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PRIMER ON COMPOSITIONAL DATA
ANALYSIS

Metagenomic data on species abundances are
compositional

Metagenomic studies of species abundances provide
data in the form of counts. That is, the number of sam-
pled sequences assigned to species i = 1, . . . , N is given
by the integer count ni. We assume the counts are pro-
portional to the true species abundances, but the con-
stant of proportionality (which may vary between exper-
iments) is unknown. As a result, we follow the standard
procedure by analyzing the relative species abundances
[1]:

xi =
ni∑
j nj

(S1)

Relative species abundances are compositional, which
means that xi ≥ 0 and

∑
i xi = 1. The normalization

removes a degree of freedom (i.e. we do not know the to-
tal population size), and imposes significant restrictions
on the types of modeling and analyses that can be per-
formed using relative abundances. Therefore, this section
will review the principles of compositional data analysis
that will guide our analysis of the microbiota [2].

Working with compositions

Aitchison introduced a framework for the statistical
analysis of compositions in 1982 [3]. A compositional
vector x of length N lies in the simplex SN = {x ∈
RN+ |

∑
i xi = 1}. For example, xi could be the rela-

tive abundance of a species in a community, as described
above. According to Aitchison, the fundamental princi-
ple of compositional data analysis is [4]:

Any meaningful function of a composition can
be expressed in terms of ratios of the com-
ponents of the composition. Perhaps equally
important is that any function of a composi-
tion not expressible in terms of ratios of the
components is meaningless.

That is, because the total population size is unknown,
all theory and methods of analyses may only use ratios
of the relative abundances, which satisfy xi/xj = ni/nj
and, therefore, are insensitive to variations in the total
population size. Analyzing compositional data in a man-
ner that does not respect this principle may lead to incor-
rect conclusions, such as attributing spurious correlations
between species to improper causes [1, 3, 5, 6].

Transforms for compositional data

In practice, analyzing compositions amounts to com-
puting a transformation of the data of the form y =
G logx where G is a matrix that maps the vector of 1’s
to the vector of 0’s (i.e. G1 = 0) [2, 5]. The mathemat-
ics of compositions ensures that performing analyses on
the transformed data, instead of directly on the relative
abundances, respects the fundamental principle of com-
positional data analysis. One common choice for G is the
centering matrix C = I−N−111T , where I is the N ×N
identity matrix. This implements the ‘centered log-ratio’
(CLR) transform. In this work, however, we have chosen
to use the ‘additive log-ratio’ (ALR) transform, which is
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TABLE I: Summary of Frequently Used Symbols

s := Index for the bodysites (e.g., the gut)
N := Number of species
i := Index for species

M := Number of effective resources. Set to M = N − 1
µ := Index for effective resources

Viµ := Utilization of effective resource µ by species i
λµ := Lagrange multiplier that encodes availability of resource µ
x := Vector of relative abundances
G := (N − 1) ×N matrix that implements the additive log-ratio transform

Ṽ := GV: Transformed resource utilization matrix
y := G logx: Vector of additive log-ratio transformed relative abundances

Ψs := Empirical covariance matrix of additive log-ratio transformed relative
abundances in bodysite s

Ψ := Empirical covariance matrix of additive log-ratio transformed relative
abundances across all bodysites

Σs := Covariance matrix of λ in bodysite s
λ̄s := Average of λ in bodysite s

obtained using the (N − 1)×N matrix G given by:

G =


−1 1 0 0 · · · 0
−1 0 1 0 · · · 0
...

...
. . .

...
−1 0 · · · 0 1 0
−1 0 · · · 0 0 1



The additive log-ratio transform maps a compositional
vector of length N to a vector of real numbers of
length (N − 1) with elements yi = log(xi+1/x1) for
i = 1, . . . , N − 1. The decrease in the dimension of the
vector reflects the loss of a degree of freedom due to ig-
norance of the total population size.

Figure S1 presents a comparison of the distances and
principal components computed from the ALR trans-
formed relative abundances to the true Aitchison dis-
tance. For the comparison, we computed the Isomet-
ric Log-Ratio (ILR) transformation of the relative abun-
dances using [7]:

ilr(x)i =

√
i

i+ 1

1

i

i∑
j=1

log xj − log xi+1

 , (S2)

for i = 1, . . . , N − 1. The ILR transformation is distance
preserving, so that distances computed with the trans-
formed coordinates are equal to the Aitchison distance
between the associated compositions. Thus, the same
result can be obtained through a Principal Coordinate
Analysis (PCoA, a.k.a. metric multidimensional scaling)
of the Aitchison distance matrix.

FIG. S1: Comparison of the additive logratio
(ALR) transform with the Aitchison distance.

A) The Aitchison distance is a metric for relative
abundance data based on log-ratios. The ALR

transform is not isometric (meaning, it does not
preserve distances exactly) but the distances computed

with the ALR transformed relative abundances are
highly correlated the Aitchison distance (R = 0.87). b)
The first two principal coordinates computed using the

Aitchison distance. c) The first two principal
coordinates computed using the ALR transformed
relative abundances (reproduced in Figure S7E).

THEORETICAL MODEL OF SPECIES
COMPOSITION

A maximum diversity hypothesis

Relative species abundances provide no information
about the total population size in a community. Unfortu-
nately, the total population size plays an important role
in most theoretical models of population dynamics (so-
called ‘density dependent’ effects). Therefore, our goal in
this section is to develop a model of relative species abun-
dances using a theory that does not include any explicit
density dependent effects. In this section, we present the
theory as a generative model in which known environ-
mental conditions and species properties are used to de-
duce the relative species abundances. In practice, we will
use the model in the opposite direction; that is, observed
relative species abundances across many different envi-
ronments will be used to infer properties of the species.
We will describe the ‘inverse model’ in the next section.

