
S2 Appendix: A justification of the assumptions
regarding model parameter choices made in the
simulations.

In simulation routine V1.0 of tvc_benchmarker, we wanted the simulations
to either be justified based on the properties of fMRI data or, in the case of
Simulation 4, reflect what dynamics are hypothesized to exist in fMRI data.

Since the properties of the simulations are determined by their parameters,
we justify these parameters in three different ways. First, we show that some
parameters have no substantial effect on the result. Second, some are justified
from previous findings/hypothesis in the literature. Third, by use resting state
fMRI data to justify the assumptions.

fMRI data used

The midnight scanning club (MSC) data [1] is used to justify the assumptions.
The dataset contains ten subjects with ten sessions of resting state fMRI. This
data was obtained from the OpenfMRI database (accession number: ds000224).
The preprocessed volumetric data was used. To reduce the dimensions of the
data, 278 spherical regions of interest were defined (5mm radius) with their
the centre of mass defined by the Shen et al 2013 atlas [2] (using the Talairach
coordinates). Subject MSC08 is often reported as an outlier, which has previously
been noted in Gordon et al where they noted this subject had poor data quality
due to subject head movement and sleep [1]. When a single subject and and
session is shown (for illustration purposes), subject MSC10 and session 7 was
used. This subject and session was selected at random. When specific ROIs
were selected to be shown, these were randomly generated (from subject MSC10,
session 7).

See github.com/wiheto/tvc_benchmarker_assumptions/1.0/assumptions.ipynb
for the Jupyter notebook to run all the analysis from start to finish.

Simulation 1 - summary of assumptions

Information

Aim: See how well the estimates from different DFC methods correlate with
each other.

Evaluation: Spearman correlation between functional connectivity time series
computed by the five DFC methods.

n samples: 10,000
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Random seed: 2017

Assumptions

Distributions: Gaussian, multivariate Gaussian

µ (mean of each time series): 0

σ (variance of time series): 1

rt (covariance of time series): 0.5

α (autocorrelation of the time series): 0.8

Simulation 2 - summary of assumptions

Information

Aim: To investigate how well the different DFC methods correlate with a
fluctuating covariance parameter.

Evaluation: Bayesian linear regressions between the estimates of the DFC
methods and rt (evaluated by comparing WAIC scores and posteriors of β).

n samples: 10,000

Random seed: 2017

Assumptions

Distributions: Gaussian, multivariate Gaussian

µ (mean of each time series): 0

σ (variance of time series): 1

µr (mean of fluctuating covariance): {0.1, 0.2}

σr (variance of fluctuating covariance): {0.08, 0.1, 0.125}

α (autocorrelation of the fluctuating covariance): {0, 0.25, 0.5}

Simulation 3 - summary of assumptions

Information

Aim: To investigate how well different DFC methods perform when the fluc-
tuating covariance parameter contains a non-stationary mean to simulate a
HRF.
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Evaluation: Bayesian linear regressions between the estimates of the DFC
methods and rt (evaluated by comparing WAIC scores and posteriors of β).

n samples: 10,000

Random seed: 2017

TR: 2

Assumptions

Distributions: Gaussian, multivariate Gaussian

µ A scaled HRF.

σ (variance of time series): 1

µr (mean of fluctuating covariance): 0.2

σr (variance of fluctuating covariance): 0.1

α (autocorrelation of the fluctuating covariance): {0, 0.25, 0.5}

Trial length (samples): 20

HRF scale: 10

Simulation 4 - summary of assumptions

Information

Aim: To investigate the performance of DFC methods when there is a fluctuating
covariance parameter that nonlinearly shifts between covariance.

Evaluation: Bayesian linear regressions between the estimates of the DFC
methods and rt (evaluated by comparing WAIC scores and posteriors of β).

n samples: 10,000

Random seed: 2017

Assumptions

Distributions: Gaussian, multivariate Gaussian

µ (mean of each time series): 0

σ (variance of time series): 1

rµ (average covariance in different states): 0.2, 0.6

rσ (variance of covariance in different states) : 0.1
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State length: Fast Condition: {2,3,4,5,6}; Slow condition: {20,30,40,50,60}

Justifying the assumptions

Mean and variance of the time series (µ, σ)

µ and σ for all simulations were set to 0 and 1, with the exception of µ in
simulation 3. As long as the time series have a stationary mean and variance,
then these parameters can be set to anything and have no effect on the overall
result. Simulation 3 tests how methods deal with the non-stationartity of µ.

Autocorrelation and crosscorrelation assumptions (α)

Autocorrelation of the time series (Simulation 1).

