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Chapter 1 
 
 
Model Overview 
 
 
1.1  Pathway and submodel selection 
 
We sought to build a model could integrate the major cancer signaling pathways. A pan-cancer 
analysis by The Cancer Genome Atlas (TCGA) identified four major pathways that are 
frequently mutated across a variety of human cancers. These are the RTK-Ras-Raf pathway, the 
PI3K-AKT-mTOR pathway, cell cycle pathways, and p53-DNA repair pathways (Ciriello et al., 
2013). To this list we added apoptosis pathways, in order to simulate cell death responses, and 
gene expression and degradation processes. With these pathways in mind, we created six 
“submodels”: (1) receptor tyrosine kinase (RTK) (Birtwistle, 2015; Birtwistle et al., 2007; 
Bouhaddou and Birtwistle, 2014; Kiselyov et al., 2009; Park et al., 2003), (2) proliferation and 
growth (which includes Ras-Raf-MAPK plus PI3K-AKT-mTOR pathways) (Birtwistle et al., 
2007; von Kriegsheim et al., 2009; Nakakuki et al., 2010), (3) cell cycle (Gérard and Goldbeter, 
2009), (4) apoptosis (Albeck et al., 2008), (5) DNA damage response (Batchelor et al., 2011), 
and (6) gene expression (the genes/proteins involved in each submodel are noted in main text 
Figure 1). To create our model, we assembled already-published models from the literature into a 
whole. The entirely of several submodels were already well represented by published models, 
such as cell cycle, apoptosis, and DNA damage response, to which we made very minor changes 
(details in Chapter 2). The RTK, proliferation and growth, and expression submodels were built 
largely from scratch, though prior models heavily inspired them (see above references). We 
considered models from the literature based on (i) whether they included proteins identified by 
TCGA as commonly mutated across cancers and (ii) whether they were built in conjunction with 
experimental observations in mammalian cells. All submodels were formatted according to the 
same rubric: lists of rate laws were extracted from each submodel and a stoichiometric matrix 
was created to define the elements of each differential equation. As a quality control measure, we 
ensured that we could reproduce the simulations from each original source model. Once each 
submodel was finalized, all reactions and stoichiometric matrices were assembled into an 
integrated system.  
 
1.2 Model structural overview 
 
The model is composed of 1197 total species, which includes all genes, mRNAs, lipids, proteins, 
and post-translationally modified proteins/protein complexes. There are a total of 141 genes that 
are considered across all submodels. Each gene possesses an inactive gene product, an active 
gene product, and an mRNA product (141+141+141=423 total species included in expression 
submodel). Because many of these genes are functionally redundant, these 141 mRNAs are 
summed during translation to create 102 “protein conglomerates”. Protein conglomerates 
represent functionally unique proteins (within the scope of our model) (see Supplementary Table 
1 for list of genes and their mapping onto protein conglomerates). Once translated, these 102 
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protein conglomerates can become post-translationally modified in a number of ways; some can 
be phosphorylated, others form complexes, etc. This creates an additional 672 species across all 
submodels. These nascent proteins (102) plus their post-translationally modified versions (672) 
make up a total of 774 protein species (102+672=774). The 423 genes and mRNA species plus 
the 774 protein species comprise the 1197 total molecular products represented by the model. 

We opted to represent the majority of reactions as elementary steps to the extent possible, 
using mass action kinetics. However, sometimes we employ Michaelis-Menten or Hill 
representations to capture events where the mechanisms are not sufficiently elucidated. Kinetic 
parameters are taken from original submodel sources, previous models, experimental studies, or 
estimated to fit empirical observations, many of which are discussed in the sections that follow. 
 
1.3  Synthesis and degradation 

 
The expression submodel controls the synthesis of most proteins in the model. The production of 
mRNA is based on a stochastic algorithm we devised (detailed in Chapter 2). Protein synthesis, 
𝑣"#$, for each protein, 𝑗, is defined by (see Chapter 2 for derivation): 

 𝑣"#$ = 𝑘()$ ∙ 𝑚(,-./$ ∙
[𝐸𝐼𝐹4𝐸]

𝑘6 + [𝐸𝐼𝐹4𝐸]
 (E1) 

This equation is used to describe the synthesis of the majority of proteins in the model, with a 
few exceptions in the cell cycle and DNA damage submodels (details in Chapter 2). 
 
Protein synthesis in cell cycle and DNA damage submodels. The original cell cycle (Gérard and 
Goldbeter, 2009) and DNA damage (Batchelor et al., 2011) models that we acquired already 
possessed their own synthesis reactions. Due to the dynamical complexity of these submodels, 
we needed a way to reconcile their original synthesis reactions with our equations. To do this, we 
required that, at steady state: 

 𝑣"#$ = 𝑣89:;

:

;<=

 (E2) 

Where 𝑣89:; equals each original synthesis reaction, 𝑖, for a particular protein, 𝑗. For example, 
the synthesis of MDM2 is defined by a zero-order reaction plus a reaction that is dependent on 
the levels of active p53 ( 𝑣89: = 𝑏𝑚𝑖 + 𝑏𝑚 ∙ 𝑝53∗). To meet this requirement, we defined 
𝑘()$, a translation rate constant for a particular protein, 𝑗, as a dynamic term that could account 
for changes in 𝑣89:. We thus define 𝑘()$ as: 

 𝑘()$ =
𝑣89:;

:
;<=

𝑚DD$ ∙
𝐸𝐼𝐹4𝐸DD

𝑘6 + 𝐸𝐼𝐹4𝐸DD

 (E3) 

 
Here, 𝑚DD$ represents the levels of mRNA at steady state (from RNAseq data) for a given gene, 𝑗 
and 𝐸𝐼𝐹4𝐸DD are the levels of free EIF4E at steady state (defined during initialization procedure, 
described in Chapter 3). The final equation for protein production for species in the cell cycle 
and DNA damage submodels is: 
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 𝑣"#$ =
𝑣89:;

:
;<=

𝑚DD$ ∙
𝐸𝐼𝐹4𝐸DD

𝑘6 + 𝐸𝐼𝐹4𝐸DD

∙ 𝑚(,-./$ ∙
[𝐸𝐼𝐹4𝐸]

𝑘6 + [𝐸𝐼𝐹4𝐸]
 (E4) 

 
Where 𝑚(,-./$ and 𝐸𝐼𝐹4𝐸 are levels of total mRNA for every gene, 𝑗, and free EIF4E currently 
in the system. By doing this, we allow for natural fluctuations in 𝑚(,-./$ and 𝐸𝐼𝐹4𝐸 levels to 
affect the overall translation rate of proteins in the cell cycle and DNA damage submodel. 
However, as you will see (below and in Chapter 2.6) we did not allow the majority of cell cycle 
proteins to be stochastically regulated (with the exception of cyclin D and p21), as it resulted in 
non-biologically plausible behavior. 
 
Lipid synthesis and degradation. Lipids represented in the model include phosphatidylinositol 
(3,4,5)-triphosphate (PI(3,4,5)P or PIP3) phosphatidylinositol 4,5-bisphosphate (PIP2), 
diacylglycerol (DAG), and inositol triphosphate (IP3). In our model, PIP2 is synthesized by a 
zero-order reaction. PIP2 can be cleaved by PLCγ to produce DAG and IP3. PIP2 can also be 
phosphorylated by PI3K to become PIP3. All lipids are degraded by first-order degradation 
reactions. Degradation rate constants for all lipids are taken from a literature source and 
references therein (Zhang et al., 2014). We increased the degradation of DAG by a factor of 10 
to fit ERK signaling dynamics to experimental data.  
 
Protein degradation. Proteins (protein conglomerates and post-translationally modified proteins) 
and transcripts follow first-order degradation kinetics. Protein and mRNA half-lives were taken 
from three sources, with preference given to the first source, then if a gene was not found to the 
second source, and so on: i) (Schwanhausser et al., 2011), ii) (Tani et al., 2012) (only for 
mRNA), iii) from miscellaneous literature references on mammalian cells (see Supplementary 
Table 1 for gene-specific half-life values and sources). Half-lives (τ) are converted into first-
order degradation rate constants (𝑘EFG)	  using the following equation: 

 

𝑘EFG =
ln 2
𝜏  (E5) 

An additional layer of complexity arises when we consider the degradation of post-
translationally modified protein monomers or protein complexes. In the absence of evidence for 
post-translational regulation of protein stability, degradation rates of post-translationally 
modified protein monomers were set equal to that of the non-post-translationally modified 
monomer. However, there are instances when, for example, the phosphorylated form of a protein 
may be degraded at a higher rate, due to the recruitment of degradation machinery, or, 
conversely, may be stabilized and thus degraded more slowly. For example, altered degradation 
rates have been shown to occur for cleaved caspases (Tawa et al., 2004), phosphorylated β-
Catenin (Aberle et al., 1997), phosphorylated BIM (Luciano et al., 2003), phosphorylated BAD 
(Howie et al., 2008), phosphorylated FOXO (Fu et al., 2009; Matsuzaki et al., 2003; Smith and 
Shanley, 2010), and phosphorylated cFos and DUSP proteins (Nakakuki et al., 2010a and 
references therein), which we encoded in the model. Regarding the degradation of protein 
complexes, we assumed that the degradation rate of each complex is equal to the degradation rate 
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of the most quickly degraded protein in the complex. Sometimes, however, the binding between 
two proteins can serve as a stabilizing force. We employ this reasoning to the degradation of 
phosphorylated cFos bound to cJun (AP1 complex), which we set equal to the literature-acquired 
degradation rate for phosphorylated cFos. We do this because phosphorylated cFos has been 
shown to be more stable compared to the relatively quick degradation rate for unphosphorylated 
cFos (Murphy et al., 2002; Nakakuki et al., 2010). Enabling AP1 to have an identical degradation 
rate also prolongs the AP1 signal in response to a mitogenic stimulus. 

The cell cycle and DNA damage submodels possessed built-in degradation reactions, 
many of which had non-linear components. To retain the fidelity to the original model, we left 
degradation reactions in these submodels as they were. Exceptions to this rule include proteins 
we added to these models de novo or proteins that connect submodels; these are cyclin D, p21, 
BRCA2, MGMT, MSH6, and MDM4. The degradation reactions for these exceptions are 
modeled using the same first-order degradation reactions as in the other submodels. 