Rather than starting from an existing model based on
absolute abundances, we postulate a fundamental prin-
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ciple acting directly on the relative abundances of the
species in a community. The intuition for our model
comes from a classic idea in ecology (e.g. MacArthur [8])
that the equilibrium species composition of a community
ensures that every niche is being fully utilized. This idea
can be treated explicitly in some consumer-resource mod-
els but we will consider a more general model in which the
niches are abstract properties of the community [8–10].

Our model for relative species abundances is based on
a postulate we refer to as the ‘maximum diversity hy-
pothesis’:

Maximum Diversity Hypothesis: The
equilibrium relative species abundances in
a community maximize the diversity of the
community while ensuring that all effective
resources are fully utilized.

To formalize the model, we suppose that a particular
community has M effective resources that define the di-
mensions of the niche space. Note that we use the term
‘effective resources’ in an abstract way that captures all of
the abiotic and biotic factors that affect the species com-
position within a community. Each effective resource µ
has an availability Vµ, which varies between different en-
vironments. It is the variation in the availabilities of the
effective resources that drives variation in species compo-
sition between communities. In a community composed
only of species i, an amount Viµ of resource µ will be uti-
lized. In other words, Viµ describes the ability of species
i to utilize resource µ. Note that Viµ can be positive, in
which case species i depletes resource µ, or it could be
negative, in which case species i adds more of resource
µ to the environment. For example, a bacterium may
secrete a metabolite that is utilized by other species. Fi-
nally, we quantify the diversity of a community using the
Shannon entropy H[x] = −

∑
i xi log xi [11, 12]. Follow-

ing the maximum diversity hypothesis, the equilibrium
relative species abundances can be obtained by maximiz-
ing H[x] subject to subject to constraints Vµ =

∑
i Viµxi

and
∑
i xi = 1.

We can solve for the equilibrium relative abundances
by maximizing the Lagrangian:

L(x,λ, γ) = −
∑
i

xi log xi +
∑
µ

λµ(Vµ −
∑
i

Viµxi)

+ γ(1−
∑
i

xi) (S3)

where γ and the λµ’s are Lagrange multipliers. The so-
lution is given by

x∗i =
e
∑
µ λµViµ∑

j e
∑
µ λµVjµ

(S4)

where the Lagrange multipliers are chosen so that

∂

∂λµ
log
∑
j

e
∑
µ λµVjµ =

∑
i

Viµx
∗
i = Vµ (S5)

There is one degree of freedom for each of the N species,
but a degree of freedom must be lost due to the sum
constraint. As a result, the dimension of the niche space
is, at most, M ≤ N − 1. From now on, we will assume
that M = N − 1 for simplicity; later, we will discuss how
to remove irrelevant dimensions during data analysis.

The Lagrange multipliers λµ encode the availabilities
of the various resources. The values of the Lagrange mul-
tipliers have an interpretation that we can borrow from
economics. A Lagrange multiplier is called a ‘shadow
price’ and is given by λµ = ∂H

∂Vµ
evaluated at the opti-

mum [13]. That is, the shadow price describes the num-
ber of units that diversity changes if the availability of
resource µ increases by one unit. The shadow price can
be positive or negative. If the shadow price of resource µ
is positive then an increase in the amount of resource µ
will lead to an increase in the diversity of the community.
By contrast, if the shadow price of resource µ is negative
then an increase in the amount of resource µ will lead to
a decrease in the diversity of the community.

Population dynamics that maximize diversity

Alternatively, we can view Equation (S4) as the steady-
state solution of an appropriately chosen set of dynamical
equations. We stress that there are many types of dy-
namical models that lead to the same equilibrium, and
our goal in this section is only to discuss the simplest
dynamics that fulfill the maximum diversity hypothesis.

First, we suppose that the fitness of a species can be
represented as a weighted sum of its traits (i.e. resource
utilizations) via F∗i =

∑
µ λµViµ. Then, we can write a

simple equation for the dynamics of y = G logx as:

d

dt
y = GF∗ − y (S6)

where G is the matrix of the additive log-ratio trans-
form. This equation reaches equilibrium at y∗ = GF∗ =
G logx∗ and, thus, leads to the same equilibrium abun-
dances as the maximum diversity hypothesis. This equa-
tion can also be written as logx∗ = F∗ + constant. Left
multiplication by the non-invertible matrix G sends any
constant term to zero, thereby removing any dependence
on the total population size.

The equations for the population dynamics can be
written in multiple forms that highlight different aspects
of the model. For example, Equation (S6) is equivalent
to:

d

dt
y = −G∇xDKL(x||x∗) (S7)

so that the community follows the gradient of the
Kullback-Leibler divergence from its equilibrium config-
uration [14]. Similarly, the time derivatives of the rela-
tive abundances (rather than the additive log-ratio trans-
formed abundances) can be obtained using the chain rule,
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and are given by a replicator equation of the form [15]:

d

dt
xi = xi((F̃∗i − F̃i)−

∑
j

xj(F̃∗j − F̃j)) (S8)

where F̃ = C logx is the vector of centered log-ratio
transformed relative abundances.