The auto-correlation (α) is an important parameter for simulation 1. In Appendix
S2, Fig. A, we can see the average auto-correlation for a single subject between 0
and 10 lags. The average and standard deviation for each subjects and session is
shown in Appendix S2, Fig. B. Excluding the sessions from the subject known to
be noisy (MSC08), there were only a few sessions with average auto-correlation
values outside the range of 0.70-0.85. Most subject averages were close to 0.80.
Accordingly, α in simulation 1 was set to 0.80.

Autocorrelation of rt (Simulation 2 and 3)

The autocorrelation of rt is an important parameter for simulation 2 and 3,
where the parameter α now refers to the autocorrelation of the covariance
parameter rt. The expected crosscorrelation will be different for different values
of static functional connectivity. Thus, we binned each edge based on its static
connectivity bins (each bin was placed between -1 and 1 in spaces of 0.1). Panel
A in Appendix S2, Fig. C shows the average crosscorrelation of the example
subject and session for 10 lags for each bin. The general pattern is that at lag
1, the average correlation tends towards zero compared to lag 0 (which is the
static functional connectivity). The frequency of the number of edges across the
different correlation values is at lag 0 (Panel B in Appendix S2, Fig. C) and lag
1 (Panel C in Appendix S2, Fig. C) shows that the majority of edges are within
the range -0.5 and 0.5.

The average crosscorrelation at lag 1 looks very similar across different subjects
and sessions (Appendix S2, Fig. D). When pooling all static functional con-
nectivity values across subjects and sessions, the histogram (Appendix S2, Fig.
E) shows that the pattern at a group level is similar to that shown in panel B
Appendix S2, Fig. C. Thus, more edges correspond to a degree of connectivity
that would be modeled with a lower α parameter. However, for edges with larger
degree functional connectivity, a higher α is to be expected.
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Figure A: Auto-correlation of the example subject and session for 10 lags.
Averaged over all ROIs. Error bars show standard deviation. Dashed lines show
the min and max.
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Figure B: Average auto-correlation at lag 1 for each subjects and sessions. Each
dot represents a session (ordered from top to bottom). Each dot signifies the
average autocorrelation at lag 1. Error bars show standard deviation.
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Figure C: Average crosscorrelation of the example subject and session for 10
lags. Averaged over all ROIs. Each coloured line represents a bin based on the
correlation value at lag 0 (i.e. the static functional connectivity).
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Figure D: Average crosscorrelation at lag 1 for all subjects and sessions. Each
dot represent a bin based on the correlation value at lag 0 (i.e. static func-
tional connectivity). Each dot signifies the average (across ROIs in the bin)
crosscorrelation at lag 1. Error bars indicate standard deviation.
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Figure E: The frequency of the static functional connectivity for each subject
and session. Each row in the figure represents one session for a subject. Each
row contains a normalized histogram of the connectivity values.
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When choosing the α for simulation 2 and 3, we only considered positive auto-
correlations and sampled from the values 0, 0.25, and 0.5 which cover most of
the positive span of functional connectivity.

Covariance (µr, σr, rt)

σr dictates how wide rt is going to fluctuate over time. What the true value of
σr is, is one of the key questions time-varying functional connectivity wants to
answer. Making σr higher, entails that there is a larger parameter space that
rt gets sampled from which decreases the noise when estimating rt. When the
distribution that rt is sampled from widens, there is a lower probability that
the time series will be sampled similarly, meaning the inherent uncertainty of
estimating single samples of rt decreases when the variance of rt increases. The
effect of changing σr is that the β values will scale with it, but the relative
difference of the β values between methods will remain similar. The σr parameter
in is set to 0.08, 0.1 and 0.12 to illustrate this in simulation 2 to show that this
has little effect other than a scaling effect of β (Figure 6). In simulation 3, only
0.1 was used for σr.

The average connectivity (µr) was set 0.2 in simulation 2 and 3. It can be seen
in Appendix S2, Fig. E that both this value is reasonable positive connectivity
value. When varying the α parameter in simulation 2 and 3, this also has an
effect on the effective covariance (mean of rt) between the two time series and
this in increases as a function of α (Figure 5). It can be seen that this effective
increase in covariance had little effect on the different methods (Figure 6, Figure
8).

As the mean rt increases when α increases, it is possible that any change in
a method’s performance occurs due to the change in the mean of rt and not
α. To this end, we created an additional supplementary parameter routine
in tvc_benchmarker (1.0sup). This simulation followed all the structure of
simulation 2. α was set to 0.25. σr was set to 0.1. µr changed between 0.2
and 0.3. In Appendix S2, Fig. F we show the posterior distributions of the
β values for the two different values of µr. Here it can be seen that there is
a slight shift in the β values as µr increases, but no notable difference in the
relative performance of the methods. This shows that the differences between
the methods as α increases in Simulation 2 is due to α, not the mean of rt
changing due to α.