 
Failure of incorporating stochastic gene expression into cell cycle submodel. During a stochastic 
simulation, all genes are simulated stochastically except for the majority of cell cycle genes. 
Cyclin D and p21 are the only two cell cycle genes that are simulated stochastically. 
Interestingly, incorporating stochastic gene expression processes into the entire cell cycle 
submodel created non-biologically plausible behavior. Principally, cells would randomly commit 
to cell division in the absence of a mitogenic stimulus. We attempted to alleviate this artifact 
through multiple modeling additions including increased availability and number of cyclin 
dependent kinase inhibitors, but could not find the solution. Therefore, to prevent this behavior, 
we only permitted stochastic control of cyclin D and p21 in our model; the other cell cycle 
proteins were simulated deterministically. Of course, stochastic variation in cyclin D and p21 
levels propagate through to other cell cycle proteins, which introduces a much smaller degree of 
noise into the submodel compared to when each gene is simulated stochastically. We also did not 
allow any variations in the levels of EIF4E to affect cell cycle proteins other than cyclin D and 
p21. This result suggests that there may be hitherto unknown mechanisms by which the cell 
prevents against random cycling other than those formalized in this model. 
 
1.4  Hybrid stochastic-deterministic algorithm 

 
We desired to integrate stochastic gene expression processes into our model in order to capture 
natural fluctuations in protein levels that may render a cell more or less sensitive to a particular 
stimulus. We designed a hybrid stochastic-deterministic modeling framework in order to increase 
computational efficiency above the low efficiency expected of a fully stochastic algorithmic 
approach. Although the number of gene copies in a cell (roughly 2 copies) and the number of 
mRNAs in a cell (~20 copies per cell on average) are relatively low, and thus amenable to 
efficient stochastic simulation, the number of protein molecules can approach hundreds of 
thousands of molecules per cell, rendering stochastic simulation of them inefficient. 
Conveniently, however, as molecule number approaches that typical of protein levels, the effects 
of stochasticity become small to negligible. Thus, we decided to simulate gene switching and 
mRNA birth-death stochastically and all protein processes (e.g. phosphorylation, dimerization, 
protein degradation, etc.) deterministically. Updated mRNA quantities were passed from the 
stochastic to the deterministic component. Signaling entities that act as transcriptional activators 
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or repressors were transferred in the reverse direction, from the deterministic to the stochastic 
component. Stochastic implementation was based on Poisson processes (details in Chapter 2.1).  

A critical concern was defining a time step between the stochastic and deterministic 
components that balanced computational efficiency with the need to capture the maximum 
number of stochastic gene switching events. We selected a time step of 30 seconds, which was 
the maximum time step ensuring (i) the probability of two gene switching events occurring 
within a single time step was low (below 0.1%; Figure S2A) and (ii) phenotypic behavior was 
not altered, such as timing of cell cycle entry (Figure S2B). This latter point was evaluated 
during model development.  
 
1.5  Stoichiometric matrix formulation 

 
In order to simplify and organize model implementation, we use the stoichiometric matrix 
formalism (Jeong et al., 2000; Schilling and Palsson, 1998). We created a matrix that describes 
the stoichiometry (either a 0, 1, -1, 2, or -2) between species (rows) and reactions (columns) in 
the model. The left hand side of the system of ODEs at each time step is calculated using the 
following matrix equation: 

 𝐲 = 𝐒 ∙ 𝐯 (E6) 

If n is the number of species and m is the number of reactions, then 𝐒 is an n-by-m stoichiometric 
matrix, 𝐯 is an m-by-1 vector of rate laws, and 𝐲 is an n-by-1 vector of the first time derivatives 
of model species concentrations. We modified this basic form to correct for cell compartment 
volumes (see Section 1.6, below, about Compartments). 
 
1.6  Compartments 

 
The model contains four compartments with associated volumes, 𝑉: extracellular space (𝑉F), 
cytoplasm (𝑉R), nucleus (𝑉:), and mitochondria (𝑉S). A typical mammalian cell has a volume 
between 100-10,000µm3, or 0.1-10pL (Milo et al., 2009). As a middle ground and based on 
visual inspection of phase contrast images, we approximated our total cell volume (𝑉() as 7pL 
(Ballesta et al., 2014; Geltmeier et al., 2015). Based on dimensions from phase contrast images, 
we determined the nucleus to be roughly a quarter of the cell’s volume (thus, 𝑉: = 𝑉(/4). We 
then calculated the size of the cytoplasm to be equal to the difference between the total cell 
volume and nuclear volume (𝑉R = 𝑉( − 𝑉:). The mitochondrial volume was previously estimated 
to be approximately 7% of the size of the cytoplasm (Albeck et al., 2008). For cell culture 
experiments, the volume of the extracellular space is much larger than the volume of single cells. 
We set the volume of the extracellular space to be 50µL, which is the volume of media typically 
placed into one well of a 96-well plate. Although experiments are sometimes done in different 
vessel sizes, this large volume ratio renders simulations insensitive to typical variation across 
experimental culture conditions. 

Based on their cellular localization, every species and every reaction was assigned one of 
these four home compartments. Importantly, when modeling in terms of concentration, one must 
introduce volume corrections when (i) reactants in a rate law possess different home 
compartments or (ii) rate laws comprising a differential equation possess different home 
compartments. When a reaction possesses reactants with different home compartments, we 
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introduce a volume correction term to volume correct the outsider reactant to be defined in terms 
of the home compartment of the reaction, as such: 

 𝑣V = 𝑘 ∙ 𝑋X ∙ 𝑌V ∙
𝑉X
𝑉V

 (E7) 

Where 𝑋X is a species in a compartment of volume 𝑉X, 𝑋V is a species in a compartment of 
volume 𝑉V, and 𝑣V is a reaction with a home compartment of volume 𝑉V. For example, if we 
consider the reaction describing the binding of EGF to EGFR, which takes place in the 
extracellular space, the home compartment of EGF is the extracellular space (𝑉F) whereas the 
home compartment of EGFR is the cytoplasm (𝑉R). In this case, we correct the concentration of 
EGFR to be in terms of the extracellular volume by multiplying the first order reaction by 𝑉R/𝑉F. 

In addition to this bimolecular volume correction on the reaction level, sometimes an 
ordinary differential equation can possess reaction terms that are of different home 
compartments. To correct for this, we multiply every reaction by its respective home 
compartment to remove units of volume. We multiply this vector of “volume-less” reaction 
values, 𝐯𝐕𝐂, by our stoichiometric matrix, producing an n-by-1 vector 𝐧 with units of nmol / time 
(and length equal to the total number of species, n):  

 𝐧 = 𝐒 ∙ 𝐯𝐕𝐂 (E8) 

Finally, to add units of volume back to our 𝐧 quantities, we element-wise divide by the home 
compartment of each species, which produces our final n-by-1 vector of the first time derivatives 
of model species concentrations, 𝐲. 
 
1.7  Ribosomes and cell size 
 
A cell must approximately double its contents prior to cell division; else, repeated rounds of cell 
division would eventually push a cell population to non-existence. One predominant mechanism 
for this is an increase in the number of ribosomes, which increases the translation rate globally 
across all proteins. We thus use ribosome quantity (related to ribosome number and not 
concentration) as a proxy for cell size.  
 

𝑉 = 𝛼 ∙ 𝑅 
 
Here, V is total cell volume, R is the number of ribosomes (molecules per cell), and a is a 
proportionality constant that converts ribosome number linearly to cell size (based on an initial 
ribosome number of 6 million molecules per cell and an initial cell size of 7 picoliters, 
a=1.17x10-18 liters/molecules). This has the effect of keeping ribosome concentration constant, 
which we lump into the effective translation rate constant. Therefore, we are not able yet to 
account for how stochastic fluctuations in ribosome levels affect protein expression noise. 
However, since the average number of ribosomes in a mammalian cell, at ~6,000,000 molecules 
per cell (Milo et al., 2009), is much greater than the average number of mRNA molecules, at 
~400,000 molecules per cell (Alberts, B. Johnson, A. Lewis, J. Raff, M. Roberts, K. Walter, 
2008), we expect such fluctuations to be small compared to stochastic gene switching and 
mRNA birth-death, which we account for. 
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The de novo synthesis of ribosomes for cell growth and proliferation has been linked to 
activation of p70 S6K (Chauvin et al., 2014). This, on top of synthesis (zero-order) and turnover 
(first-order) terms for ribosome homeostasis, gives rise to the following differential equation for 
ribosome dynamics: 

 
𝑑[𝑅]
𝑑𝑡 = 𝑘𝑏b + 𝑘𝑏; ∙

𝑝𝑆6𝐾 :

𝐾fb: + 𝑝𝑆6𝐾 : − 𝑘𝑑b ∙ [𝑅] (E9) 

We determined the degradation rate for ribosomes by taking the average of the half-lives 
reported by Schwanhausser et al (2011) for all 40S and 60S ribosomal proteins. 

To calculate 𝑘𝑏;, the rate constant governing the upregulation of ribosomes by 𝑝𝑆6𝐾, we 
assumed that 𝑝𝑆6𝐾 levels in the serum-starved state are low (approximately ~1% of the total 
pool of S6K).  In a highly mitogenic environment, we assume S6K will be highly phosphorylated 
(~50%). We then estimated the value of 𝑘𝑏; (value of 0.04 nM-1s-1) such that, in response to a 
mitogenic stimulus, ribosome numbers would double during the course of one cell cycle (Figure 
S2D), which for MCF10A cells was determined to be between 16 and 24 hours (Albeck et al., 
2013). 
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Chapter 2 
 
 
Submodel Methods 
 
Here we describe more details about each submodel. Therein, we detail any changes we made to 
the original source models, where applicable. We also discuss the major biological behaviors we 
desired that each submodel possess. These are outlined as follows: 
 
Submodel Required Properties 
Expression •   Model is tailored to genomic, transcriptomic, and proteomic context 

of MCF10A cells. 
•   Stochastic gene expression is simulated with a computationally 

efficient algorithm. 
•   Cell-to-cell variability in mRNA and protein levels matches 

experimental observations. 
•   EIF4E levels possess extrinsic control over the translation rate. 
•   Ribosomes double during the course of one cell cycle. 

