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Experimental account of decision making in sperm
chemotaxis

For the convenience of the reader, we presented in the
main text experimental data on sea urchin sperm chemo-
taxis with distinct steering modes as previously published
in [16], see also Fig. 1. We provide additional informa-
tion on these experiments. In [16], a concentration field
with cylindrical symmetry was established by uncaging a
caged compound of the chemoattractant resact using spa-
tial profiles of UV light. A. punctulata sea urchin sperm
cells were tracked with high spatio-temporal resolution
with digital inline holography, while swimming in three-
dimensional space along helical paths. In a concentration
field, these helical paths bent in the direction of the lo-
cal concentration gradient. Fig. 1 shows a typical sperm
swimming path as well as time series of the rate γ(t) of
helix bending. The rate γ(t) = γ1(t) is determined from
the rotation rate of the tangent vector h(t) of the helix
centreline R(t)

d

dt
h = γ1g1 + γ2g2. (S1)

Here, g1 = ∇⊥c/|∇⊥c| is a unit vector parallel to the
component ∇⊥c of the local concentration gradient per-
pendicular to the helix vector, where ∇⊥c = ∇c − ∇‖c,
∇‖c = (∇c · h)h, g2 = h × g1. We observe repeated
switching between phases of low and high rates of helix
bending, respectively. We define the beginning of a ‘high-
gain’ steering phase as the level crossing of the bending
rate γ(t) above its median. We find that the majority of
‘high-gain’ steering phases are initiated when the cell is
swimming down-gradient, i.e. Ψ > π/2, see Fig. 1D. This
result is robust with respect to the definition of the bend-
ing rate: an alternative definition using level crossings of
a normalized bending rate γ/ sin Ψ, which accounts for
a geometric relationship γ ∼ sin Ψ predicted by previous
theory [15], gives fully analogous results, see Fig. A. The
data from [16] was used with permission. We refer to the
original publication for further details on data acquisition
and analysis.

Choice of parameters

We use parameters typical for helical swimming paths
of Arbacia punctulata sea urchin sperm cells: speed
v = 200 µm/s, mean path curvature κ0 = 0.065µm−1,

concentration [nM]
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Figure A. Decision making in chemotaxis of sea urchin
sperm: supplement to Figure 1. Scatter plot of the ori-
entation angle Ψ and local concentration c at the beginning
of ‘high-gain’ steering phases both for the original definition
using level crossings of the bending rate γ as shown in Fig. 1D
(black), and for an alternative definition using level crossings
of a normalized bending rate γ/ sin Ψ (red), (n = 9 cells).

and mean path torsion τ0 = 0.067µm−1 [16]. The equiv-
alent radius and pitch of helical swimming paths read
7.5µm and 48.3µm, respectively. The corresponding he-
lix period is T = 0.34 s. Binding of chemoattractant
molecules can be considered diffusion-limited with bind-
ing constant λ = 7 s−1 pM−1 [27]. The signalling time
scale µ is determined as µ = 0.054 s to give the opti-
mal phase-lag of π and 0, respectively, between oscilla-
tions of path curvature and torsion with respect to oscil-
lations of the chemoattractant signal. These phase-lags
are optimal for helical chemotaxis [15] and were observed
in experiments [16]. The adaptation threshold is set as
cb = 10 pM. At the concentration cb, about 20 chemoat-
tractant molecules would diffuse to a sperm cell during
one helical turn. If not stated otherwise, two values of the
gain factor are used, ρlow = 1 and ρhigh = 10, which re-
produce typical bending rates of helical swimming paths
observed in experiments [16]. We verified that the results
presented in the main text do not change qualitatively
if other values for ρlow and ρhigh are used (ρlow = 0.5,
ρhigh = 5; ρlow = 1, ρhigh = 5). Egg cells are ap-
proximated as spheres of radius Regg = 100µm [29] and
contain approximately n = 1.65 · 1010 molecules of the
chemoattractant resact [28]. The diffusion constant D of
resact in sea water at temperature 16 ◦C was measured
as 239 µm2/s [28]. For the implementation of cellular
decision making, an averaging time scale η = T is used
in Eq. 10 to attenuate fast oscillations with period T in
the variable a(t).
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Calculation of concentration field

To compute exemplary chemoattractant concentration
fields in the vicinity of an egg cell, we solve the diffusion
equation for the resact concentration c(x, t)