The rt in simulation 4 switched between a very high connectivity “state” of
0.6 and lower, but positive, connectivity “state” of 0.2. These are plausible
connectivity values (Appendix S2, Fig. E). See the section below on state change
assumptions for more details.

While the parameters defining draws of rt has been justified above on what is
considered reasonable, µr and σr parameters were defined in such a way that
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Figure F: Distribution of BOLD signal for each ROI in example subject and
session. A. Histograms over each ROI showing the frequency of signal intensity.
Each row functions as a histogram for a ROI. B. Three randomly selected ROIs
from A are depicted as traditional histograms showing the same information as
in A.
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there was no instance when rt > 1. This motivates using the range of of σr
being between 0.08 and 0.12 instead of having a much larger variance.

Gaussian assumption

All simulated time series were sampled from a (multivariate) Gaussian distri-
bution. The simulations can be improved by considering frequency specific
information (see caveats below). The amplitude of the time series for ROIs in
the example subject and session have a unimodal shape and relatively unskewed
distributions (Panel A in Appendix S2, Fig. G). To illustrate this more clearly,
panel B Appendix S2, Fig. G shows three randomly selected ROIs. When
looking at all groups the average skewness was calculated (Appendix S2, Fig.
H). Given the distributions are unimodal they too can at least be approximated
with a Gaussian distribution. While not perfect, and still a simplification, a
Gaussian distribution is a reasonable distribution to sample from.

The Gaussian distribution assumption for sampling rt can also be motivated by
[3] where the time-varying functional connectivity was generally unimodal and,
with appropriate transformation, approximates to Gaussian.

Trial length and HRF scale

The scale of the HRF amounts to how much the standardized HRF has been
scaled so that it creates a larger non-stationarity in mean of the simulated data in
Simulation 3. This parameter was set to a high value to illustrate each method’s
ability to estimate connectivity when a non-stationarity mean is present in the
data. There will be little effect when changing this, but if it was reduced it will
eventually be identical to simulation 2. The non-stationarity introduced by the
adding the HRF function to the data is shown in Figure 7 of the main text.

The HRF lasting 20 seconds with an assumed TR of 2 means that there are 40
seconds between trials. This is quite long for an event related fMRI experiment.
If this was reduced, it would just entail that the HRF stacks due to overlap. This
would have no effect on what the simulation is testing which is just how well the
different methods can act upon non-stationarities. The TR was considered to
be 2 seconds because many studies still use this TR despite lower TRs being
available. However, this has no implications on the results.

Assumptions regarding shift in “brain state”

The duration of a state in the quick condition are on the approximate time
scale found in [4], although slightly quicker (where the average state transition
was 7 seconds). The longer transitions are based on the time scale explored in
[5]. Note however that these two different time scales for states originate from
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Figure G: Distribution of BOLD signal for each ROI in example subject and
session. A. Histograms over each ROI showing the frequency of signal intensity.
Each row functions as a histogram for a ROI. B. Three randomly selected ROIs
from A are depicted as traditional histograms showing the same information as
in A.
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Figure H: Average skewness for each subject and session. Each dot represents a
session. Each dot signifies the average skewness over all BOLD time series for
ROIs. Error bars show one standard deviation
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different time-varying functional connectivity methods. Detecting brain states
has, to our knowledge, not been justified without using time-varying functional
connectivity which makes the reasoning to justify this parameter somewhat
circular. Simulation 4 was added primarily to evaluate how the different methods
can capture dynamics that many researchers hypothesize time-varying functional
connectivity to be, not necessarily how the data is.

Caveats

The current simulations do not take into account any frequency information of
fMRI brain connectivity which is known to play a role in resting state fMRI. This
means that any methods that utilize this aspect of the signal (e.g. phase) cannot
be evaluated at the moment. The Gaussian assumption of the distributions can
be improved upon by adding more fMRI specific noise. Further, drawing rt from
a Gaussian distribution was done to keep Gaussian assumptions throughout the
paper instead of adding additional distribution assumptions for different aspects
of the simulations. However, since rt should always be bound between -1 and 1,
a beta distribution could be a more appropriate in subsequent versions of the
software. Moreover, negative correlations were not considered in the simulations.

The autocorrelation of rt in simulations 2 and 3 do not necessarily entail an
autocorrelation of X. While this could in principle be added to the simulation
model, it would mean there is a greater correlation between the time series in X
that is not known by the parameter rt. This caveat does not however impact
the connectivity between the two signals.

Finally, it is not possible to tweak the auto-correlation of the time-series in sim-
ulations 2-3 without affecting the underlying correlation between the time series.
This could be modified in future versions to make this parameter independent.
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