Receptor 
Tyrosine Kinase 

•   Ligand-receptor cooperativity matches experimental observations 
•   Receptor trafficking kinetics reflects experimental observations. 

Proliferation & 
Growth 

•   Receptors possess unique pathway preferences that match 
experimental observations. 

•   Basal, serum-starved state activity flux through ERK and AKT 
pathways exists. 

•   Dynamic dose responses of ERK, AKT, and mTOR signaling 
matches experimental data. 

DNA Damage •   Original delayed differential equations are converted into ordinary 
differential equations. 

•   p53 dynamics corresponding to single- and double-stranded DNA 
breaks matches experimental observations. 

•   Rate of DNA damage repair is dependent on levels of repair 
enzymes.  

•   p53 activation dynamics exhibit “digital” and not “analog” behavior, 
whereby the number of p53 pulses, but not pulse height or width, 
scales to magnitude of DNA damage. 

•   Etoposide-induced DNA damage is dependent on the cell cycle 
stage (S-phase). 

Apoptosis •   Robustness against small death signals. 
•   Model exhibits all-or-nothing death response when apoptosis 

signaling surpasses threshold. 
•   Dose and dynamics of TRAIL-induced extrinsic apoptosis matches 

experimental observations. 
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•   Intrinsic apoptosis signaling responds to interrupted survival 
signaling and DNA damage induced upregulation of pro-apoptotic 
proteins. 

Cell Cycle •   Cell cycle entry is driven by induction of cyclin D mRNA. 
•   Order and timing of cyclin/cdk complexes matches established 

observations. 
•   Cell cycle duration matches duration measured in MCF10A cells. 
•   Upregulation of p21 (a cyclin dependent kinase inhibitor) arrests the 

cell cycle. 
 
2.1 Expression 
 
About. The expression submodel describes genes switching between an inactive and active state, 
transcription of the active gene to create mRNA, and translation of the mRNA to create protein. 
The mRNA and protein products can be degraded. Some genes in the model possess explicitly 
coded transcriptional activators and/or repressors, which can affect the transcription rate (see 
equations below). The translation rate of an mRNA is dependent on the mRNA concentration in 
the cell as well as on the levels of EIF4E, a rate-limiting cap-dependent translation initiation 
factor. Importantly, each mRNA and protein possesses a unique synthesis and degradation rate, 
resulting in dynamical behaviors that may play important roles in constraining protein function 
and phenotypic outcomes. Moreover, these gene-specific attributes are known to vary 
significantly across the genome (Schwanhausser et al., 2011). Therefore we sought to capture 
these gene-specific attributes to the extent possible.  

Transcription and translation rates are estimated as part of the initialization procedure 
(see Chapter 3). mRNA and protein degradation rates are calculated from half-life measurements 
found in the literature (Supplementary Table 1). Although these half-lives were procured from 
different mammalian cell lines and cell types, we assume mRNA and protein half-lives to be 
fairly consistent between cell types. This is inspired by (i) the fact that gene-specific ratios of 
mRNA-to-protein are fairly consistent between different human cell types (Wilhelm et al., 2014) 
and (ii) evidence from several studies that report conservation of mRNA and protein half-lives 
across species (Friedel et al., 2009; Schwanhausser et al., 2011). These points give us confidence 
that mRNA and protein half-lives taken from other mammalian cell contexts serve as reasonable 
approximations of half-life estimates for MCF10A cells, and that altering protein levels through 
translational means, as we implement, is preferred. Finally, this submodel possesses a stochastic 
component; specifically, in gene switching and mRNA births and deaths. Translation and protein 
degradation are simulated deterministically, though fluctuations from gene expression propagate 
into protein levels over time. As described above, the model switches from the stochastic to the 
deterministic component (and back again) every 30 seconds of simulation time.  
 
Epigenetics. Rates of gene switching were acquired from an experimental study (Suter et al., 
2011). The study established a transgenic cell line expressing a short-lived luciferase from an 
unstable mRNA, allowing them to measure gene activation and inactivation kinetics for a 
handful of genes. The paper defined an average gene activation and inactivation rate, which we 
used for each gene in our model, similar to other modeling work (Bertaux et al., 2014) (see Table 
SI1). 
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Table SI1. Rate constants for gene activation and inactivation. 

𝑘G.R (gene activation) 0.03 min-1 
𝑘G;: (gene inactivation) 0.3 min-1 

 
We model gene switching as a Poisson process. The Poisson distribution is a discrete probability 
distribution that describes the probability that a given number of events will occur within a 
certain time interval, independently from when the last event occurred. It is parameterized by 
lambda, which is defined as the expected number of events in the considered time interval. For 
gene switching, lambda is defined as the rate of gene activation, or inactivation, multiplied by the 
time interval: 

 𝜆G.R = 𝑘G.R ∙ 𝑡 (E10) 

 𝜆G;: = 𝑘G;: ∙ 𝑡 (E11) 

For each gene, we calculate the probability of getting zero switching events using the 
poisspdf function in Matlab evaluated at zero. This defines two probabilities: poff 
(probability that a gene that was on would stay on; calculated using 𝜆G;:) and pon (probability 
that a gene that was off would stay off; calculated using 𝜆G.R). Next, a random number was 
generated for each gene between 0 and 1 using the rand function. For genes that were on, if 
their random number was greater than or equal to poff, then they were switched from on to off. 
Similarly, for genes that were off, if their random number was greater than or equal to pon, then 
they were switched from off to on. 
 
Transcription. Transcription and mRNA degradation were also modeled as Poisson processes. 
The number of mRNA births and deaths per time step were randomly sampled from Poisson 
distributions using the poissrnd function in MATLAB. Again, lambda terms were defined as 
the transcription rate or degradation rate of a gene multiplied by the time interval. The rate of 
transcription was determined by summing a leak term, which accounts for all non-modeled or 
constitutive transcription, and an induction term, which accounts for all modeled transcriptional 
induction. We define the rate law for transcription as: 
 
          Leak term         Induction term 
 
 

 𝑣"S = 𝑘/F.h ∙ 𝑔∗ + 𝑘S.j ∙

𝑇𝐴;
𝐾𝐴fb;

:Xm

1 + 𝑇𝐴;
𝐾𝐴fb;

:Xm
+ 𝑇𝑅;

𝐾𝑅fb;

:om
∙ 𝑔∗ 

 

(E12) 
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Here, 𝑘S.j is the maximal transcription rate of RNA polymerase (same for all genes), which we 
determined to be 0.1 molecules per second (Iyer and Struhl, 1996; Kugel and Goodrich, 2000). 
For every transcriptional activator (𝑇𝐴;) or repressor (𝑇𝑅;), 𝑖, 𝐾𝐴fb; and 𝐾𝑅fb; are the 
concentrations needed to achieve their half-maximal effect on the transcriptional output, 
respectively. 𝑛𝐴; and 𝑛𝑅; values are hill coefficients for activators and repressors, respectively. 
K50 and hill coefficient values were tuned as part of model training. Hill functions such as these 
are commonly used to describe transcriptional induction terms (Alon, 2007; Nakakuki et al., 
2010; Thattai and van Oudenaarden, 2001). The number of active or inactive genes in the cell are 
denoted by 𝑔∗ or 𝑔, respectively.  

The rate law for mRNA degradation is a first order term:  

 𝑣ES = 𝑘ES ∙ 𝑚 (E13) 

Here, 𝑘ES is a rate constant derived from mRNA half-life data taken from the literature for each 
mRNA (Supplementary Table 1), and 𝑚 is the number of mRNA molecules in the cell. Thus, the 
lambda terms for the Poisson distributions defining transcription and mRNA degradation are: 

 𝜆"S = 𝑣"S ∙ 𝑡 (E14) 

 𝜆ES = 𝑣ES ∙ 𝑡 (E15) 

Translation. Equations describing translation are simulated deterministically. We derived a 
differential equation for translation that accounted for extrinsic control based on the levels of 
EIF4E in the cell, a critical initiation factor that binds to the mRNA 5’ cap to recruit it to an 
available ribosome (Mamane et al., 2004). Because translation initiation is thought to be the rate-
limiting factor in protein production (Kudla et al., 2009; Sonenberg and Hinnebusch, 2009), we 
take the rate of translation initiation, and thus the rate of translation, to be linearly proportional to 
the amount of mRNA bound to an EIF4E molecule (𝑚∗): 

 𝑣"# = 𝑘() ∙ 𝑚∗ (E16) 

Here, 𝑘() implicitly includes the dependence on ribosome concentration, which is constant in 
our model because cell volume is proportional to ribosome number.  
 
Next we sought to solve 𝑚∗ in terms of the total amount of mRNA per cell, a metric that is 
experimentally quantifiable from the output of mRNA sequencing experiments. The differential 
equation describing the binding between free mRNA (𝑚qrFF) and EIF4E is defined as: 

 
𝑑𝑚∗

𝑑𝑡 = 𝑘(= ∙ [𝐸𝐼𝐹4𝐸] ∙ 𝑚qrFF − 𝑘(s ∙ 𝑚∗ (E17) 

Solving for 𝑚∗ at steady state yields: 
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 𝑚∗ =
𝑘(= ∙ [𝐸𝐼𝐹4𝐸] ∙ 𝑚qrFF

𝑘(s
 (E18) 

Given mRNA moiety conservation (𝑚(,-./ = 𝑚qrFF + 𝑚∗), and the definition of the dissociation 
constant KD, yields 

 𝑚∗ =
𝑚(,-./ ∙ [𝐸𝐼𝐹4𝐸]
𝐾6 + [𝐸𝐼𝐹4𝐸]

 (E19) 

Plugging this definition for 𝑚∗ back into Equation E16 gives our final equation for the rate of 
translation: 

 𝑣"# = 𝑘() ∙ 𝑚(,-./ ∙
[𝐸𝐼𝐹4𝐸]

𝐾6 + [𝐸𝐼𝐹4𝐸]
 (E20) 

The final differential equation for proteins is also noted above in Equation E1. 
 