MODELING VARIABILITY IN THE HUMAN
MICROBIOTA

The previous section presented a theoretical model for
determining the relative abundances of the species in a
community based on a maximum diversity hypothesis.
The hypothesis postulates that the equilibrium relative
species abundances in a community maximize the diver-
sity of the community while ensuring that all effective
resources are fully utilized. This section will explore the
consequences of this model for variability in the composi-
tion of the human microbiota across different body sites,
and across the population.

The maximum diversity hypothesis implies that the
additive log-ratio transform of the relative species abun-
dances in a community is given by:

y := G logx = Ṽλ (S9)

The (N−1)×(N−1) matrix Ṽ := GV describes intrinsic
characteristics of the species, and does not vary from
one environment to another. By contrast, the vector λ
encodes the information about the availabilities of the
effective resources in a given environment. Thus, λ varies
from person-to-person, as well as across bodysites within
the same individual.

Variation from person-to-person of the composition of
the microbiota in a single bodysite (such as the gut)
is generally much smaller than the differences between
bodysites within a single individual. Therefore, we pro-
pose a simple statistical model in which λ is a ran-
dom variable drawn from a distribution that depends
on the bodysite. We hypothesize that, conditioned on
the bodysite s, λ is normally distributed via λ|s ∼
N (λ̄s,Σs) where Σs is a diagonal covariance matrix. For
example, if we could determine the λ’s for the gut micro-
biomes of a large sample of people, we would find that λµ
has a variance Σµµ|s = σ2

µ|s and that any two resources,
say λµ and λν , are uncorrelated. Moreover, the additive
log-ratio (ALR) transformed relative species abundances
taken from that bodysite (e.g. the gut) would be nor-
mally distributed according to:

y|s ∼ N (Ṽλ̄s, ṼΣsṼ
T ) (S10)

Thus, the covariance matrix (Ψs) computed from the
ALR transformed relative abundances is given by Ψs =
ṼΣsṼ

T for each body site s.

The total covariance matrix of the ALR transformed
abundances (i.e. the covariance matrix computed with-
out using the bodysite labels) corresponds to:

Cov[y] := Ψ = Ṽ(Λ + Σ̄)ṼT (S11)

where

Λµν := Cov[λ̄µ|s, λ̄ν|s] =
∑
s

ps(λ̄µ|s − λ̄µ)(λ̄ν|s − λ̄ν)

(S12)
with λ̄µ =

∑
s psλµ|s, and

Σ̄µν := E[Σµν|s] =
∑
s

psΣµν|s (S13)

where ps is the fraction of samples corresponding to
bodysite s. In other words, Λ describes differences in
the availabilities of the effective resources between dif-
ferent bodysites, while Σ̄ describes the variability in the
availabilities of the resources within the bodysites. We
hypothesize that Σ̄ is approximately diagonal, whereas Λ
is likely not diagonal. As a result, it is possible to learn
about the species characteristics by finding a matrix Ṽ
such that Ṽ−1Ψs(Ṽ

T )−1 is approximately diagonal for
each bodysite s. This trick does not tell us about Λ,
however, which has too many degrees of freedom to be
determined from the data. Therefore, we expect that
information about species characteristics (i.e. about Ṽ)
can be obtained by analyzing intra-bodysite variability in
species composition, but not inter-bodysite variability.

Principal components analysis (PCA) is commonly ap-
plied to metagenomic data as a tool for uncovering an
underlying structure, such as clustering of particular en-
vironments (e.g., [16]). PCA decomposes the covari-
ance matrix of ALR transformed relative abundances via
Ψ = ṼPCAΣPCAṼT

PCA, where ΣPCA is diagonal and
ṼPCAṼT

PCA = I. From Equation 10, we see that PCA is
only relevant as a generative model if Λ is diagonal and
Ṽ is orthogonal. Therefore, applying PCA to the covari-
ance matrix computed without regard to the bodysites
generally misses the structure that can be found by focus-
ing only on intra-bodysite variability. In the next section,
we describe a type of ‘generalized PCA’ called Common
Components Analysis (CoCA) that uses the relationship
Ψs = ṼΣsṼ

T to infer the species characteristics from
metagenomic data with labeled bodysites.

COMMON COMPONENTS ANALYSIS

The model that we have presented makes it possible
to use metagenomic data collected from a large sample
of different individuals and bodysites to infer the matrix
of resource utilizations (V) and the Lagrange multipliers
(i.e., shadow prices) (λ) that reflect the availabilities of
the resources. The main assumptions are: (1) variation
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in species composition between samples (i.e., in different
individuals and/or bodysites) is driven by variation in
the availabilities of the effective resources, (2) the habitat
variation can be captured by treating the shadow prices
as random variables with a distribution that depends on
the bodysite, and (3) the resource utilization matrix V
is sparse so that any particular species is unlikely to be
able to utilize all of the different resources.

Inference Algorithm

Common components analysis (CoCA) is an approach
to simultaneous non-orthogonal approximate diagonaliza-
tion [17–19]. We have assumed that the distribution of
ALR transformed species abundances is conditioned on
the bodysite as y|s = Ṽλs with λs ∼ N (λ̄s,Σs). More-
over, we assume that the bodysite labels are known. As

in PCA, we make the assumption that Σs is diagonal, but
we do not assume that Ṽ is orthogonal. This formulation
of CoCA aims to find a single, common set of factors that
explains the variation within each bodysite s = 1, . . . , S.
The factors are such that the product Ṽ−1Ψs(Ṽ

−1)T is
approximately diagonal for each s.

