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Detailed model definition

This section provides additional technical description of the way our model is defined. The model
definition applies the Bayesian Programming methodology [1], that proceeds in three steps: first,
variables are selected and defined, second, the joint probability distribution over these variables is
defined, usually by decomposing it as a product of probability distributions, which are simplified thanks
to conditional independence hypotheses, and third and last, each of the terms in the decomposition is
associated to a parametric form and a manner to identify these parameters (whether by experimental
learning or by a priori definitions). We now provide the definition of the model, following each of these
steps.

Variable definitions

For convenience, we recall here the variable definitions provided in the main text. Variables M , AM ,
SM , AΦ and SΦ are one dimensional continuous variables, i.e., each is in IR. Variable Φ is a three-
valued categorical variable, with Φ = {/i/, /E/, /a/}. Finally, variables CS and CA are binary variables,
i.e. two-valued categorical variables, with CS = CA = {0, 1}.

Decomposition of the joint probability distribution

With these variables, the joint probability distribution that defines our model mathematically is
P (M SM AM Φ SΦ AΦ CS CA). Choosing a variable ordering and applying the chain rule, it is
equal to:

P (M SM AM Φ SΦ AΦ CS CA)

= P (M)P (AM | M)P (SM | AM M) (1)

P (Φ | SM AM M)P (AΦ | Φ SM AM M)P (SΦ | AΦ Φ SM AM M)

P (CA | SΦ AΦ Φ SM AM M)P (CS | CA SΦ AΦ Φ SM AM M) .

We now apply conditional independence hypotheses to simplify some of these terms.
The first two, P (M) and P (AM | M), are left unchanged. The term P (SM | AM M) is simpli-

fied into P (SM | M): this assumes that the cognitive agent’s knowledge about the somatosensory
consequence of some motor command m is independent of the acoustic consequence of m when m
is known. In other words, the main cause of somatosensory signals SM is assumed to be motor
commands, and the cognitive agent dismisses the additional information carried out by AM about
SM . What is lost in this approximation is the possible physical effect of acoustic waves provoked
by sound production on somatosensory sensors; an effect likely to be negligible. It has to be noted
that this conditional independence hypothesis between SM and AM given M does not entail at all
independence between SM and AM . For instance, in the model, the cognitive agent can retrieve
P (SM AM ) ∝

∑
M P (M)P (AM | M)P (SM | M) which is not equal to P (SM )P (AM ) in the general

case. This means that the model contains knowledge about relations between auditory and somatosen-
sory consequences of motor commands, but it does not store it as an explicit piece of knowledge.

The three next terms are assumed to constitute a separate piece of model, independent from knowl-
edge about motor commands and their sensory consequences, so that variables SM , AM and M can be
dropped. This yields P (Φ), P (AΦ | Φ) and P (SΦ | AΦ Φ). Furthermore, using a similar conditional
independence hypothesis as above, we assume that phonemes are characterized independently into
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acoustic and somatosensory spaces. In other words, the somatosensory characterization SΦ of some
phoneme φ is supposed to be independent of the acoustic characterization AΦ of this phoneme, when
φ is known. Therefore, P (SΦ | AΦ Φ) is simplified into P (SΦ | Φ).

Finally, the last two terms concerns coherence variables, which we, as modelers, connect explicitly
to chosen variables: first, variable CA serves as a connector between auditory representations AM and
AΦ, second, variable CS serves as a connector between somatosensory representations SM and SΦ.
This yields terms P (CA | AM AΦ) and P (CS | SM SΦ).

Replacing each term of Eq (1) by its simplified form, we obtain the decomposition of the joint
distribution shown in the main text (Eq. (1)), which we repeat here:

P (M SM AM Φ SΦ AΦ CS CA)

= P (M)P (AM | M)P (SM | M) (2)

P (Φ)P (AΦ | Φ)P (SΦ | Φ)

P (CA | AM AΦ)P (CS | SM SΦ) .

Parametric forms

Parametric forms for all terms in Eq (2) are provided in the main text. We still describe here, in a
bit more detail, the properties of coherence variables (demonstrations are available elsewhere [2, 1].
Recall that coherence variables are binary variables associated with Dirac distributions that enforce
matching constraints. Consider CA: we have defined

P ([CA = 1] | [AM = am] [AΦ = aφ]) :=

{
1 if am = aφ;
0 otherwise.

(3)

Given this definition, coherence variables can be used, during inference, as “switches”, allowing the
modeler to control the propagation of information throughout the model. There are three cases to
consider.

First, when left unspecified in the computed question, the switch is open, and portions of the model
on each side of the coherence variable do not exchange information. For instance, in the model, the
portion of the model about phoneme characterizations can be “separated” from the portion about the
sensory consequences of motor commands: P (M | AM SM ) can be completely computed by involving
terms P (M), P (AM | M) and P (SM | M), as other terms of the decomposition are “beyond” the
coherence variables, which are not specified in P (M | AM SM ). Computing the motor cause of some
sensed sensory event AM , SM would only involve knowledge about the way motor commands provoke
sensory effects; whatever the phonological plausibility of this sensory event.

Second, when set to 1 in the computed question, the switch is closed, and variables on each side
of the coherence variable are forced to have equal values, so that information about one variable
propagates and constrains the other. For instance, in the model, computing P (M | AM SM [CA =
1] [CS = 1]) would be influenced by phonological knowledge, as the “switches” are here closed so that
AM is constrained by AΦ and SM is constrained by SΦ. Here, computing the motor cause of some
sensed sensory event, AM and SM , would also involve the phonological plausibility of this sensory
event.

Third and finally, when set to 0, variables are forced to be different, which is less useful in practice
– but see [1, p 139].
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