2.2 Receptor Tyrosine Kinase (RTK)  
 
About. The receptor tyrosine kinase submodel contains many receptors that are frequently 
overexpressed or mutated in cancer; these include the ErbB family (Her1-4), the hepatocyte 
growth factor receptor (cMet), the platelet-derived growth factor receptor (PDGFR), the 
fibroblast growth factor receptor (FGFR), the insulin-like growth factor receptor (IGFR), and the 
insulin receptor (INSR). For all receptors except for PDGFR, we allow receptors to form dimers 
in the absence of ligand, though at very low affinities. IGFR and INSR are exceptions, forming 
covalent cysteine bonds between receptor dimers prior to ligand binding and activation (Kiselyov 
et al., 2009).  

Ligand stimulation induces receptor dimerization. Ligand can bind to either a receptor 
monomer or a preformed receptor dimer. Once a ligand binds a receptor monomer, it can 
dimerize with another receptor monomer or another ligand-bound receptor (forming either LRR 
or LRLR type species). The ligand binding to the preformed dimer can subsequently bind 
another ligand. Once receptor dimers are in complex with either one or two ligands, we term 
them signaling competent dimers (SCDs). For the ErbB family of receptors, EGF can only bind 
to EGFR, ErbB2 has no known ligand, and ErbB3 and ErbB4 can bind to heregulin. All family 
members can dimerize with one another, creating a plethora of possible combinations.  

The formation of these SCDs induces the activation of the tyrosine kinase domain and the 
phosphorylation of intracellular tyrosine residues. This can recruit adaptor proteins, which 
mediates downstream signaling. For IGFR and INSR receptors, we require an additional step—
binding to IRS—prior to phosphorylation. To construct the schematic for PDGFR, we used a 
simplified scheme presented by Haugh and colleagues (Park et al., 2003). In this scheme, the 
binding of ligand to PDGFR induces it to bind to another ligand-bound receptor. From this 
complex, one ligand can dissociate, which provokes the subsequent release of one receptor 
molecule. For a detailed model schematic please refer to Figure S1. All rate constant values, and 
sources for each rate constant, for the receptor tyrosine kinase submodel (as well as for the 
proliferation and growth submodel) can be found in Supplementary Table 2. 
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Ligand-receptor cooperativity. In order to reproduce appropriate dose-response behavior for 
each ligand-receptor system we ensured that the cooperativity behavior for each ligand-receptor 
system matched experimental observations from the literature (see table below). Specifically, we 
ensured the appropriate fold change between the KD of the 1st and 2nd ligand-binding sites (see 
Table SI2). For example, it is thought that the binding of the first EGF molecule to EGFR occurs 
with ~10 fold higher affinity than the binding of the second ligand (Alvarado et al., 2010). 
Because receptor cooperativity measurements can vary between cell types, we sought only that 
cooperativity behavior was in the correct category – either displaying negative, positive, or no 
cooperativity (Figure 3A and S3A in main text). As a general rule, we attempted to keep ligand-
receptor association rate constants consistent across reactions and slower than diffusion 
encounter rate (we take them as 0.001 nM-1s-1). Ligand dissociation rate constants were tailored 
to match experimental observations as described. Also, wherever possible, we used generic 
receptor dimerization (0.01 nM-1s-1) and dissociation (0.001 s-1) rate constants, which serve as 
reasonable approximations for these reactions for which direct experimental measurement is 
difficult (Birtwistle, 2015). It was not always possible to match cooperativity and dynamics 
while satisfying detailed balance; this may be due to unmodeled but implicit energy dependent 
steps such as cycles of phosphorylation coupled to dimerization, or other receptor microdomain 
compartmentalization that is also energy dependent.  
 
Table SI2. Receptor cooperativity parameters and literature sources. 
Ligand Receptor(s) Fold difference 

between 
binding sites 

Cooperativity Literature Sources 

EGF EGFR 10 Negative (Alvarado et al., 2010)  
HRG ErbB3, ErbB4 10 Negative (Hiroshima et al., 2012) 
HGF c-Met 1 None (Takahashi et al., 1996) 
PDGF PDGFRα, PDGFRβ NA * Positive (Park et al., 2003) 
FGF FGFR1, FGFR2 500 Negative (Mohammadi et al., 2005; 

Story et al., 1994) 
IGF IGF1R 100 Negative (Christoffersen et al., 1994; 

Kiselyov et al., 2009; De 
Meyts and Whittaker, 2002) 

INS INSR 100 Negative (Christoffersen et al., 1994; 
Kiselyov et al., 2009) 

* PDGFR was coded according to a simplified scheme depicted in a literature source (Park et al., 
2003). 
 
Receptor trafficking dynamics. Once receptors bind their cognate ligands and form dimers, they 
phosphorylate one another. Phosphorylated signaling competent receptor dimers can also be 
internalized and targeted for degradation, or can be recycled back to the plasma membrane from 
early endosomes. Receptor internalization and degradation is an important mechanism by which 
pathways shut off after acute stimulation (in addition to any negative feedback that might exist). 
Importantly, internalization and degradation kinetics can vary between receptor dimer types (see 
Table SI3). Of note, dimers containing EGFR are known to internalize and degrade 10X faster, 
and recycle back to the plasma membrane 10X slower, than when an EGFR molecule is not 
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involved (Resat et al., 2003). Rate constants for internalization, degradation, and recycling were 
set to the following: 

 
Table SI3. Receptor internalization and degradation kinetics.  
Dimer type Internalization 

of pSCDs (s-1) 
Degradation rate of 
internalized SCDs (s-

1) 

Recycling rate of 
internalized SCDs (s-

1) 

Sources 

EGFR+EGFR 4.67 x 10-3 8.37 x 10-4 8.37 x 10-4 (Shankaran 
et al., 
2013) 

EGFR+other 1.67 x 10-3 2.13 x 10-4 8.52 x 10-4 (Shankaran 
et al., 
2013) 

other+other 1.67 x 10-4 8.71 x 10-5 1.4 x 10-3 (Shankaran 
et al., 
2013) 

IGFR 7.93 x 10-5 8.71 x 10-5 7.7 x 10-7 (Kiselyov 
et al., 
2009) 

INSR 1.67 x 10-4 8.71 x 10-5 3.2 x 10-5 (Kiselyov 
et al., 
2009) 

 
It is thought that the early stages of endocytosis are clathrin-mediated; however, due to the 
limited availability of clathrin, this mechanism quickly becomes saturated. Once saturated, 
slower endocytosis mechanisms take over. To describe this process, our rate law describing 
receptor internalization contains two parts: 
 
     Clathrin-mediated term    

 𝑣 = 𝑘R ∙
𝑝𝑆𝐶𝐷

𝐾v + 𝑝𝑆𝐶𝐷 + 𝑘:R ∙ [𝑝𝑆𝐶𝐷] (E21) 

The first is the saturable, clathrin-mediated component, whose rate constant 𝑘R indicates values 
described in Table SI3, above. The second part is a first order reaction whose rate constant 𝑘:R is 
set to the “other+other” internalization rate for all receptor dimers. The term 𝑝𝑆𝐶𝐷 denotes the 
concentration of the phosphorylated signaling competent dimer and KM is an effective Michaelis 
constant.   
 
2.3 Proliferation and growth submodel 
 
About. This submodel was largely build from scratch, with much inspiration from prior models 
(Birtwistle et al., 2007; von Kriegsheim et al., 2009; Nakakuki et al., 2010). The model depicts 
the binding of adaptor proteins to phosphorylated receptor tyrosine kinases, leading to the 
activation of two major signaling pathways—the ERK and AKT pathway. Once phosphorylated, 
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receptors can become internalized and are known to signal to the ERK pathway from early 
endosomes (Burke et al., 2001; Gregory and Hann, 2000; McKay and Morrison, 2007). Many 
receptors then enter into late endosomes and are degraded; others are de-phosphorylated and 
recycled back to the plasma membrane (Resat et al., 2003). The activation of ERK (resulting in a 
cascade from Ras to Raf to MEK to ERK) results in the upregulation, phosphorylation and 
stabilization of cFos (with p90RSK), promoting it to bind cJun, forming AP1; active ERK also 
mediates the transcriptional upregulation of cFos (Murphy et al., 2002), dual-specificity 
phosphatases (DUSPs) (Brondello et al., 1997), and Sprouty proteins (Ozaki et al., 2001). There 
exists a positive feedback at the level of cJun, as AP1 (phosphorylated cFos bound to cJun) is 
known to transcriptionally upregulate cJun (Angel et al., 1988). In addition to the negative 
feedback ERK induces via DUSP phosphatases and Sprouty proteins, other mechanisms of 
negative feedback include ERK regulation of CRaf (Dougherty et al., 2005), receptor tyrosine 
kinases (Li et al., 2008), and Grb2-SOS (Chen et al., 1996) via direct (and/or indirect) 
phosphorylation.  
 The activation of AKT can induce the nuclear localization of β-Catenin through GSK3b, 
which is known to upregulate cMyc (He et al., 1998). Active AKT (along with ERK) can also 
activate mTOR signaling via the TSC complex. TSC complex inhibition by AKT leads to the 
upregulation of mTORC1, which is known to increase translation globally and regulate cell 
growth. This is accomplished by mTORC1-mediated phosphorylation and inhibition of EIF4E-
BP1 (Manning and Cantley, 2003), causing it to dissociate from and make available EIF4E, as 
well as its phosphorylation and activation of p70S6K (Fingar et al., 2002), which, when active, 
drives ribosome synthesis. mTORC1 is also thought to exhibit negative feedback on PI3K 
(Carracedo and Pandolfi, 2008). As was done for the RTK reactions, here we also assume 
association reactions to be slower than diffusion limited (0.001 nM-1s-1). When tuning was 
needed (to match simulations to experimental observations), we principally altered dissociation 
rate constants and catalytic constants. As a baseline assumption, we set dissociation rate 
constants to 0.1 s-1 and catalytic constants for kinase/phosphatase reactions to 1 s-1 (Birtwistle, 
2015). All rate constant values, and sources for each rate constant, for the proliferation and 
growth submodel (as well as for the RTK submodel) can be found in Supplementary Table 2. 
 