Within a given bodysite, we have y|s ∼ N (Ṽλ̄s|ηI +
ṼΣsṼ

T ). Here, η is a small noise term that accounts
for experimental errors. In the following, we assume that
the experimental errors are small relative to the intra-
bodysite variation in the relative abundances so that they
can be neglected, but we have included the term here for
completeness. Maximizing the log-likelihood is equiva-
lent to minimizing the KL-divergence between the as-
sumed distribution and the empirical distribution. The
distribution of y given s is multivariate normal, so the
KL-divergence is given by:

Ls(λ̄s, Ṽ,Σs) ∝ Tr[Ψs(ṼΣsṼ
T )−1] + (ȳs − Ṽλ̄s)

T (ṼΣsṼ
T )−1(ȳs − Ṽλ̄s)

+ log |(ṼΣsṼ
T )| − log |Ψs| (S14)

Here, ȳs and Ψs are the empirical mean and covariance
matrix of y = G logx in bodysite s, respectively. We
can immediately see that λ̄s = Ṽ−1ȳs. Plugging this in,
rearranging, and neglecting constant terms gives,

Ls(Ṽ,Σs) ∝ Tr[Ψs(ṼΣsṼ
T )−1]− log |(ṼΣsṼ

T )−1|
(S15)

which is the appropriate negative log-likelihood for a sin-
gle bodysite.

The fraction of samples coming from bodysite s is ps,
and the bodysite labels are known. Therefore, the total
negative log-likelihood is a weighted sum of each of the
individual negative log-likelihoods. The matrices Ṽ and
{Σs}Ss=1 can be inferred by minimizing this conditional
negative log-likelihood:

L(Ṽ, {Σs}Ss=1) =
∑
s

ps(Tr[Ψs(ṼΣsṼ
T )−1]

− log |(ṼΣsṼ
T )−1|) (S16)

We can simplify this by redefining the objective function
in terms of WT = Ṽ−1, giving:

L(W, {Σ−1s }Ss=1) =
∑
s

ps(Tr[ΨsWΣ−1s WT ]

− log |WΣ−1s WT |) (S17)

The derivatives of the objective function can be calcu-

lated as:

∂L
∂W

= 2
∑
s

ps(ΨsWΣ−1s − (W−1)T ) ≡ ∆W (S18)

∂L
∂Σ−1s

= diag(WTΨsW −Σs) ≡ ∆Σ−1s (S19)

The objective function can be minimized by alternat-
ing gradient descent updates W(t + 1) = norm(W(t) −
εw(∆W(t) + ρ∆W(t− 1))) and Σ−1s (t+ 1) = Σ−1s (t)−
εs(∆Σ−1s (t) + ρ∆Σ−1s (t − 1)) where ρ ≈ 0.95 is a mo-
mentum term and norm(·) normalizes the columns of the
matrix [20]. Normalizing the columns of W is an arbi-
trary choice that resolves an inherent ambiguity in which
it is not possible to determine the relative magnitudes
of Ṽ and Σs. Alternating the updates of W and Σ−1s
makes it easier to tune the step sizes εw and εs using the
‘bold driver’ method [21] where we only accept gradient
steps that decrease the objective function, and we in-
crease the step size (e.g. εw ← 1.1∗ εw) if a step in in the
W direction is accepted and decrease the step size (e.g.
εw ← 0.5 ∗ εw) if a step in the W direction is rejected,
and similarly for εs. The gradient descent is continued
until convergence.

Sparse Recovery

The CoCA algorithm described above yields an esti-
mate for Ṽ = (WT )−1 = GV. We would like to be able
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to determine V but the matrix G is not invertible. How-
ever, if we assume that V is sparse then it is possible to
determine V from Ṽ. In the context of the model, this
assumption means that any individual species is unlikely
to be able to utilize every possible resource. To recover
V from Ṽ, we solve the problem:

min ||V||1 subject to GV = Ṽ (S20)

where ||V||1 =
∑
iµ |Viµ|. The solutions to this problem

are all of the form Viµ = zµ + Ṽ(i−1),µ(1 − δi1) for i =
1, . . . , N , where zµ can, in principle, take on any real
value. Because we want the solution with a minimum L1

norm, it is sufficient to test zµ = 0 and zµ ∈ {−Ṽi,µ}N−1i=1

(the only sparse solutions) and to choose the one with
minimum norm. This is a tractable search over N(N−1)
possibilities in the worst case and can be done easily for
reasonable system sizes.

Number of Components

We have assumed that the matrix Ṽ has dimension
(N − 1)× (N − 1) and is full-rank or, equivalently, that
the number of effective resources is M = N − 1. This
assumption could be relaxed by including the term ac-
counting for experimental errors (i.e., setting η > 0).
Even without the full error model, however, one may find
that many of the components have low weight. That is,
there may be many µ’s with small contributions to the
intra-bodysite variances (e.g., small

∑
s psΣµµ|s). This is

similar to the usual implementation of PCA where many
eigenvectors of the covariance matrix may be associated
with small eigenvalues. The lowly weighted components
are often neglected to obtain a low-rank approximation
of the data.

In the case of CoCA, however, choosing which com-
ponents to keep depends on the objective. For ex-
ample, to describe the variation within bodysite s we
would want to keep the components with the largest
values of Σµµ|s because we don’t care about the other
bodysites. By contrast, components can be chosen to
obtain a low dimensional representation that clusters
the bodysites by choosing components with large inter-
bodysite differences and small intra-bodysite variances.
One way to choose these components is to sort them by∑
s ps(λ̄µ|s− λ̄µ)2/

∑
s psΣµµ|s and keep only the compo-

nents with the largest scores. This is the technique used
to choose the components in Figure 2e of the main text.

