Bridge types

Loop unrolling bridge

Loop unrolling bridges are a special case of SPAdes contig bridge for when a SPAdes
contig path connects a singe-copy contifit to the middole contif of a loop. In such cases,
Unicycler condudes that the loop is contiguous with the contig and uses the contig contig path connects a single-copy contig to the middle contig of a loop. In such cases,
Unicycler concludes that the loop is oontiguous with the contig and uses the contig
depths to determine the number of times to traverse the loop.

Example	$18.2 .2 x$
SPAdes contig path: $1+$, 14+, 18-	
Mean single-copy depth: $\frac{1.0+1.1}{2}=1.05$	1.0x
Loop count by contig 14: $\frac{2.9-1}{1.05}=1.81$	Final loop count: $\frac{1.81+2.10}{2}=1.95$
Loop count by contig 18: $\frac{2.2}{1.05}=2.10$	Bridge: $1 \rightarrow 14 \rightarrow 18 \rightarrow 14 \rightarrow 18 \rightarrow 14 \rightarrow 3$

Long-read bridge with path

Unicycler finds long reads which connect two single-copy contigs and uses them to form
a logg-read dridge. It then searches for a graph path corresponding to the long-read a long-read bridge. It then searches for a graph path corresponding to the long-read
consensus sequence. If a graph path is found, that sequence is used for the bridge instead of the long-read consensus sequence
score $=100 \sqrt{\text { drgmns }}$

Long-read bridge without path

When Uniicycler cannot find a graph path corresponding to a bridge's long-read consen-
sus sequence (either due to poor homology or the absence of a path), it uses the sus sequence (either due to
consensus sequence directly.
This approach is less desirable, as the long-read consensus is likely to contain more
errors than the short-read graph. However, it is necessary in cases when the short-read errors than the shor--read graph. However,
graph is incomplete and contains dead ends
score $=100 \sqrt{\text { drgmne }}$

Score functions

Depth agreement: d applies to all bridge types $d(x, y)=\frac{1}{1+10^{2}\left(\log \left(\frac{\max \{x, y\}}{\min \{x, y\}}-1\right)+0.45\right)}$		Single-copy the same depth (1.8x)
		Single-copy contigs have differing depths (1 x vs 1.8 x)

The d function quantifies how well the two contigs being bridged agree in read depth. A
close agreement is good, as it sughests the contigs are from the same replicon. A poor close agreement is good, as it suggests the contigs are from the same replicon. A poor
agreement is bad, as it may indicate the contigs are from different replicons.

	Loop count penalty: q applies to loop unrolling bridges
	$q\left(o_{\text {roumded }}\right)=\frac{1}{2^{\circ m a n}-1}$
	$\begin{aligned} o_{\text {rounded }} & =\begin{array}{c}\text { (roop count } \\ \text { (rounded to } \\ \text { nearest integer) }\end{array}\end{aligned}$
	$\left.{ }_{q}^{1}\right]_{0}^{1}$ - . ${ }_{0}$

Low loop counts are easier to distinguish due to a larger relative difference in
depth (e.g. $1 \times$ vs $2 \times$). High loop counts have a smaller reative difference in depth (e.g. 1x vs 2 x). High hoop counts have a smaller relative difference in
depth (e.g. 19x vs 20 x) and are therefore harder to distinguish. This function depth (e.g. $19 x$ vs 20 x) and are therefore harder to distinguish. This function
penaises bridges with larger loop counts, as their exact count is less certain.
 If a bridge's read consensus aligns poorly to the graph path, this suggests the graph path
may not be homologous with the reads. The s function penalises bridges where the read consensus has a low alignment identity to the graph path

$m=\underset{\text { length }}{\operatorname{minimum}}$ Misalignments of long reads (i.e. Iong reads aligning to non-homologous contigs) are less likely
wwith logege alignmentst.The efunction rewards bridges with longer alignments and punishes
bridges with shorter alignments. bridges with shorter alignments.