∂

∂t
c = D∆c. (S2)

Boundary conditions for the integration of Eq. S2 are
set by an outward flux on the surface of a spherical egg
with release rate Q(t). In the main text, we consider the
idealized case of a constant release rate Q = n/Trelease

with a release time of Trelease = 60 min, denoted as con-
centration field I in the following. The corresponding
radial concentration profile c(R, t) was obtained by inte-
grating Eq. S2 in spherical coordinates for a time period
Tint = Trelease, using an explicit Euler scheme with inte-
gration time step of 1 ms and spatial resolution 1 µm.
In this SI text, we also present concentration fields for a
shorter release time, as well as concentration fields for in-
stantaneous release of all resact molecules, Q(t) = n δ(t).
The resulting concentration fields will be referred to as

• I: continuous release, Tint = Trelease = 60 min,

• II: instantaneous release, Tint = 60 min,

• III: continuous release, Tint = Trelease = 30 min,

• IV: instantaneous release, Tint = 30 min.

We anticipate that for real egg cells, the release rate
Q(t) decreases continuously over time, thus representing
an intermediate between the two limit cases of contin-
uous and instantaneous release. For instantaneous re-
lease of all resact molecules, the solution to Eq. S2 is
well approximated by a 3-dimensional Gaussian for times
t� R2

egg/D ≈ 40 s after chemoattractant release

cIR(r, t) =
n

(4πDt)3/2
exp

(
−|r|2

4Dt

)
. (S3)

Number densities are converted to mol/l by dividing by
the Avogadro constant.

Radial concentration profiles and corresponding gra-
dients for the four exemplary concentration fields are
shown in Fig. B, panels A and B. The search time
Tsearch = 5 min considered in the main text is substan-
tially shorter than the integration time Tint; thus, con-
centration fields can be considered as constant in time in
simulations of sperm chemotaxis to very good approxi-
mation.

Frenet-Serret equations

The swimming path r(t) defines a co-moving coordi-
nate system of ortho-normal vectors consisting of the
tangent t, the normal n, and the binormal b. Their time
evolution is described in terms of path curvature κ(t) and
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Figure B. Exemplary concentration fields and corre-
sponding signal-to-noise ratios. (A) Computed concen-
tration fields for two limit cases of chemoattractant release:
continuous release with constant release rate Q (black) and
instantaneous release of all n resact molecules (red) according
to Eq. S3. Release times Trelease are 30 min (dashed lines) and
60 min (solid lines). (B) Corresponding radial concentration
gradients. (C) Signal-to-noise ratios according to Eq. 5 in the
main text. Parameters: Regg = 100µm [29], n = 1.65 · 1010

molecules [28], D = 239µm2/s [28], λ = 7 s−1 pM−1 [27],
r0 = 7.5µm [16], T = 0.34 s [16], cb = 10 pM.

torsion τ(t) by the Frenet-Serret equations, which can be
conveniently expressed in matrix form as

Ḟ = FA, (S4)

with a 4× 4-matrix

F =

(
t n b r
0 0 0 1

)
(S5)

and an infinitesimal rigid body transformation

A =

 0 −κv 0 v
κv 0 −τv 0
0 τv 0 0
0 0 0 0

 , (S6)

where v denotes a constant swimming speed.

Simulations of stochastic swimming paths

Eqs. 1-4 and Eq. S4 were numerically integrated us-
ing an explicit Euler scheme with fixed time step ∆t =
10−3 s. The number ni of chemoattractant molecules de-
tected during the time interval [ti, ti+1] is computed as
a Poisson-distributed random number with expectation
value λ∆t ci, where ci = c(r(ti)) denotes the local con-
centration at time ti = i∆t. The spike train s(t) is ap-
proximated as the constant ni/∆t in the interval [ti, ti+1].



3

For numerical accuracy, the Frenet frame is propagated
in time as F (ti+1) = F (ti) exp [∆tA(ti)], using the ma-
trix exponential of its time propagator A. This formula
is exact to arbitrary order in ∆t, if A can be assumed
constant in the interval [ti, ti+1]. Numerical evaluation
of the matrix exponential was done using Padé approx-
imation. We verified that using smaller time steps did
not change the statistics of results.