Implementation

Code for Common Components Analysis was written
in Python (version 3.43) and uses NumPy. The source

code is available at:

https://sites.google.com/site/charleskennethfisher/home

/programs-and-data/

DATA USED IN THIS STUDY

We analyzed data on relative species abundances col-
lected as part of the Human Microbiome Project (HMP)
[22–25]. Data on species composition from the HMP were
downloaded from the MG-RAST server (project 385)
[26, 27]. These metagenomic data correspond to 1606 hu-
man microbiota samples separated into four main body
sites: gut, oral, skin, and vaginal. All unclassified and
non-bacterial species were removed from the data. Each
species (i) was assigned a rank (rli) in each bodysite (l)
based on decreasing relative abundance; e.g. the most
abundant species in sample l was assigned rli = 1. Then,
the median rank for each species was computed over all
1606 samples. The 100 species with the smallest median
ranks (i.e., the 100 most abundant species) were selected
for further study in order to make computational studies
more feasible. Selecting species in this manner (i.e., by
typical rank) ensures that every species is present in each
bodysite. After performing the species selection proce-
dure, two of the oral microbiota samples (MG-RAST ID
4472526.3 and 4472527.3) did not have enough species
counts and were discarded. Thus, we analyzed data on
the relative abundances of 100 species in 1604 samples
taken from 4 different bodysites. Species compositions
were computed using a pseudocount of 0.5 via:

xi =
ni + 0.5∑
j(nj + 0.5)

(S21)

to ensure that xi > 0, which is necessary for taking the
logarithm as part of the ALR transform. The raw species
counts used in this study are available in a text file along
with the code at the url provided in the Implementation
section.

SUMMARY: INFERENCE AND MODEL
VALIDATION

Inference:

1. Compute the emprical covariance matrices Ψs =
Cov[G logx|s] for each bodysite s.

2. Use CoCA to identify matrices Ṽ and {Σs}Ss=1 so
that Ψs ≈ ṼΣsṼ

T .

3. Solve the sparse recovery problem GV = Ṽ for V.

Validation:

1. Check goodness-of-fit Ψs ≈ ṼΣsṼ
T .
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FIG. S2: Fitting the common components
analysis model. Plot of the CoCA objective function

during gradient descent using the true covariance
matrices (red, dashed line) and 20 randomized

covariances matrices (black lines). The error bars on
the final value of the objective function with the

randomized matrices represent ± 6 standard deviations.

2. Check that Var[λµ|s] ≈ σ2
µ|s.

3. Check that Corr[λµ, λν |s] ≈ 0.

4. Check that species similarities computed from V
are correlated to taxonomic similarities.

Randomization:

1. Generate randomized covariance matrices Ψ
′

s (see
next section).

2. Use CoCA to identify matrices Ṽ and {Σs}Ss=1 so
that Ψ

′

s ≈ ṼΣsṼ
T .

3. Solve the sparse recovery problem GV = Ṽ for V.

4. Verify that the CoCA model validation steps fail
with randomized covariance matrices.

MEASURING GOODNESS-OF-FIT FOR COCA

Strategy for randomization

Validating the model underlying CoCA requires a test
that the covariances matrices (Ψs) are, indeed, approxi-
mately simultaneously diagonalizable. This requires two
separate tests. First, we need to see if it is even possi-
ble to find an (N − 1)× (N − 1) matrix Ṽ and diagonal
matrices Σs such that Ψs = ṼΣsṼ

T for each body site
s ∈ {gut, oral, skin, vaginal}. Second, we need show that
it is usually not possible to simultaneously diagonalize
4 randomly generated covariance matrices. This will es-
tablish that simultaneous diagonalizability is a special
property of the observed covariance matrices.

In order to test the second point, we ran the CoCA al-
gorithm multiple times using randomly generated covari-
ance matrices. These randomized covariances matrices
were constructed as follows. Let Σ

(s)
PCA denote the matrix

with the eigenvalues of Ψs along the diagonal. The ran-

domized covariance matrix is given by Ψ
′

s = QΣ
(s)
PCAQT

where Q is a random orthogonal matrix [28]. This ran-
domization procedure ensures that all of the random co-
variance matrices for a given bodysite have the same
eigenvalues, but different eigenvectors. This is the sim-
plest null model for testing simultaneous diagonalizabil-
ity.

Due to computational expense of CoCA (at least, given
the current implementation), it was not possible to per-
form the thousands of iterations that would be neces-
sary to compute accurate p-values. Therefore, we ran
the CoCA algorithm on 20 random realizations of the
covariance matrices and report the mean and standard
deviation, or histograms, for each of the quantities that
we computed from the observed data, as noted in the
figure legends.

Results

A plot of the objective function during gradient de-
scent is shown in Figure S2. The objective function com-
puted from the observed covariance matrices converges
to a value many standard deviations below the objec-
tive functions obtained with randomized covariance ma-
trices. The best fit parameters from CoCA reproduce the
observed covariances with reasonable accuracy, as illus-
trated by the Pearson correlations of R2 = 0.99 for the
gut samples, R2 = 1.00 for the oral samples, R2 = 0.78
for the skin samples, and R2 = 0.86 for the vaginal sam-
ples (see top row of Figure 3, Main Text). Note that
the body sites with larger sample sizes (Ngut = 391,
Noral = 833, Nskin = 245, Nvaginal = 135) have bet-
ter fits. Moreover, the correlations between the observed
and predicted covariances are many standard deviations
larger than those obtained from the randomizations (see
middle and bottom rows of Figure 3, Main Text). These
results demonstrate that the observed covariances are,
indeed, approximately simultaneously diagonalizable.