Pathway preferences. Once intracellular tyrosine residues of signaling-competent dimers become 
phosphorylated, adaptor proteins are recruited, each of which leads to the activation of distinct 
downstream signaling pathways. The extent to which a receptor activates one pathway over 
another depends, in part, on the number of binding sites it possesses for adaptor proteins. In our 
model we consider three different adaptor proteins: Grb2 (and implicitly Shc), PLC-γ, and PI3K 
(composed of regulatory and catalytic subunits). We determined how many binding sites for each 
of these three adaptor proteins existed in each receptor based on known domains within each 
receptor sequence. To do this, we used ScanSite (http://scansite3.mit.edu) set to “medium” 
stringency setting (Obenauer et al., 2003). For Grb2 we summed across domains corresponding 
to Grb2 and Shc. For PI3K we summed across domains corresponding to PI3K SH2 and SH3 
domains. For PDGFR we took the average between the number of sites on PDGFR-A and 
PDGFR-B isoforms for each adaptor. For FGFR, we averaged across FGFR1 and FGFR2 
isoforms. For IRS, we averaged across IRS1 and IRS2 isoforms. These factors, depicted in Table 
SI4, served as multipliers in the rate laws describing the binding of phosphorylated signaling 
competent dimers to adaptor proteins. 
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Table SI4. Number of adaptor binding sites on each receptor tyrosine kinase. 
Receptor Grb2 PI3K PLC-γ 
EGFR 5 1 2 
ErbB2 4 3 2 
ErbB3 3 9 1 
ErbB4 6 3 1 
Met 1 3 2 
PDGFR 0.5 3 2.5 
FGFR 4 8 3 
IGFR 1+3* 0+10.5* 0+1.5* 
INSR 2+3* 2+10.5* 1+1.5* 

* Added number of sites when receptor is bound to an IRS molecule. 
 
In addition, the affinity of adaptor proteins for phosphorylated tyrosine residues (Table SI5) was 
taken from a literature source that previously compiled data from multiple experimental studies 
(Birtwistle, 2015): 
 
Table SI5. Affinity (KD) of adaptor proteins for phosphorylated tyrosine residues on receptors. 

 Grb2 PI3K PLC-γ 
KD 2600nM 70nM 510nM 

 
Basal fluxes. Even when cells are serum-starved, basal levels of signaling exist. We encode this 
basal flux by modeling basal activity of Ras (first-order Ras-GDP to Ras-GTP, and vice versa) 
and PI-3K (first-order PIP2 to PIP3, and vice versa). These propagate basal signals through the 
ERK and AKT (and mTOR) pathways. Normally these signals are between 1-10% of the total 
activation amplitude. 
 
Dose and dynamic pathway responses. We stimulated MCF10A cells with various doses and 
combinations of EGF and insulin and measured pERK, pAKT, pEIF4E-BP1 (mTORC1 proxy) 
and cyclin D at various time points post-stimulation via µ-Western blot. We focused on EGF and 
insulin because we observed a synergistic interaction between the two growth factors and desired 
to investigate further (see Figure 6 in main text). Also, these two growth factors are critical for 
the growth of MCF10A cells. We tuned model parameters to match the dose and dynamic 
response of measured pERK, pAKT, and pEIF4E-BP1 levels at 0, 5, 30, 180, and 360 minutes 
post-stimulation (see Figure 3B-D in main text). In addition, we ensured that the proportions of 
simulated cyclin D levels at 6 hours post-stimulation for EGF (10nM), insulin (10µg/mL), and 
EGF plus insulin matched those measured via µ-Western blot (see Figure 6C in main text).  
 
Incorporating inhibitors. Because many of our research questions revolved around how ERK 
and AKT activity related to various cell fate outcomes, several of our experimental perturbations 
included the inhibition of MEK (just upstream of ERK) and AKT. Our AKT inhibitor, MK2206, 
is an non-ATP competitive allosteric inhibitor, thought to prevent binding of the kinases that 
phosphorylate and activate AKT (Cherrin et al., 2010). Thus, we decided to model it binding to 
the non-phosphorylated form of AKT and inhibiting its activation. Conversely, the MEK 
inhibitor we use, PD-0325901, is thought to bind to the ATP-binding domain of MEK, 
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preventing its ability to phosphorylate its targets (Barrett et al., 2008). We decided to code this as 
the MEK inhibitor binding to the doubly phosphorylated form of MEK. 
 
2.4 DNA damage submodel 
 
About. The DNA damage submodel describes the activation of ATR and ATM by single- and 
double-stranded DNA breaks, respectively. Single-strand breaks also at this juncture encapsulate 
point mutations that must be excised and replaced with the correct base pair by repair enzymes 
(although future models could take a finer grained approach). The activation of ATR and ATM 
leads to the production of sustained versus oscillatory p53 dynamics, as is known to occur in 
mammalian cells (Batchelor et al., 2011). The activation of p53 leads to the production of 
MDM2 and WIP1, both of which serve as negative feedback regulators on p53 activation—
MDM2 is an E3 ubiquitin ligase that induces degradation of active p53 (Haupt et al., 1997); 
WIP1 has a negative feedback on ATM (Shreeram et al., 2006). DNA repair enzymes can repair 
DNA damage; here, we encode activities of BRCA2 (double-stranded breaks), MSH6 (single-
stranded breaks), and MGMT (single-stranded breaks). p53 can also bind to, and be sequestered, 
by MDM4 (Bessette et al., 2015). 
 
Converting DDEs to ODEs. The original DNA damage model from the Lahav lab (Batchelor et 
al., 2011) originally contained delay differential equations, which served to model a delay 
between p53 activation and the upregulation of WIP1 and MDM2. We replaced the delay 
differential equations with a series of 20 first-order ordinary differential equations that are meant 
to represent the mechanistic steps that are implied by the original delay (e.g. p53 biding to DNA, 
recruiting co-transcription factors, synthesizing RNA, etc.). These equations were of the form: 

 
𝑑𝑋
𝑑𝑡 =

𝑌
𝜏 −

𝑋
𝜏  (E22) 

Here, Y would be the next variable in the cascade. We estimated the τ parameters using a genetic 
algorithm, implemented using the ga function in Matlab, which gave a near-perfect fit between 
the original model and ours (Figure SI1, below) 
 

 
 
Figure SI1. Simulation results comparing original delay differential equation model (Batchelor 
et al., 2011) displayed with dots and ordinary differential equation model fit displayed with lines 
in same color. 
 
DNA damage induction by Etoposide. We also altered the way in which DNA damage was 
induced in the model. The original Bachelor et al. (2011b) model possessed an on or off switch 
for DNA damage. We decided to encode DNA damage as a continuous variable, one for single 
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stranded breaks (SS) and one for double stranded breaks (DS). Here, we decided to focus on 
Etoposide as the principal DNA damage stimulus, a clinically approved inhibitor of 
topoisomerase II. Topoisomerase II is an enzyme that aids in the uncoiling of DNA during 
replication. Importantly, Etoposide is only lethal to cells actively traversing through S-phase (see 
Figure 4 in main text). We used the following equation to capture these properties: 

 𝑣66 = 𝑘".8./ + 𝑘w ∙
[𝐸𝑡𝑜𝑝]

𝐸𝑡𝑜𝑝 + 𝐾𝐸fb
∙

𝐶X + 𝐶w :

𝐶X + 𝐶w : + 𝐾𝑆fb:
 (E23) 

Here, 𝑣66 is the rate of DNA damage accumulation (with equal contributions to the creation of 
single- and double-stranded breaks), 𝑘".8./  is the basal DNA damage rate meant to reflect 
damage in the absence of an overt stimulus (estimated during initialization, see Chapter 3.4), 𝑘w 
is the maximal rate of Etoposide-caused DNA damage for which 𝐾𝐸fb is the half-maximal 
(estimated to fit model to cellular measurements), and 𝐶X and 𝐶w are the levels of active cyclin 
A/Cdk2 and cyclin E/Cdk2 in the model (these are the cyclins upregulated during S-phase and 
bound to their cognate cyclin dependent kinases).  
 
DNA damage repair. For the repair of DNA damage, we incorporated DNA repair enzymes that 
could repair DNA in a concentration-dependent manner. The incorporation of DNA repair 
enzymes is important because they are frequently mutated in cancer. These genes included 
BRCA2 (double strand break repair), MSH6 and MGMT (both single strand break or point 
mutation repair). Differential equations describing the change of DNA damage over time were 
defined as follows: 

 𝑑[𝐷𝑆]
𝑑𝑡 = 𝑣66 − 𝑘E8 ∙ 𝐵𝑅𝐶𝐴2 ∙ [𝐷𝑆] (E24) 

 
𝑑[𝑆𝑆]
𝑑𝑡 = 𝑣66 − 𝑘88= ∙ 𝑀𝐺𝑀𝑇 ∙ [𝑆𝑆] − 𝑘88s ∙ 𝑀𝑆𝐻6 ∙ [𝑆𝑆] (E25) 

 
Initial conditions. The initial conditions of the DNA damage submodel were taken directly from 
their original source, except for the levels of repair enzymes, which came from proteomics 
measurements. Species in the original model possessed arbitrary units. We found the best 
approximation of these to an absolute unit of measurement to assume they represented units of 
µM, which we then converted to units of nM, scaling all rate constants accordingly. 
 
