice that eh_1 is the only driver hub cell firing twice before a PB: the two routes could be distinguished by the time occurrence of the second spike of eh_1 and this event is denoted by an asterisk in the table. The arrows indicate the order of firing in the sequence.