Time integration was performed until either the egg
was found, a threshold Rth = 8 mm of maximal distance
from the egg was reached, or a maximum search time of
Tsearch = 5 min elapsed.

Signal-to-noise ratio

We quantify the impact of noise on cellular concen-
tration measurements by a signal-to-noise ratio of helical
chemotaxis (SNR), see also Eq. 5 in the main text. For a
helical path with helix axis perpendicular to the concen-
tration gradient, the stochastic chemotactic signal s(t)
can be approximated as

s(t) ≈ λc0 + λ|∇c|r0 cos(Ω0t) +
√
λc0 ξ(t). (S7)

Here, c0 = c(R) denotes the concentration at the current
centreline position R and ξ(t) denotes white Gaussian
noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′). We
employed a diffusion approximation for the noise term,
valid at sufficiently high concentrations.

Information about the gradient direction is encoded
in oscillations of 〈s(t)〉. The power of these oscillations
reads (λ|∇c|r0)2/2, whereas the power of the noise term
in Eq. S7 with respect to a single helix period of duration
T equals λc0/T . Their quotient defines a signal-to-noise
ratio as given in Eq. 5 in the main text. Signal-to-noise
ratios for different concentration fields are shown as func-
tions of distance R = |R| from the egg in Fig. B, panel
C.

We introduce the distance N for which SNR(N ) = 1,
see also Table A. Broadly, this distance marks the bound-
ary between a region close to the egg with approximately
noise-free concentration measurements that enable deter-
ministic steering, and an outer region where concentra-
tion measurements are severely corrupted by molecular
shot noise.

For chemoattractant concentrations that are even
lower, binding events of chemoattractant molecules be-
come very rare, marking a limit of chemosensation. We
define the distance S at which the concentration field
c(x) has dropped to a value 1/(λT ). At this value, only
a single molecule binds per helical turn on average.

Classification of swimming paths in the absence of
noise

In the absence of noise, we can distinguish three classes
of simulated sperm swimming paths, depending on their

a c c' db
C
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Figure C. Classification of swimming paths in the ab-
sence of noise. Minimal distance Rmin and maximal dis-
tance Rmax to the egg for simulated sperm swimming paths
with initial distance R0 and initial helix orientation perpen-
dicular to the gradient direction with Ψ(t = 0) = π/2, shown
for ‘low-gain’ steering (A) and ‘high-gain’ steering (B), respec-
tively. This representation allows us to distinguish between
qualitatively different swimming paths, which are listed in
panel C. Lower case letters indicate corresponding classes of
swimming paths. Vertical lines in panels A and B separate
regions of qualitatively different swimming paths and define
critical distances T = Tlow, Alow, and Ahigh. White dots
mark initial positions of swimming paths in panel C. We con-
sider the case of noise-free concentration measurements with
s(t) = b(t), and concentration field I. Parameters: v = 200
µm/s, κ0 = 0.065µm−1, τ0 = 0.067µm−1 [16], µ = 0.054 s,
[15,16], cb = 10 pM, ρlow = 1, ρhigh = 10.

Table A. Zone boundaries for different concentration fields
concentration field N S Tlow Thigh Alow Ahigh

I 0.9 4.4 1.0 - 3.8 4.8

II - 5.1 1.9 0.6 4.5 5.5

III 1.1 2.0 0.7 - 3.0 3.6

IV - 3.8 1.3 0.4 3.5 4.1
All distances in units of mm. In concentration fields II and
IV, sperm swimming paths escape to infinity if the initial

distance R0 is below 0.6 mm or 0.3 mm, respectively, and the
initial swimming direction is perpendicular to the gradient.

Definition of concentration fields I-IV, see text.

initial distance R0 = R(t = 0) to the egg. A model sperm
cell starting with initial swimming direction perpendic-
ular to the gradient direction i.e. Ψ(t = 0) = π/2, will
either

(a) for R0 < T : initially move away from the egg re-
sulting in a epicycloid-like path,

(b) for R0 = T : orbit around the egg at constant dis-
tance,

(c) for T < R0 < A: initially move closer to the egg,
or

(d) for R0 > A: move away from the egg due to insuf-
ficient chemotactic attraction.

Accordingly, the minimal distance from the egg Rmin and
the maximal distance Rmax of respective swimming paths
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are either both equal to R0 in case (b), satisfy Rmin < R0

and Rmax = R0 in case (c), and Rmin = R0 and Rmax =
∞ in case (d), see Fig. C. In case (a), the centreline will
follow an epicycloid-like path, whereas in case (c), it will
follow an approximate hyperbolica.