Once Ṽ had been inferred, the shadow prices can be
estimated as λ = Ṽ−1y. If the CoCA model is cor-
rect, then the shadow prices from a particular body site
s should be uncorrelated and should have covariance ma-
trix Σs. The top row of Figure S4 shows a compari-
son between Var[λµ|s] and Σµµ|s. The Pearson corre-
lations between the observed and predicted values are
equal R2 = 1.00 for each of the body sites. However,
the middle and bottom rows of Figure S3 show that this
relationship breaks down for the randomized covariance
matrices because they are not simultaneously diagonal-
izable.

As a final check to ensure that the CoCA model
is appropriate for the HMP data, we computed his-
tograms of the correlations between shadow prices (i.e.,
Corr[λµ, λν |s]) within each body site. Ideally, all of the
correlations would be zero but, in practice, there are weak
correlations between some of the niches, as shown in the
top line of Figure S4. Histograms of the shadow price cor-
relations obtained from the randomization experiments
are shown in the bottom line of Figure S4 for compari-
son. Clearly, the correlations from the observed shadow
prices are very weak compared to those obtained via ran-
domization.
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FIG. S3: Comparing the variance in λ to Σs. (Top row) Correlations between diagonal elements of Σs and the
variances computed from the inferred λ’s. (Middle row) Correlations between diagonal elements of Σs and the

variances computed from the inferred λ’s for the best of the 20 randomizations. (Bottom row) The distribution of
correlations from all 20 randomizations.

FIG. S4: Intra-body site correlations between common components. Histograms of the correlations
between λµ and λν , conditioned on body site, computed from observed covariance matrices (top row) and

randomized covariance matrices (bottom row). These plots show that the niche availabilities obtained from the
observed data are approximately uncorrelated, whereas those inferred from randomized covariance matrices are not.

The final claim that we test via randomization is that
there is a significant correlation between the distance be-
tween species computed from their taxonomic classifica-
tions and the distance between species computed from
their common components. The taxonomic distance be-
tween two species i and j was calculated asDtax

ij = 5−Oij
where Oij is the number of taxonomic levels shared by
species i and j. For example, two species that belong
to the same genus have taxonomic distance Dtax

ij = 0,
whereas two species that belong to different phyla have
taxonomic distance Dtax

ij = 5. The taxonomic classifica-
tions used in this study are included as a text file in the
Supplementary Information. Each species can be rep-
resented as a vector in the CoCA derived niche space
vi = {σ̄µViµ}N−1µ=1 where σ̄2

µ =
∑
s psΣµµ|s. This vec-

tor describes the ability of a species to utilize each of the
effective resources, weighted by the their average variabil-
ities. The ecological distance between two species i and
j was computed from their common components using
the ‘correlation distance,’ DCoCA

ij = 1 − Corr[vi,vj ] =
1 − cos(θij) where θij is the angle between vectors vi
and vj . The correlation between the taxonomic distance
and the ecological distance computed for the observed
covariance matrixes is R = 0.67. For comparison, a his-
togram of the correlations obtained from the randomiza-
tion experiments is shown in Figure S6. The observed
correlation is many standard deviations from the values
obtained though randomization.

FIG. S5: Correlation between taxonomic and
ecological distances. Histogram of the correlation

between the taxonomic distance and ecological distances
computed from randomized covariance matrices. The

correlation obtained with the observed data is shown as
a dotted red line. The true correlation lies far outside

the distribution obtained from randomization.

COMPARISON WITH PRINCIPAL
COMPONENTS ANALYSIS

Principal Components Analysis (PCA) is a technique
that is often applied to find low-dimensional representa-
tions of microbiota data. Common Components Analysis
(CoCA) shares some similarities with PCA so it is useful
to compare the two techniques. The generative model
for PCA is quite simple: the observed data y arise from
a Gaussian distributed latent variable λ via y = Ṽλ.
Here, the elements of, say λµ and λν , are uncorrelated

and Ṽ is orthogonal. Thus, the main difference between
the generative model for PCA and the generative model
for CoCA is that λ is assumed to be Gaussian distributed
in PCA, whereas λ is drawn from a mixture of Gaussians
in CoCA (Figure S5). As a result, PCA finds a set of di-
rections that explain the total variation over all of the
samples, whereas CoCA finds a set of directions that ex-
plain the intra-bodysite variances.