“Digital” p53 dynamics. As mentioned in the original text, p53 dynamics are thought to be 
“digital” instead of “analog.” Namely, that increases in DNA damage are thought to increase the 
number of p53 pulses in a single cell without inducing a change in pulse amplitude or width 
(Lahav et al., 2004). To achieve this behavior, we needed to render the p53 response to DNA 
damage even more ultrasensitive. The original model already possessed a cooperative hill 
function for the activation of p53 by ATR and ATM. We added an additional cooperative hill 
function for the activation of ATM and ATR by DNA damage. The rate laws describing the 
activation of ATM and ATR are now as follows: 
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 𝑣X(v = 𝑏X(v ∙
𝐷𝑆:

𝐷𝑆𝐾fb: + 𝐷𝑆:
 (E26) 

 𝑣X(o = 𝑏X(o ∙
𝑆𝑆:

𝑆𝑆𝐾fb: + 𝑆𝑆:
 (E27) 

Here, 𝑏X(v and 𝑏X(o are rate constants and 𝐷𝑆 and 𝑆𝑆 are quantities of double- and single-
stranded breaks in DNA. 𝐷𝑆𝐾fb and 𝑆𝑆𝐾fb (both set to 2nM; 𝑛=20) are EC50 concentrations for 
𝐷𝑆 and 𝑆𝑆, respectively (half-maximal concentrations required to induce a full response). This 
ensured a switch-like p53 response to DNA damage once a certain threshold of DNA damage 
was achieved. (In the original model, there was a DNA damage multiplier following the 𝑏X(v 
and 𝑏X(o, with a value of either one or zero, serving as an on or off switch for DNA damage.) 
The rate of DNA damage repair also played an important role in ensuring that the number of p53 
pulses increased with increasing DNA damage. As DNA damage is repaired and its levels drop 
beneath the threshold needed for activation of ATR and ATM, the activation of p53 is eventually 
ceased; however, while DNA damage remains above the threshold, highly regular p53 pulses 
persist (see Figure 3F and S3E in main text). Thus, in addition, we also manually fit several 
parameters of DNA repair (𝑘E8, 𝑘88=, and 𝑘88s from Equations E24 and E25) to enable this 
behavior. 
 
2.5 Apoptosis submodel 
 
About. The apoptosis submodel depicts the activation of initiator caspases (caspase 8 and 10) by 
TRAIL through the death receptors (DR4/5), which leads to the activation of executioner 
caspases (caspases 3 and 7), leading to cell death (Albeck et al., 2008). Initiator caspases can also 
activate a mitochondrial dependent pathway, driven by caspase 8 directed cleavage of Bid, which 
activates Bax. Active Bax can then oligomerize on the mitochondrial membrane and form pores 
leading to the release of cytochrome C. The release of cytochrome C from the mitochondria 
prompts the formation of the apoptosome, which activates caspase 9 (regulated by levels of 
XIAP and Smac). Caspase 9 can then feed back onto the activation of executioner caspases. 
There exists a positive feedback loop between initiator and executioner caspases (caspase 8 à 
caspase 3 à caspase 6 à caspase 8), which serves to create an all-or-nothing response once the 
appropriate levels of caspases have become activated (Eissing et al., 2004). Executioner caspases 
drive the digestion of many critical cellular components, which results in cell death. PARP, a 
DNA repair enzyme, is one target of caspase 3, and cleaved PARP (cPARP) is commonly 
readout for apoptosis (Tewari et al., 1995).  

There are also intracellular modes of apoptosis signaling, through the regulation of pro- 
and anti-apoptotic proteins by phosphorylated ERK, phosphorylated AKT, PUMA, and NOXA. 
We added a few proteins to the original Albeck et al. (2008) model in order to describe intrinsic 
apoptosis signaling. We added BAD (pro-apoptotic Bcl2 protein, phosphorylated by ppERK and 
ppAKT) and BIM (pro-apoptotic Bcl2 protein, phosphorylated by ppERK and transcriptionally 
upregulated via ppAKT/FOXO). In addition, we added a bidirectional translocation reaction 
between cytoplasmic and mitochondrial forms of Bcl2 as it was not included in the original 
model. 
 



	   21	  

Sensitivity and robustness of apoptosis submodel. The original apoptosis model created by 
Albeck et al. (2008) was designed to model extrinsic cell death processes in response to TRAIL 
over relatively short time scales. Because of this, they did not need to incorporate synthesis and 
degradation processes, or basal caspase activities. Because we are modeling over longer time 
scales, we added such mechanisms, which also allow robustness to small amounts of death 
signal. One mechanism by which the cell can do this is by rapidly degrading active, pro-
apoptotic proteins (e.g. active caspases). We increased the degradation rates for several active 
pro-apoptotic proteins by several fold above their inactive form. Degradation of active TRAIL 
receptor complex was increased 1000 times and the degradation rates of active caspase 8, 3, 6, 
tBid, and active Bax were increased by 100 times above their inactive forms. Now, when a 
subthreshold amount of caspases becomes active, they are rapidly degraded, and the cell can 
return to homeostasis. Synthesis of all mRNAs and proteins in the model was incorporated via 
the expression submodel.  

Once the MCF10A levels for apoptosis proteins were set, several rate constants needed to 
be modified to reduce the sensitivity of the model without losing the all-or-nothing response 
once a threshold of apoptosis signaling has been achieved. We made alterations to the reactions 
as described below in Table SI6. These changes are certainly not unique but do result in 
phenotypic predictions consistent with experimental observations.  

 
Table SI6. Changes made to rate constants in original apoptosis model by Albeck et al (2008). 

Reaction Fold change 
Caspase 6 biding pro-caspase 8 1/1000 
Caspase 3 binding pro-caspase 6 1/100000 
Caspase 8 binding pro-caspase 3 1/100000 
Caspase 8 binding Bid 1/10000 
Caspase 3 binding PARP 1/10000 
Bax dimerization 100000 
Bax2 (dimer) dimerization 100000 
Bax2 (dimer) dissociation 10000 
Bax4 (4-subunit protein) dissociation 10000 
Apoptosome cleaving pro-caspase 3 1/10000 
Caspase 8 cleaving Bid 1/10000 
koff for open pores 1000 
Catalytic constant for open pores 1/100 
Ligand-bound TRAIL receptor becoming active 1/10 

 
Intracellular apoptosis signaling. We desired that the model incorporate intracellular modes of 
apoptosis signaling, for which we required basal pro-apoptotic signaling. Intracellular modes of 
apoptosis are thought to rely primarily on the regulation of pro- and anti-apoptotic Bcl2 proteins. 
Anti-apoptotic Bcl2 proteins are thought to “keep the brakes” on cell death, releasing their 
inhibition of pro-apoptotic proteins only when an intracellular death signal is initiated or a pro-
survival signal is abrogated. We reasoned that for this to be possible, a basal level of death 
signaling would have to be propagated through the pathway. This would lead to the creation of 
subthreshold levels of pro-apoptotic proteins (e.g., tBid), which would be sequestered by anti-
apoptotic Bcl2 proteins until a death signal of sufficient magnitude and duration was received. 
To accomplish this, a basal amount of pro-caspase 8 cleavage was incorporated. This propagated 
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a low amount of death signaling through the entire apoptosis pathway. The rate of basal caspase 
8 cleavage was estimated as part of the initialization procedure (below), ensuring that it by itself 
did not cause apoptosis. In order to approximate the levels of cell death for serum-starved cells 
over a 72-hour time course, we increase the affinity of BIM for Bax by a factor (x5), post-
initialization. 
 
2.6 Cell cycle submodel 
 
About. The cell cycle submodel is initiated by the upregulation of cyclin D mRNA by AP1 and 
cMyc. Cyclin D becomes active by binding to either Cdk4 or Cdk6 cyclin dependent kinases. 
Active cyclin D/Cdk4-6 phosphorylates Rb to de-repress E2F transcription. Subsequent 
upregulation of E2F causes the further upregulation of cyclin D and initiation of cyclin E and 
cyclin A induction (which bind to Cdk2 to become active), marking the beginning of S-phase 
and lasting into G2 phase. Finally, the activation of cyclin B/Cdk1 marks the beginning of 
mitosis, which, when complete, returns the cells to G1 phase. 

Cell cycle equations are taken directly from their original source (Gérard and Goldbeter, 
2009). We made a few changes to the original model. We removed the equations related to 
“ATR/Chk1 DNA replication checkpoint” except for the equations describing the upregulation 
of Chk1 in response to ATR (native to the DNA damage response submodel). We also removed 
the production of AP1 by growth factors, which is something that is now captured by the 
proliferation and growth submodel (through the formation of phosphorylated c-Fos bound to c-
Jun).  
 
Initial conditions. Because the original cell cycle model possessed intrinsic synthesis and 
degradation reactions, which we did not alter, we ran the model to a steady state in the absence 
of cycling and used these final (steady-state) species concentrations as the initial conditions. In 
addition, this submodel did not need mRNA quantities, as its synthesis reactions were already 
defined and we did not allow stochastic gene expression to affect it (see more below). We scaled 
all units from the original cell cycle model (species and rate constants) down by a factor of 10 to 
better agree with parameters from MCF10A cells.  
 
Cell cycle entry driven by cyclin D mRNA. As described above, we removed the original growth 
factor terms and replaced them with the AP1 encoded by the Proliferation and Growth submodel. 
AP1 and MYC served as the primary proliferative inputs into the cell cycle model, whose levels 
cooperate to drive synthesis of cyclin D mRNA. The production of cyclin D above a certain 
threshold pushes the system beyond the “restriction point”, prompting the cascade of events 
initiating of the cell cycle and driving it to completion. Because flow cytometry data indicated 
that inputs from both ERK and AKT pathways were necessary for S-phase to proceed (Figure 
6A), we modified the general form of the transcription equation (Equation E12) for cyclin D to 
reflect a need for both AP1 and cMyc (as opposed to AP1 or cMyc). 
 

 𝑣"S = 𝑘/F.h ∙ 𝑔∗ + 𝑘S.j ∙

𝑇𝐴X}=
𝑘𝐴fbX}=

:.~��

1 + 𝑇𝐴X}=
𝑘𝐴fbX}=

:.~�� ∙

𝑇𝐴v��
𝑘𝐴fbv��

:.���

1 + 𝑇𝐴v��
𝑘𝐴fbv��

:.��� ∙ 𝑔∗ (E28) 
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Here, 𝑇𝐴X}= and 𝑇𝐴v��  are the levels of transcriptional activators AP1 and MYC, respectively, 
and 𝑘𝐴fbX}= (estimated to be 1.25 nM) and 𝑘𝐴fbv��  (estimated to be 450 nM) are the half 
maximal concentrations of AP1 and MYC, respectively, and 𝑛𝑎X}= and 𝑛𝑎v��  (both set to n=3) 
are hill coefficients for AP1 and MYC induction, respectively. These parameters were manually 
estimated in order to match simulations to experimental data in terms of cyclin D induction (µ-
Western blot data; Figure 6C) and percentage of cycling cells (BrdU flow cytometry data; Figure 
6A) in response to EGF (10nM), Insulin (10µg/mL), and EGF + Insulin.  
 