The critical distances T and A depend on the value of
the gain factor ρ. Table A displays Tlow, Thigh, Alow, and
Ahigh for ρ = ρlow and ρ = ρhigh for the four concentra-
tion fields I, II, II, and IV considered in Fig. B.

Helical chemotaxis as a biased persistent random
walks

We can re-state the specific example of sperm chemo-
taxis as a biased persistent random walk. We consider
an agent moving in three-dimensional space along a path
R(t) with constant speed v and direction h(t), while
searching the maximum of a concentration field c(x)

Ṙ = v h, (S8)

ḣ = γ g1 + ξ1g1 + ξ2g2. (S9)

Here, h, g1, g2 represent a co-moving frame with unit
vector g1 = ∇⊥c/|∇⊥c| pointing in the direction of the
perpendicular component of the local concentration gra-
dient, ∇⊥c = ∇c− (h ·∇c)h, while g2 = g1×h. Further,
γ(t) denotes a bending rate and ξ1(t) and ξ2(t) noise
terms satisfying 〈ξi(t)ξj(t′)〉 = 2D δijδ(t− t′) with noise
strength D. We use Stratonovich interpretation through-
out.

The case γ = 0 without steering corresponds to a per-
sistent random walk with rotational diffusion coefficient
D and persistence length v/(2D) [24]. For a chemotactic
agent, we have γ > 0, resulting in a biased persistent
random walk.

Previous theory shows that helical chemotaxis can be
mapped on Eq. (S8) in the limit of weak concentration
gradients and weak noise with γ and D given by Eqs. 6
and 7, respectively [15,16,26]. The net swimming speed v
is given by v = v τ0/[κ

2
0 +τ2

0 ]1/2. Note that we consider a
slightly different signalling system and restrict to the case
2πµ = T , for which no bending in g2 direction occurs.
We further neglected a small term Ṙ · g1 + Ṙ · g2 in
Eq. (S8) originally considered in [15], which has only a
small effect on chemotactic navigation.

Mapping to Markov chain

We approximate chemotactic navigation with static
gain factor by a discrete time Markov chain (MC), i.e.,
a stochastic process consisting of a finite set of states
and transition probabilities to move from one state to
another. Accordingly, the system’s evolution does only
depend on the current state, but not on history, i.e.,
the states taken previously along the system’s trajec-
tory. This property of memoryless dynamics is known as

Markov property. Formally, an MC is a tuple M = (S,L)
where

• S is a finite set of states,

• L : S×S → [0, 1] is a matrix of transition probabil-
ities, whose entries Lij give the probability to move
from state i to state j such that Li. is a probability
distribution.

We now present details on how the MC of sperm chemo-
taxis with static gain factor is defined. Each helical swim-
ming path r(t) defines a centreline R(t), whose tangent
encloses an angle Ψ(t) with the local gradient direction,
as well as a distance R(t) = |R(t)| to the target. To
efficiently compute Ψ, we time-averaged local tangent
vectors t of the swimming path over one helix period
T and calculated the angle between the average tangent
vector and the gradient of the concentration field at the
time-averaged position. We discretize the continuous dy-
namics in (R,Ψ)-phase space by introducing bins with
dimensions ∆R×∆Ψ. This set of bins defines the states
of a Markov chain. We extent the state space by a ‘suc-
cess state’ and a ‘failure state’, both of which are ab-
sorbing states, i.e., Lii = 1. The transition probabilities
Lij from one state labelled i to another state labelled j
are determined from a large ensemble of simulated tra-
jectories by counting transitions between the two bins.
These simulations employ a static gain factor ρ. Com-
puted transition probabilities are shown for ρ = ρlow and
ρ = ρhigh in Fig. D.