Figure S7 presents a comparison of PCA and CoCA
on the HMP data. The assumptions of the generative
model for PCA are clearly violated by the HMP data;
the bodysites form coherent clusters and, therefore, can-
not be driven by Gaussian distributed resources. Never-
theless, PCA can still be used as a technique for dimen-
sionality reduction and data visualization. Both PCA
and CoCA are able to explain compositional variation in
the microbiota with a few components (Figure S7a,d).
However, the two largest principal components fail to
separate all four bodysites (Figure S7e). PCA fails to
separate the bodysites because it finds directions that
explain total variability, which is a sum of inter-bodysite
differences and intra-bodysite variation. Thus, directions
with the largest principal values may have both large
inter-bodysite differences and large intra-bodysite varia-
tion. Separating the bodysites, however, requires one to
identify directions with large inter-bodysite differences
and small intra-bodysite variation. Thus, CoCA is able
to identify directions that cluster the bodysites more ef-
fectively.
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FIG. S6: Schematic comparison of CoCA and PCA. Each species corresponds to a point in a high dimensional
niche space. Fluctuations in the availabilities of the niches from person-to-person cause fluctuations in the relative
abundances of the species. If the distribution of niche availabilities does not depend on the bodysite (e.g. gut, skin,
etc) then the log-ratio transformed abundances are Gaussian distributed, and the structure of niche space can be
inferred using Principal Components Analysis (PCA) by finding the set of axes with the largest variation. If the

distribution of the niche availabilities does depend on the bodysite, however, then the log-ratio transformed
abundances are drawn from mixture of Gaussians and maximum likelihood fitting of the model identifies a common
set of axes, or common components, that approximately diagonalize the covariance matrices in each of the bodysites.

FIG. S7: Comparison of CoCA and PCA on the HMP data. A) Percentage of variance explained in each
bodysite as function of the number of common components. B) Projecting onto two common components with large

inter-bodysite differences and small intra-bodysite variation separates the bodysites into coherent clusters. C)
Distances between species computed from CoCA are strongly correlated with taxonomy. Note that parts A-C are
reproduced from the Main Text to facilitate comparison with PCA. D) Percentage of variance explained in each

bodysite as function of the number of principal components. E) Projecting onto the two largest principal
components fails to separate the bodysites into coherent clusters. F) Distances between species computed from PCA

are only weakly correlated with taxonomy.

FINDING SIGNIFICANT PATHWAYS WITH
THE BAYESIAN ISING APPROXIMATION

Obtaining Functional Pathways from KEGG

The KEGG orthologies (Brite hierarchy 00001)
for every available strain of each of the 100
species were downloaded from the KEGG database
(http://www.genome.jp/kegg/kegg2.html, [29]). For
each enzyme α (EC number) in the KEGG orthology and
for each species i, we computed the fraction fiα of strains
that possessed that enzyme. For example, EC:1.1.1.1
(Alcohol dehydrogenase) was present in every strain of
Streptococcus pneumoniae giving it a value of fiα = 1.
In this way, we constructed a matrix describing the pres-
ence/absence of each of the enzymes in all 100 species.

Enzymes in the KEGG database are also organized
into functional pathways such as Lysine biosynthesis and
Glycolysis/Gluconeogenesis. For each pathway, we com-
puted a distance between species as:

Dpath
ij =

∑
α∈path

(fiα − fjα)2 (S22)

We performed a simple regression analysis to assess which
of the KEGG pathways were associated with the ecologi-
cal distance computed with CoCA by analyzing the linear
model:

(DCoCA
ij )2 = constant +

∑
path

βpath(Dpath
ij )2 + ηij (S23)

where ηij is the residual noise. It is important to note
that we make a simplifying assumption that the noise
(ηij) terms are identically and independently distributed
normal random variables.

Selecting Relevant Pathways with Bayesian Linear
Regression

We assessed the relevance of each pathway using a
framework based on Bayesian statistics. The goal is
to compute a ‘posterior’ probability that the coefficient
associated with a pathway is not equal to zero (i.e.,
P (βpath 6= 0|D2

CoCA) where D2
CoCA is the matrix of

squared distances computed from CoCA). However, be-
cause it is computationally challenging to compute exact
posterior probabilities for variable selection we a use re-
cently described approach called the Bayesian Ising Ap-
proximation (BIA) [30, 31]. For the sake of completeness,
we provide a brief description of the BIA below – more
detailed results are described by Fisher and Mehta [30].

It will be helpful to introduce the half vectorization
operator vech(mat) that takes the elements below the di-
agonal from each column in the matrix mat and stacks
them into a vector. Using this notation, we define
y = vech(D2

CoCA) and the design matrix X as the matrix
with columns vech(D2

path). Moreover, we standardize y
and each column of X to have zero mean and unit vari-
ance, which eliminates the need for the constant term in
Equation S23.

Bayesian methods combine the information from the
data, described by the likelihood function, with a pri-
ori knowledge, described by a prior distribution, to con-
struct a posterior distribution that describes one’s knowl-
edge about the parameters after observing the data. In
the case of linear regression, the likelihood function is a
Gaussian:

P (y|β, σ2) ∝ exp

(
− (y −Xβ)T (y −Xβ)

2σ2

)
In this work, we will use standard conjugate prior
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distributions for β and σ2 given by P (β, σ2|s) =
P (σ2)P (β|σ2, s) where:

P (σ2) ∝ (σ2)−(a0+1) exp(−b0/σ2)

Pλ(β|σ2, s) ∝
∏
j

[
(1− sj)δ(βj) + (1 + sj)

√
λ

2πσ2
exp

(
−
λβ2

j

2σ2

)]

Here, we have introduced a vector (s) of indicator vari-
ables so that βj = 0 if sj = −1 and βj 6= 0 if sj = +1
for the jth pathway. We also have to specify a prior for
the indicator variables, which we will set to a flat prior
P (s) ∝ 1 for simplicity. In principle, a0, b0 and the
penalty parameter on the regression coefficients, λ, are
free parameters that must be specified ahead of time to
reflect our prior knowledge. We will discuss these param-
eters in the next section.