Order and timing of cyclin/cdk complexes. Importantly, this cell cycle model replicated the 
proper order and timing of cyclin/cdk complex oscillations (depicted in Figure SI2, below). As 
cyclin D becomes upregulated in G1 phase and binds to its cognate cdks, cdk 4 and 6, it 
provokes the phosphorylation of Rb, causing Rb to release its inhibition of E2F synthesis. An 
increase in E2F leads to the production of cyclin E and cyclin A, which define the entry into S- 
and G2-phase. These then lead to the activation of CDC25, the phosphatase responsible for 
activating cyclin B/cdk1, which defines entry into mitosis (M-phase). Post-mitosis, cyclin 
B/cdk1 levels return to baseline and mark re-entry into G1 phase or a possible exit into G0 phase 
if cyclin D levels have dropped considerably during cycling.  

 
Figure SI2. Timing and order to cyclin/cdk complexes and their correspondence with cell cycle 
stage. 
 
Cell cycle duration 
The simulated duration of one cell cycle event for cells treated with growth factors was 
approximately 20 hours, which is typical for a mammalian cell. This is also the approximate cell 
cycle duration measured for MCF10A cells (Albeck et al., 2013). 
 
Inhibition of cycling by p21. Damage to DNA causes upregulation of p53, which is known to 
upregulate p21 (Riley et al., 2008), a potent cyclin dependent kinase inhibitor (CKI), which can 
bind to and sequester all cyclin/cdk complexes (Abbas and Dutta, 2009) leading to cell cycle 
arrest. In order to verify if our model could reproduce this qualitative behavior, we simulated 
DNA damage while cell cycle oscillations were present (cell cultured in growth factors) and 
looked for cell cycle arrest. As is clear from Figure SI3, below, upregulation of p21 results in the 
ceasing of cyclin oscillations and interrupts cell cycle progression. Also, when DNA damage is 
repaired (by DNA repair enzymes), and p53 activation returns to baseline, the cell is able to re-
enter the cell cycle. 
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Unresolved emergent fragility of cell cycle to expression noise. As described above, every gene 
product in our model is linked to stochastic gene switching and mRNA production/degradation, 
giving rise to temporal fluctuations in protein levels. When we attempted to link the cell cycle 
submodel to stochastic gene expression, we obtained non-sensical simulation results, including 
rampant spontaneous cycling in the absence of Cyclin D induction, spurious expression of the 
various cyclins with incorrect ordering, and a lack of regular frequency, amplitude and duration 
of cyclin peaks. This fragility of cell cycle models to stochastic gene expression-like noise is 
documented by previous studies (Kar et al., 2009). This observation implies there are as-yet 
undiscovered cellular mechanisms that provide natural robustness of the cell cycle to gene 
expression (or other) noise, solving which is outside the scope of this manuscript. Therefore, we 
retained a deterministic formulation of the cell cycle sub-model. 
 

 
Figure SI3. DNA damage is induced at 50 hours for a cycling cell. The activation of p53 
(bottom) causes upregulation of p21 (middle), which arrests the oscillatory behavior of 
cyclic/cdk complexes (top). 
 
2.7 Submodel integration 
 
Links between submodels were created based on well-studied mechanistic interactions that are 
known to exist between proteins in each submodel (see Figure S1 for a detailed mechanistic 
schematic).  
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Survival Signaling—Proliferation and Growth to Apoptosis. The primary species that mediate 
survival signals in the model are active ERK and Akt kinases (ppERK and ppAkt). ERK is 
known to phosphorylate the pro-apoptotic protein BIM, inactivating its ability to active Bax 
(Hübner et al., 2008). AKT is known to phosphorylate FOXO (Zhang et al., 2011), which when 
phosphorylated translocates into the nucleus to induce transcription of target genes. These target 
genes include receptor tyrosine kinases (see below) and BIM (Gilley et al., 2003), which can 
active Bax. Both ERK and AKT are known to phosphorylate BAD (Fang et al., 1999; del Peso et 
al., 1997), which renders it inactive and unable to bind to, and sequester, anti-apoptotic Bcl2 
proteins.  
 
G0/G1 Transition—Proliferation and Growth to Cell Cycle. Signal flux through the ERK and 
AKT pathways can also induce the cell cycle by upregulating cyclin D. Specifically, cyclin D is 
upregulated by AP1 (Shaulian and Karin, 2001) (phosphorylated cFos in complex with cJun) and 
cMyc (Bouchard et al., 1999), induced by the ERK and AKT pathways, respectively. Moreover, 
AP1 induces transcription of cJun, leading to positive feedback, which further amplifies AP1’s 
influence on cyclin D (Angel et al., 1988). 
 
Intrinsic Death—DNA Damage to Apoptosis. In a non-transformed cell, the induction of DNA 
damage promotes apoptosis if the damage is not repaired in a timely fashion (Roos and Kaina, 
2006). The cell does this to protect against the potential for developing disease, such as cancer, 
as a result of the DNA damage. Here, we allow active p53 to upregulate PUMA (Nakano and 
Vousden, 2001) and NOXA (Oda et al., 2000), both pro-apoptotic proteins that bind to, and 
sequester, anti-apoptotic Bcl2 proteins. 
 
Cell Cycle Arrest—DNA Damage to Cell Cycle. When a non-transformed cell sustains DNA 
damage, it arrests the cell cycle in order to prevent the spread of potentially deleterious mutations 
to daughter cells. This is thought to occur primarily through the transcriptional upregulation of 
p21 by active p53 (Riley et al., 2008). p21 is a cyclin dependent kinase inhibitor which binds to 
and inactivates all cyclin/cdk complexes (Abbas and Dutta, 2009). The other mechanism that we 
encode in our model is the upregulation of Chk1 by active ATR (Hekmat-Nejad et al., 2000), 
which is activated primarily in response to single-stranded breaks. Chk1 promotes cell cycle 
arrest by phosphorylating CDC25 proteins, which targets it for rapid degradation. Chk1 can 
inhibit all CDC25 isoforms (Karlsson-Rosenthal and Millar, 2006). CDC25 are phosphatases that 
activate many cyclin/cdk complexes. For example, it removes an inhibitory phosphate group 
from cyclin B/cdk1, rendering it fully active which promotes the initiation of mitosis.  
 
Feedback on Survival Signaling—Proliferation and Growth to RTK. As is commonly seen across 
numerous signaling pathways, activation is usually followed by a phase of deactivation or 
negative feedback, preventing chronic and potentially deleterious pathway activation. Signaling 
through the ERK pathway is known to affect receptor tyrosine kinases by phosphorylating them 
on specific sites that blunt their ability to signal downstream (Li et al., 2008), providing a 
mechanism of negative feedback. In our model ERK phosphorylates and inactivates the ErbB 
family members (ErbB1-4). There are mechanisms of transcriptional feedback as well. Receptor 
tyrosine kinases are known transcriptional targets of FOXO (we allow FOXO to transcriptionally 
upregulate all receptor tyrosine kinases in our model), which translocates into the nucleus upon 
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dephosphorylation; when AKT is active, FOXO is phosphorylated and cytoplasmic (Tzivion et 
al., 2011; Zhang et al., 2011). Sprouty proteins are transcriptionally upregulated by active ERK, 
which bind to and inactivate multiple RTKs (Ozaki et al., 2001). 
 
Protein synthesis—Expression to Other Submodels. Synthesis processes are captured by the 
expression submodel, which controls the production of proteins across most of the submodels 
(with the exception of the cell cycle, as described above). We model 141 total genes. These 
genes are translated to create only 102 “protein conglomerates”, as some of the gene isoforms 
perform redundant functions or are experimentally indistinguishable (see Supplementary Table 1	  
for mapping between proteins and gene isoforms). Functionally redundant isoforms are summed 
into the final protein amount, 𝑝, which we term a conglomerate: 

 
𝑑𝑝
𝑑𝑡 = 𝑣"#m

:

;<=

− 𝑘E# ∙ 𝑝 (E29) 

Here, 𝑣"#m is the translation rate for every functionally redundant isoform, 𝑖, for protein, 𝑝. For 
example, the ERK protein is functionally composed of two main isoforms: MAPK1 (ERK2) and 
MAPK3 (ERK1) (Figure 2B). Upon translation, these two isoforms are summed to create the 
protein conglomerate “ERK” in the model.  
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Chapter 3 
 
 
Initialization Procedure 
 
   
3.1 Initialization rationale, approach, and output 
 
The goal of the initialization procedure is to ensure that the steady state levels for all proteins and 
mRNAs in the model match what we have measured in serum-starved MCF10A cells. It is also 
done to capture phenotypic behavior that one would expect for cells in the serum-starved state 
(e.g. not cycling, dying in small numbers, etc.). The model commences with protein quantities 
given to species that represent proteins that have been immediately translated from mRNA; that 
is, they lack any post-translational modifications. However, the levels of post-translationally 
modified proteins may change when we run the model due to basal activities (e.g. basal Ras, 
PIP3, and caspase 8 activity; more below) or other phenomena (e.g. phosphorylation of β-catenin 
by GSK3-β; formation of heterodimeric complexes). These post-translationally modified forms 
of proteins may have different degradation rates than their nascent counterparts. Thus, if run to 
steady state, the total amount of a given protein may no longer equal what was measured via 
proteomics.  

To correct for this, we increase or decrease synthesis rates by altering gene-specific 
translation rate constant (𝑘()) values. We do this using an iterative approach. Every time we 
introduce a new element to the system (e.g. such as different basal activities), we run the model 
to an effective steady state in the absence of growth stimulus (1000 hours) and calculate a ratio 
between simulated (sum across all species that possess a given protein) and measured protein 
levels. We then multiply the translation rate constant (𝑘()) by this ratio and re-run the 
simulation. We repeat this process until simulations are within 1% of experimental data. All 
simulations during initialization are performed deterministically. 