Next, we verified that the reduction of the full dy-
namics to a discrete Markov chain represents a faithful
approximation. We quantify deviations from Markovian
dynamics, following the approach of Aı̈t-Sahalia [33]. Let
P (i →2 j) denote the second-order transition probabil-
ity, i.e., the probability to jump from state i to state
j by passing through exactly one other state. For a
Markov chain, this transition probability is given by the
Chapman-Kolmogorov equation

PMarkov(i→2 j) =
∑
k∈S

Lik Lkj . (S10)

The sum of differences between the second-order transi-
tion probability P (i →2 j) determined from full simula-
tions and the PMarkov(i→2 j) defines a local measure for
non-Markovian dynamics

∆Mi :=
1

2

∑
j

∣∣P (i→2 j)− PMarkov(i→2 j)
∣∣ . (S11)

For a Markov chain, we have ∆Mi = 0, whereas e.g.
∆Mi = 1 − 1/n for perfectly ballistic trajectories going
from state i in one out of n equally-likely directions.

Fig. E shows ∆Mi using transition probabilities deter-
mined from binned swimming paths. We find that values
of ∆Mi are close to zero in almost the entire (R,Ψ)-phase
space, supporting the validity of our approximation. We
observe some deviations from a perfect Markov property
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low gain

high gain

Figure D. Transition probabilities of Markov chain.
Transitions only occur between states corresponding to neigh-
bouring bins in (R,Ψ)-state space and can thus be visualized
as density plots of probabilities for each of the four possible
transition directions (indicated by arrows). Results are shown
for ‘low-gain’ steering (A) and ‘high-gain’ steering (B), respec-
tively. Transition rates were estimated from 7 · 104 binned
simulated swimming paths, using gain factors ρ = ρlow and
ρ = ρhigh, respectively. In both cases, concentration field I
(continuous release) was used.

in the case of ‘high-gain’ steering at intermediate dis-
tances from the egg. In this noise zone, single molecular
detection events cause strong reorientation responses in
simulated swimming paths, with corresponding ballistic
motion in (R,Ψ)-phase space in Ψ-direction across sev-
eral bins, resulting in slightly non-Markovian dynamics
with finite memory. We find that ∆Mi values decrease
if ∆Ψ is increased or if ∆R is decreased. In order to
ensure both low values of ∆Mi as well as sufficient reso-
lution and sampling of transition rates, we use a bin size
of ∆Ψ = π/10 and ∆R = (Rth − Regg)/99 ≈ 79.8µm
throughout the manuscript.

As an additional test, we compared chemotactic ranges
and success probabilities. We found that success proba-

Figure E. Deviation from Markov property. (A,B) Lo-
cal measure ∆Mi of non-Markovianity according to Eq. S11
for binned simulated sperm swimming paths with ‘low-gain’
steering (A) and ‘high-gain’ steering (B), respectively. Num-
ber of simulated swimming paths is 7 · 104. (C,D) Same as
panel A and B, but for the case of noise-free concentration
measurements with s(t) = b(t). Number of simulated swim-
ming paths is 6·104. Parameters: as in Fig. C; λ = 7 s−1 pM−1

[27].
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Figure F. Comparison of Markov chain and full simu-
lations of helical chemotaxis. Chemotactic range R (pan-
els A and C) and success probabilities P (R0) (panels B and
D), computed for MC (solid lines) and from full simulations
of swimming paths with different search times [dashed lines
and symbols: Tsearch = 300 s (squares), 600 s (circles), 104 s
(diamonds)]. Panels A and B correspond to ‘low-gain’ steer-
ing and panels C and D to ‘high-gain’ steering, respectively.
Parameters: as in Fig. C; λ = 7 s−1 pM−1 [27].

bilities for individual bins saturate as bin sizes ∆R and
∆Ψ decrease. In particular, saturation is reached for the
bin sizes used throughout the manuscript.

Fig. F compares success probabilities for both full sim-
ulations and the corresponding MCs. For the full simu-
lations, different search times Tsearch were employed. We
find that corresponding chemotactic ranges R converge
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to those predicted by the MC as the search time Tsearch

is increased, consistent with the fact that the MC corre-
sponds to the limit case of an infinite search time. Some
differences in numerical values between MC and full sim-
ulations occur for the success probabilities P (R0) as func-
tion of initial target distance R0. These differences re-
sult from the discretization of the dynamics using a finite
number of bins as well as small deviations from perfect
Markovian dynamics of the full simulations.

Formulation of Markov decision processes

A Markov decision process (MDP) extends a Markov
chain by introducing a finite set of actions, one of which
can be chosen in each time step, as well as a family of
distinct transition matrices for each action. It forms a
tuple M = (S,Act, (La)a∈Act), where

• Act is a finite set of actions (here: ‘low-gain’ steer-
ing or ‘high-gain’ steering)

• (La)a∈Act is a family of transition probability ma-
trices, indexed by the possible actions (here: Llow

ij

and Lhigh
ij ).

