S3 Appendix: Varying the variance of r_{t} in simulation 2.

In simulation 2 , the variance of the fluctuating covariance $\left(\sigma_{r}\right)$ in the main text was set to 0.1. Simulation 2 was run with σ_{r} set to 0.08 and 0.12 as well. S3 Appendix, Figures AB show the posterior distributions of β for each TVC method (same as Fig. 6 in the main text). The evaluation of model fit is displayed in S3 Appendix, Table A-F.

Overall the results are similar to those in Fig. 6 in the main text. Here we can see that changing σ_{r} effects the magnitude of β but does not effect how the different methods perform. The reason for the magnitude of β increasing as σ_{r} increases is because r_{t} is varying more. This decreases the uncertainty of identifying r_{t} since the time series covariance is drawn from distributions where r_{t} is a parameter. If r_{t} varies more, it entails that draws from distributions with different r_{t} values are more dissimilar.

Figure A: Posterior distributions of the β parameter of the Bayesian linear regression models in Simulation 2. The figure shows the results for varying values of the autocorrelation parameter (α) where the variance of the fluctuating covariance $\left(\sigma_{r}\right)$ is equal to 0.08 . Compliments Fig. 6 in main text.

Figure B: Posterior distributions of the β parameter of the Bayesian linear regression models in Simulation 2. The figure shows the results for varying values of the autocorrelation parameter (α) where the variance of the fluctuating covariance $\left(\sigma_{r}\right)$ is equal to 0.12 . Compliments Fig. 6 in main text.

Table A: Results of Simulation 2 where $\alpha=0.0$ and $\sigma_{r_{t}}=0.08$. Tables shows WAIC, WAIC standard error, and difference in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model	WAIC	WAIC SE	Δ WAIC
JC	28244.9	142.892	0
SD	28247	142.899	2.01576
MTD	28302.7	143.018	57.7415
TSW-15	28303.4	142.98	58.4582
SW-15	28303.5	142.974	58.5909
TSW-29	28304.4	143.02	59.4662
SW-29	28304.6	143.003	59.6281

Table B: Results of Simulation 2 where $\alpha=0.0$ and $\sigma_{r_{t}}=0.12$. Tables shows WAIC, WAIC standard error, and difference in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model	WAIC	WAIC SE	Δ WAIC
JC	28172	141.092	0
SD	28174.2	141.028	2.25273
MTD	28287.7	141.207	115.766
TSW-15	28300.5	141.157	128.541
SW-15	28301.5	141.104	129.497
TSW-29	28302.1	141.132	130.127
SW-29	28303.5	141.212	131.521

Table C: Results of Simulation 2 where $\alpha=0.25$ and $\sigma_{r_{t}}=0.08$. Tables shows WAIC, WAIC standard error, and difference in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model	WAIC	WAIC SE	Δ WAIC
JC	28195.6	141.754	0
SD	28198.5	141.853	2.92245
MTD	28286.7	141.931	91.1147
TSW-15	28300.7	141.838	105.12
SW-15	28301.9	141.795	106.334
TSW-29	28302.8	141.82	107.248
SW-29	28304.1	141.771	108.562

Table D: Results of Simulation 2 where $\alpha=0.25$ and $\sigma_{r_{t}}=0.12$. Tables shows WAIC, WAIC standard error, and difference in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model	WAIC	WAIC SE	Δ WAIC
JC	28138.9	141.114	0
SD	28145.3	140.982	6.37803
MTD	28254.4	140.782	115.542
TSW-15	28281.1	140.996	142.241
SW-15	28285.9	141.052	147.029
TSW-29	28287.8	141.055	148.901
SW-29	28295.7	141.116	156.845

Table E: Results of Simulation 2 where $\alpha=0.5$ and $\sigma_{r_{t}}=0.08$. Tables shows WAIC, WAIC standard error, and difference in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model	WAIC	WAIC SE	Δ WAIC
JC	28152	139.126	0
SD	28166.1	139.043	14.0644
MTD	28205.9	139.032	53.8909
TSW-29	28231.8	139.104	79.7723
SW-29	28242	138.986	90.0124
TSW-15	28246.3	139.075	94.3044
SW-15	28252.6	139.01	100.576

Table F: Results of Simulation 2 where $\alpha=0.5$ and $\sigma_{r_{t}}=0.12$. Tables shows WAIC, WAIC standard error, and difference in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model	WAIC	WAIC SE	Δ WAIC
JC	28029.7	142.163	0
SD	28063.2	142.201	33.5364
TSW-15	28101	142.122	71.2716
SW-15	28124.7	142.106	94.9784
TSW-29	28128.8	142.219	99.1359
MTD	28140.9	142.147	111.182
SW-29	28183	142.237	153.295