The process of initializing transcription is described below under subheading TARs, 
however the goal is the same (post-initialization mRNA levels should match mRNA-seq 
measurements). Quantification of the final initialization results can be found in main text Figure 
2E. Overview of initialization process can be found in Figure SI4, below. 
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Figure SI4.  Schematic depicting overview of initialization process. 
 
3.2 Step 1: Basal Ras and PIP activities 
 
The first step of initialization begins with all post-translationally modified forms of proteins set 
to zero. During this step, basal activity fluxes are turned on. Basal fluxes through the ERK and 
AKT pathways are encoded by two activities: (i) basal Ras activation and inactivation reactions 
(e.g. intrinsic RasGTPase activity) and (ii) basal PIP2 phosphorylation and dephosphorylation 
reactions. Here, we employ the iterative approach described above to alter the translation rate 
constants (𝑘()) until steady-state protein levels match experimentally-measured protein levels. 
Importantly, during this step we prohibit EIF4E from affecting the overall translation rate. We do 
this because basal fluxes as well as the binding of EIF4E to mRNAs induce large changes in free 
EIF4E levels. Because EIF4E can alter translation rates globally, rapid changes in its levels make 
it difficult to approximate a steady state for each species. We accomplish this by keeping the free 
EIF4E levels in the translation equation from Equation E12 set to total EIF4E levels (as 
measured by proteomics), so that changes in free EIF4E cannot affect the overall translation rate. 
This converts the translation equation to: 

 𝑣"#_8-F#= = 𝑘() ∙ 𝑚(,-./
∗ [𝐸𝐼𝐹4𝐸(,-./]
𝑘6 + [𝐸𝐼𝐹4𝐸(,-./]

 (E30) 

Once good agreement between simulation and experiment is achieved, a final free EIF4E 
quantity is defined. Using this quantity, we calculate a new 𝑣"# for each gene and multiply the 
translation rate constants (𝑘()) by the ratio between the 𝑣"#_8-F#= and 𝑣"#.  
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3.3 Step 2: Basal cyclin D synthesis and p21 degradation 
 
This initialization step is performed in order to estimate two parameters in the cell cycle 
submodel. As mentioned before, synthesis and degradation reactions for the cell cycle submodel 
are intrinsic to that submodel. We also keep the initial concentrations from the original model, 
with the exception of cyclin D and p21, which we set using our proteomics data. To set initial 
cyclin D levels we estimate a basal cyclin D synthesis constant. The rate equation describing 
cyclin D synthesis is as follows: 

 𝑣���6 = 𝑘RE= + 𝑘REs ∙ [𝐸2𝐹] ∙
𝐾;�

𝐾;� + 𝑝𝑅𝐵
∙

𝐾;�
𝐾;� + 𝑝𝑅𝐵𝑝

 (E31) 

The first term, 𝑘RE=, is a zero-order synthesis for cyclin D driven by basal levels of 
transcriptional activators (Gérard and Goldbeter, 2009). The second term describes cyclin D 
synthesis as driven by E2F levels and inhibited by Rb levels. In this initialization step, we 
estimate the value of 𝑘RE=. We employ a similar iterative approach as described above until the 
total amount of cyclin D in the system is equal to the amount measured via proteomics. 
Importantly, we ensure that this amount of cyclin D does not induce cell cycle oscillations, as the 
cells do not cycle in the serum-starved state. To set p21 levels we estimate the degradation rate 
constant for p21, which follows first-order degradation kinetics. We do this in the same iterative 
manner as for cyclin D. 
 
3.4 Step 3: Basal caspase 8 cleavage 
 
The ability of an internal pro-apoptotic stimulus (e.g. PUMA/NOXA upregulation by p53) to 
induce apoptosis depends in large part on the negative regulation of anti-apoptotic proteins. This 
is only possible if there is a basal flux of death signaling through apoptotic pathways. Indeed, if 
there was no basal death signaling, there would be no pro-apoptotic proteins for the anti-
apoptotic Bcl2 proteins to bind, and the inhibition of anti-apoptotic Bcl2 would do nothing to 
induce cell death. Basal death signaling could be the result of basal caspase activity, which is 
known to occur in the absence of an overt death stimulus (Gdynia et al., 2007; Marini et al., 
2014). We chose to add a basal, first-order caspase 8 cleavage reaction to simulate this effect. 
Prior to this initialization step, the basal caspase 8 cleavage rate is set to zero. In this 
initialization step, we iterate through increasing values (log-spaced) of the caspase 8 cleavage 
rate constant until apoptosis occurs within a 1000-hour simulation time window. We choose the 
value that is one increment lower than the value that caused apoptosis. Finally, because the 
introduction of this rate may render a mismatch between the quantities of various proteins in the 
model and their experimentally measured values, we also re-approximate translation rate 
constants (as above) until all model protein levels match their experimentally measured values. 
We then test to make sure the cell still undergoes apoptosis as previously.  
 
3.5 Step 4: Basal DNA damage 
 
Due to insults from the environment as well as internal stressors, there exists a low, basal amount 
of DNA damage inside living cells even when no explicit insult is present. The effects of basal 
DNA damage are enhanced during S-phase, as the DNA is uncoiled from histones and becomes 
more venerable to insult. In addition, because DNA is being shuffled so much during replication, 
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breaks are more likely to occur. However, this basal DNA damage plus replicative stress should 
not be enough to induce a p53 response on average (i.e. deterministic regime). The goal of this 
initialization step is to calculate a level of basal DNA damage activity (described by the term 
𝑘".8./, in Equation E23) such that (i) the total amount of active p53 is between 1-5% of its total 
quantity and that (ii) a full p53 response is not elicited by the basal activity. To do this, we 
estimate a value for 𝑘".8./ such that 1-5% of p53 is active and such that the quantity of single- 
and double-stranded DNA breaks does not exceed its half-maximal effective concentration 
(𝑆𝑆𝐾fb and 𝐷𝑆𝐾fb, respectively, from Eqs E5 and E5, below) needed to induce full activation of 
ATR and ATM, respectively. The rate law for the production of DNA damage (𝑣66) is defined 
above in Equation E23, and placed here for convenience: 

 𝑣66 = 𝑘".8./ + 𝑘w ∙
[𝐸𝑡𝑜𝑝]

𝐸𝑡𝑜𝑝 + 𝐾𝐸fb
∙

𝐶X + 𝐶w :

𝐶X + 𝐶w : + 𝐾𝑆fb:
 (E23) 

 
Recall the differential equations for double- and single-stranded breaks from above: 

 
𝑑[𝐷𝑆]
𝑑𝑡 = 𝑣66 − 𝑘E8 ∙ 𝐵𝑅𝐶𝐴2 ∙ [𝐷𝑆] (E24) 

 𝑑[𝑆𝑆]
𝑑𝑡 = 𝑣66 − 𝑘88= ∙ 𝑀𝐺𝑀𝑇 ∙ [𝑆𝑆] − 𝑘88s ∙ 𝑀𝑆𝐻6 ∙ [𝑆𝑆] (E25) 

When a cell is in S-phase and untreated with Etoposide, 𝑣66 is equivalent to 𝑘".8./ (basal DNA 
damage rate). Solving Equations E24 and E25 above at steady state for 𝐷𝑆 and 𝑆𝑆 gives: 

 𝐷𝑆 =
𝑘".8./

𝑘E8 ∙ 𝐵𝑅𝐶𝐴2
 (E32) 

 𝑆𝑆 =
𝑘".8./

𝑘88= ∙ 𝑀𝐺𝑀𝑇 + 𝑘88s ∙ 𝑀𝑆𝐻6
 (E33) 

Thus we ensure that the quantity for 𝐷𝑆 and 𝑆𝑆 do not exceed 𝐷𝑆𝐾fb and 𝑆𝑆𝐾fb (both set to 
2nM) in the following rate laws describing activation of ATM and ATR from above, repasted 
here for convenience: 

 𝑣X(v = 𝑏X(v ∙
𝐷𝑆:

𝐷𝑆𝐾fb: + 𝐷𝑆:
 (E26) 

 𝑣X(o = 𝑏X(o ∙
𝑆𝑆:

𝑆𝑆𝐾fb: + 𝑆𝑆:
 (E27) 

Our final active p53 percentage was approximately 2% and this did not induce a full p53 
response. 
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3.6 Step 5: Transcriptional activators and repressors (TARs) 
 
The goal of this initialization step is to ensure that mRNA synthesis rates are in equilibrium with 
mRNA degradation rates, particularly for mRNAs that have modeled regulation. These 
transcriptional activators and repressors (TARs) that perform such regulation are the species that 
transfer information from the deterministic model to the stochastic model. As depicted in 
Equation E12, above, the differential equation for mRNA production contains the rate of 
transcription, which possesses a “leak” or constitutively active term plus an “induced” or TAR 
induced expression term, minus the rate of mRNA degradation. The general form of the 
differential equation is as follows: 

 
𝑑𝑚
𝑑𝑡 = 𝑙𝑒𝑎𝑘 + 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 (E34) 

The rate of mRNA degradation was already known, calculated from mRNA half-lives and 
mRNA levels as described above. We then simply required that, at steady-state, the rate of 
transcription was equal to the rate of degradation: 

 𝑙𝑒𝑎𝑘 + 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 (E35) 

We first calculated the induction term, which, as depicted in Equation E12, is a function of the 
levels of TARs, and preset K50 values and hill coefficients. The level of each TAR is taken from 
the fully equilibrated model. K50 values and hill coefficients are estimated to (i) ensure that 
induction plus leak terms do not exceed degradation terms and (ii) to fit the model to 
experimental results or other empirical observations. For example, the parameters for induction 
of cyclin D by AP1 and cMyc were estimated to approximate cyclin D protein induction as 
measured by µ-Western blot and percentage of cycling cells in response to different growth 
factors as measured by BrdU incorporation flow cytometry experiments. Leak terms are then 
calculated to balance out the equation; specifically the 𝑘/F.h term from Equation E5. If a gene 
did not possess any explicitly coded TARs, the induction term was zero, and the leak term was 
equal to the degradation term. 
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