The transition probabilities Llow
ij and Lhigh

ij are deter-
mined as above from simulated swimming paths that em-
ploy a static gain factor that equals either ρlow or ρhigh,
respectively. Accordingly, we obtain a MDP for chemo-
tactic navigation with decision making.

A memoryless (or history-independent) deterministic
strategy for a MDP is a function Π : S → Act that spec-
ifies, which action to take in each state. Each strategy
Π uniquely defines a MC, whose transition matrix L has
entries selected from the transition matrices for the dif-
ferent actions according to the strategy Π

Lij = L
Π(i)
ij for all i ∈ S. (S12)

The probability xi to eventually reach one (or several)
success states, starting from state i, satisfies the linear
equation

xi =
∑
j∈S

Lij xj , (S13)

provided all success and failure states j are absorbing
with Ljj = 1. Eq. S13 for all i ∈ S defines a sys-
tem of linear equations, which may have multiple solu-
tions. The vector x of desired success probabilities is the
(component-wise) least solution that satisfies xj = 1 for
all success states j [31].

Calculation of optimal decision strategies

We employ techniques from probabilistic model check-
ing, a formal method for the qualitative and quantita-
tive analysis of stochastic systems [31] and [34]. Of note,

maximal probabilities and a corresponding optimal mem-
oryless strategy can in principle be computed exactly
in polynomial time [31], e.g., by rewriting the Bellman
equation S14 below into a linear program. However, ap-
proximation methods as employed here often perform
considerably better in applications, especially for large
models typically considered in probabilistic model check-
ing. We used the open source probabilistic model-checker
Prism [32], employing a value iteration algorithm [30]
and [35] to approximate the maximal probability to reach
the success state and to compute an optimal memory-
less strategy. The value-iteration algorithm builds on
the idea of backward induction and is initialized with a
probability vector x(0), whose components are all zero,

except x
(0)
success = 1 for the component corresponding to

the success state. Then, the vectors x(1), x(2), x(3), . . .
are computed successively in terms of the Bellman equa-
tion

x
(n+1)
i = max

∑
j∈S

La
ij x

(n)
j | a ∈ Act

, (S14)

until x
(n+1)
i − x(n)

i < ε for all states i and a sufficiently
small threshold ε. The maximal probabilities correspond

to the limit xi = limn→∞ x
(n)
i . By storing the last se-

lected action for each state, a strategy is computed along-
side. However, the termination criterion may cause the
value iteration to stop prematurely and yield incorrect
probabilities and strategies. Therefore, we additionally
used an interval iteration algorithm to confirm the va-
lidity of our results. Interval iteration works similar to
value iteration, but approximatively frames the exact
values from below and above until an ε-environment is
reached or the exact solution can be deduced [36]. In-
terval iteration has recently been implemented in Prism
(though currently without the possibility to compute op-
timal strategies) [37].

To account for numerical errors that result from esti-
mating transition matrices Llow and Lhigh by counting
transitions between bins, we calculated optimal strate-
gies using transition matrices estimated from 100 differ-
ent sets of swimming paths. Each set consists of 104

swimming paths. In Fig. 4C and D, we show the relative
frequency that ‘high-gain’ steering is determined as the
optimal action in a certain state for the corresponding
ensemble of MDPs. To determine the 100 sets, swim-
ming paths were drawn randomly with replacement from
a pool of 6 · 104 (Fig. 4C) and 7 · 104 (Fig. 4D) swim-
ming paths, respectively. The number of outgoing tran-
sitions for each state, used to estimate transition proba-
bilities, varies for different states: the mean numbers of
transitions are ≈ 2000 (standard deviation ≈ 1900) for
‘low-gain’ steering with and without noise and ≈ 11000
(17000) ‘for high-gain’ steering, respectively. Further-
more, we ensure a minimum number of 5 transitions for
each state by drawing a new set if this condition is not
fulfilled.
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Figure G. Accuracy of state estimation in full sim-
ulations. Accuracy ACC for discriminating between up-
gradient and down-gradient swimming, according to Eq. S16,
as function of distance R from the egg. We chose a cutoff
at ACC = 66% (dashed line) to mark a limit of reliable state
estimation. Statistics was obtained using 105 simulated swim-
ming paths with binning ∆p = 0.014 ms and ∆q = 0.02.

