
Computation of κ̄3

In this section, we derive the regular graph approximation for the average joint
third cumulant. We start with the following formula.
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These 6 terms each correspond to one of the 6 possible rooted trees, depicted in
Fig. 4. First, let us compute the terms inside the square brackets. The following
result holds :

Let T be an arbitrary rooted tree with at most N nodes. Then, the ”square
bracket” corresponding to it (obtained by summing over all possible indices of
nodes in a tree with a fixed number of branches) can be computed using the
following pseudo-algorithm :

1. Set X = 1.

2. For every leaf of T , X ← X ∗N

3. For every edge in T , X ← X ∗ p

4. For every internal node of out-degree k (where the root counts as an in-

ternal node) of T , X ← X ∗ µ
(k)·N
p , where µ(k) is defined as the average

common input, shared by k nodes, and is defined by

µ(k) = p
∑
t

Nt
N
gkt . (1)

It is not difficult to prove that this is equivalent to :
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Let T be an arbitrary rooted tree with n ≤ N nodes and l ≤ n − 1 leaves.
Then, the corresponding ”square bracket term” is equal to

Nnpl−1
∏
v

µ(kv)
[
µ(1)N

]l1+···+ln−1−n+1

, (2)

where the product is over all internal nodes (i.e. nodes that are not leaves) of T
and kv is the out-degree of node v. The numbers l1, · · · , ln−1 encode the lengths
of branches of T , of which there are n− 1 (in a tree with n nodes).

We now use the previous result to compute ”square bracket terms” for all
the trees in Fig. 4. We have

1. T1 :

X1 = N4p2µ(3)
[
µ(1)N

]l1+l2+l3−3

,

where l1, l2 and l3 are fixed lengths of the three branches of the first tree
and l1, l2, l3 ≥ 1.

2. T2 :

X2 = N3pµ(2)
[
µ(1)N

]l1+l2−2

.

3. T3, T4 - they have the same number of nodes and their internal nodes have
the same distribution of out-degrees :

X3, X4 = N4pµ(1)µ(2)
[
µ(1)N

]l1+l2+l3−3

.

4. T5 :

X5 = N3
[
µ(1)

]2 [
µ(1)N

]l1+l2−2

.

5. T6 :

X6 = N5p2
[
µ(2)

]2 [
µ(1)N

]l1+l2+l3+l4−4

.

Now, we are finally ready to compute the sums of the ”bracket terms” over
the lengths of branches {li}1≤i≤k. Looking at the expressions for {Xk}1≤k≤6,
it is easy to see that the only place where the lengths li explicitly appear is as
powers of the term µ(1)N . Thus, to compute sums over lengths of branches, we
have to be able to compute

Sk ≡
∑

l1,l2,··· ,lk

a
∑k

i=1(li−1). (3)

First, we make the following observation.

The sum Sk can be written as

Sk =
∑
r≥k

(
r − 1

k − 1

)
ar−k =

∑
r≥k

1

(k − 1)!
(r − 1)(r − 2) · · · (r − k + 1)ar−k (4)
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To see why this is true, consider that, by definition, Sk =
∑
l1

∑
l2
· · ·
∑
lk
a
∑k

i=1(l1−1).

If we introduce a new variable r =
∑k
i=1 li, we have that r ≥ k, as li ≥ 1, for all

i. Furthermore, the number of different k-tuples (l1, · · · , lk) that result in the
same value of r is equal to the number of compositions of the number r into k
parts, which is equal to

(
r−1
k−1

)
. The claim then readily follows.

In addition, we also have the following :

The sum Sk is explicitly summable for all |a| < 1 and equals

Sk =
(−1)k−2

(1− a)k
. (5)

To prove this fact, we start from the result of the previous proposition and
substitute r − 1 = x, getting

Sk =
∑

x≥k−1

1

(k − 1)!
x(x− 1) · · · (x− k + 2)ax−(k−1). (6)

Now, letting n = k − 1 and r = x we obtained

Sn+1 =
1

n!

∑
r≥n

r(r − 1) · · · (r − n+ 1)ar−n. (7)

On the other hand, for |a| < 1,

d

dan

(
1

1− a

)
=

d

dan

∑
r≥0

ar =
∑
r≥0

r(r − 1) · · · (r − n+ 1)ar−n

=
∑
r≥n

r(r − 1) · · · (r − n+ 1)ar−n,

and therefore

Sn+1 =
1

n!

d

dan

(
1

1− a

)
. (8)

But, by induction,

d

dan

(
1

1− a

)
=

(−1)n−1n!

(1− a)n+1
. (9)

Thus, we have, after letting n+ 1 = k,

Sk =
(−1)k−2

(1− a)k
, (10)

which proves our claim.

We are now almost done. Indeed, from our previous considerations, we have

1. T1 (k = 3, S3 = −1
(1−a)3 ):

∑
l1,l2,l3

N4p2µ(3)
[
µ(1)N

]l1+l2+l3−3

=
−N4p2µ(3)

(1− µ(1)N)3
(11)
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2. T2 (k = 2, S2 = 1
(1−a)2 ) :

∑
l1,l2

N3pµ(2)
[
µ(1)N

]l1+l2−2

=
N3pµ(2)

(1− µ(1)N)2
(12)

3. T3, T4 (k = 3) :

∑
l1,l2,l3

N4pµ(1)µ(2)
[
µ(1)N

]l1+l2+l3−3

=
−N4pµ(1)µ(2)

(1− µ(1)N)3
(13)

4. T5 (k = 2) :

∑
l1,l2

N3
[
µ(1)

]2 [
µ(1)N

]l1+l2−2

=
N3
[
µ(1)

]2
(1− µ(1)N)2

(14)

5. T6 (k = 4, S4 = 1
(1−a)4 ) :

∑
l1,l2,l3,l4

N5p3
[
µ(2)

]2 [
µ(1)N

]l1+l2+l3+l4−4

=
N5p3

[
µ(2)

]2
(1− µ(1)N)4

(15)

Finally, we are ready to write the formula for κ̄3. It reads

κ̄3 =
Λ̄

N3

−N4p2µ(3)

(1− µ(1)N)3
+

3Λ̄

N3

N3pµ(2)

(1− µ(1)N)2
+

3Λ̄

N3

−N4pµ(1)µ(2)

(1− µ(1)N)3

+
6Λ̄

N3

−N4pµ(1)µ(2)

(1− µ(1)N)3
+

6Λ̄

N3

N3
[
µ(1)

]2
(1− µ(1)N)2

+
3Λ̄

N3

N5p3
[
µ(2)

]2
(1− µ(1)N)4

.
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