We have set up the problem so that identifying which

pathways are relevant is equivalent to identifying those
features for which sj = +1. Therefore, we need to
compute the posterior distribution for s, which can
be determined from Bayes’ theorem using Pλ(s|y) ∝∫
dβdσ2P (y|β, σ2)Pλ(β, σ2|s)P (s). While the integral

can be computed exactly, computing the marginal distri-
butions (i.e. Pλ(sj |y)) is not computationally feasible.
Therefore, we use an approach called the Bayesian Ising
Approximation (BIA). The BIA approximates the poste-
rior distribution of the indicator variables using an Ising
model described by:

logPλ(s|y) ' n2

4λ

∑
i

hi(λ)si +
1

2

∑
i,j;i6=j

Jij(λ)sisj


(S24)

where the external fields (hi) and couplings (Jij) are de-
fined as:

hi(λ) = r2(y, xi)−
1

n
+
∑
j

Jij(λ) (S25)

Jij(λ) = λ−1r2(xi, xj)−
n

λ

(
r(xi, xj)r(y, xi)r(y, xj)−

1

2
r2(y, xi)r

2(y, xj)

)
(S26)

Here, r(z1, z2) is the Pearson correlation coefficient be-
tween variables z1 and z2. In writing this expression we
have assumed that the hyperparameters a0 and b0 are
small. The BIA approximation expansion converges as
long as:

λ ≥ λ∗ = n(1 + pr). (S27)

where r =
√
p−1(p− 1)−1

∑
i 6=j r

2(Xi, Xj) is the root

mean square correlation between features.
To perform feature selection, we are interested in com-

puting marginal probabilities Pλ(sj = 1|y) ' (1 +
mj(λ))/2, where we have defined the magnetizations
mj(λ) = 〈sj〉. While there are many techniques for cal-
culating the magnetizations of an Ising model, we focus
on the mean field approximation which leads to a self-
consistent equation:

mi(λ) = tanh

n2
4λ

hi(λ) +
1

2

∑
j 6=i

Jij(λ)mj(λ)


(S28)

This mean field approximation provides a computation-
ally efficient tool that approximates Bayesian feature se-
lection for linear regression, requiring only the calculation
of the Pearson correlations and solution of Equation S28.

As with other approaches to penalized regression, our
expressions depend on a free parameter (λ) that deter-
mines the strength of the prior distribution. As it is
usually difficult, in practice, to choose a specific value of
λ ahead of time it is often helpful to compute the fea-
ture selection path; i.e. to compute mj(λ) over a wide
range of λ’s. Indeed, computing the variable selection
path is a common practice when applying other feature
selection techniques such as LASSO regression [32]. To
obtain the mean field variable selection path as a func-
tion of ε = 1/λ, we notice that limε→0mj(ε) = 0 and so
define the recursive formula:

mi (ε+ δε) ≈ tanh

 (ε+ δε)n2

4

hi (ε+ δε) +
1

2

∑
j 6=i

Jij (ε+ δε)mj (ε)





11

FIG. S8: Feature selection path of the Bayesian
Ising Approximation. Posterior probability that each
figure (i.e., KEGG pathway) is relevant for computing
the ecological distance between species as a function of
the variance of the prior distribution (i.e., the inverse of

the regularization parameter). The pathways with a
posterior probability greater than 0.95 when the inverse

regularization parameter is one (i.e, λ∗/λ = 1) are
shown in red.

with a small step size δε � 1/λ∗ = n−1(1 + pr)−1. We
have set δε = 0.05/λ∗ in all of the examples presented
below.

The feature selection path computed for the KEGG
pathways using the BIA is shown in Figure S8. This
is a plot of Pλ(βj 6= 0|X) as a function of λ∗/λ.
We focus on the point where λ = λ∗, which corre-
sponds to the weakest prior distribution for which the
BIA is applicable. We defined pathways as significantly
associated if they had a posterior probability greater
than 0.95. For comparison, posterior probabilities com-
puted using Monte Carlo simulations of the exact pos-
terior at λ = λ∗ are shown Figure S9. The 17 sig-
nificant pathways are: Aminoacyl-tRNA biosynthesis,
Carbon fixation in photosynthetic organisms, Carbon
metabolism, Citrate cycle (TCA cycle), Cysteine and me-
thionine metabolism, Glutathione metabolism, Glycoly-
sis/Gluconeogenesis, Homologous recombination, Lipoic
acid metabolism, Lipopolysaccharide biosynthesis, Ly-
sine biosynthesis, One carbon pool by folate, Porphyrin
and chlorophyll metabolism, Pyrimidine metabolism,
Pyruvate metabolism, Thiamine metabolism, and Vi-
tamin B6 metabolism. A linear regression using just
these relevant pathways has a correlation coefficient of
R2 = 0.47.

The BIA is, by definition, an approximation to the pos-
terior probabilities. Although previous results suggest
that the approximation is quite good [30], we performed
Monte Carlo simulations of the exact posterior distribu-
tion with λ = λ∗ to validate that our conclusions were
not highly sensitive to the approximation. A compari-
son of the results from BIA and Monte Carlo simulations
is shown in Figure S9. Four additional pathways (i.e.,
Carbon fixation pathways in prokaryotes, Pentose phos-
phate pathway, Purine metabolism, RNA degradation)
achieve the 0.95 significance threshold according to the
Monte Carlo simulations, but all 17 pathways identified
as relevant by the BIA were also identified as relevant by
Monte Carlo.
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