Cellular implementation of decision making:
determination of decision boundary

We first determined the base probability P (R,Ψ|p, q)
that a cell is in state (R,Ψ) if it observes p and q. For this,
we simulated a set of 8·104 swimming paths with constant
gain ρ = ρlow and simultaneously recorded R, Ψ, p, and
q. The base probability was computed as a bivariate
histogram using bin sizes ∆q = 10−3 and λ∆p = 6 ·
10−4 pM−1.

We then calculated a likelihood L(p, q) for ‘high-gain’
steering as a function of (p, q), using the predicted
frequency of ‘high-gain’ steering from the MDPs as a
function of (R,Ψ) (Fig. 4D) and the base probability
P (R,Ψ|p, q). The resulting likelihood function is shown
in Fig. 5B. We accurately determined the 50%-contour
line of this likelihood function by locally fitting test func-
tions to slices L(p = const, q) (3rd order polynomials for
p < 5∆p, sigmoidal functions for larger values of p).

Finally, the decision boundary Θ(p) was determined
by a piecewise linear fit

Θ(p) = Θ0 +

{
−α1(p− p0) p ≤ p0

−α2(p− p0) p > p0

(S15)

of the 50%-contour line, using all values up to p < pc.
Here, pc denotes an upper limit for reliable state estima-
tion, which is determined below. Fitting Eq. S15 resulted
in Θ0 = 0.997, p0 = 0.333 ms, α1 = 2.7 · 10−2 ms−1, and
α2 = 0.064 · 10−2 ms−1.

To assess the limits of state estimation based on (p, q),
and compute the value pc used above to select reli-
able values for the fit of Eq. S15, we determined the
accuracy in discriminating between up-gradient swim-
ming with Ψ < π/2 and down-gradient swimming with
Ψ > π/2. For a given distance R to the egg, we com-
pute base probabilities Pup(p, q|R) := P (p, q|R,Ψ < π/2)
and Pdown(p, q|R) := P (p, q|R,Ψ > π/2) for up-gradient
and down-gradient swimming, respectively. The use of
the conditional probabilities Pup and Pdown ensures that
both cases are treated equally, even if one of the two

cases occurs more frequently in the underlying set of
simulated swimming paths. We then compute the accu-
racy of the binary decision scheme based on the condition
Pup ≶ Pdown as

ACC :=
Tup + Tdown

Tup + Tdown + Fup + Fdown
, (S16)

where Tup and Tdown denote the frequency of correctly
detecting up-gradient and down-gradient swimming, re-
spectively, and Fup and Fdown the respective frequencies
for incorrect decisions. Specifically,

Tup =

∫
Pup>Pdown

dqdp Pup, Tdown =

∫
Pup<Pdown

dqdp Pdown. (S17)

The accuracy as a function of distance R is shown in
Fig. G. An accuracy equal to 100% indicates perfect dis-
criminability, whereas a value of 50% indicates complete
lack of discriminability. We chose a value of 66% to mark
the limit of reliable state estimation. This limit corre-
sponds to a distance Rc ≈ 3 mm to the egg, at which the
adaptation variable p takes the mean value pc ≈ 5 ms.

Performance of cellular decision making in different
concentration fields

We computed success probabilities as function of ini-
tial target distance R0, using the simple implementation
of cellular decision making embodied in Eqs. 10 and 11
with piecewise linear decision boundary Eq. S15, for the
four different concentration fields I, II, III, and IV, see
Fig. H. We note that decision making outperforms ‘high-
gain’ steering for scenario I, II, IV, where concentrations
gradients are sufficiently shallow and the signal-to-noise
ratio is sufficiently low.
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Figure H. Performance of decision making in differ-
ent concentration fields. Computed success probabilities
for cellular implementation of decision making (red squares),
compared to success probabilities for static gain factor with
‘low-gain’ (white circles) and ‘high-gain’ steering (black cir-
cles), respectively. Panels A-D display results for concentra-
tion fields I − IV, respectively. The same decision strategy
as in Fig. 5 is used throughout. Parameters: as in Fig. C;
λ = 7 s−1 pM−1 [27], η = T .
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