Computation of $\bar{\kappa}_{3}$

In this section, we derive the regular graph approximation for the average joint third cumulant. We start with the following formula.

$$
\begin{aligned}
\bar{\kappa}_{3} & =\frac{\bar{\Lambda}}{N^{3}} \sum_{l_{1}, l_{2}, l_{3}}\left[\sum_{i, j, k, m} G_{i m}^{l_{1}} G_{j m}^{l_{2}} G_{k m}^{l_{3}}\right] \\
& +\frac{3 \bar{\Lambda}}{N^{3}} \sum_{l_{1}, l_{2}}\left[\sum_{i, j, k} G_{i k}^{l_{1}} G_{j k}^{l_{2}}\right] \\
& +\frac{3 \bar{\Lambda}}{N^{3}} \sum_{l_{1}, l_{2}, l_{3}}\left[\sum_{i, j, k, m} G_{i m}^{l_{1}} G_{j m}^{l_{2}} G_{m k}^{l_{3}}\right] \\
& +\frac{6 \bar{\Lambda}}{N^{3}} \sum_{l_{1}, l_{2}, l_{3}}\left[\sum_{i, j, k, n} G_{i j}^{l_{1}} G_{j n}^{l_{2}} G_{k n}^{l_{3}}\right] \\
& +\frac{6 \bar{\Lambda}}{N^{3}} \sum_{l_{1}, l_{2}}\left[\sum_{i, j, k} G_{i j}^{l_{1}} G_{j k}^{l_{2}}\right] \\
& +\frac{3 \bar{\Lambda}}{N^{3}} \sum_{l_{1}, l_{2}, l_{3}, l_{4}}\left[\sum_{i, j, k, m, n} G_{i m}^{l_{1}} G_{j m}^{l_{2}} G_{m n}^{l_{4}} G_{k n}^{l_{3}}\right] .
\end{aligned}
$$

These 6 terms each correspond to one of the 6 possible rooted trees, depicted in Fig. 4. First, let us compute the terms inside the square brackets. The following result holds :

Let \mathcal{T} be an arbitrary rooted tree with at most N nodes. Then, the "square bracket" corresponding to it (obtained by summing over all possible indices of nodes in a tree with a fixed number of branches) can be computed using the following pseudo-algorithm :

1. Set $X=1$.
2. For every leaf of $\mathcal{T}, X \leftarrow X * N$
3. For every edge in $\mathcal{T}, X \leftarrow X * p$
4. For every internal node of out-degree k (where the root counts as an internal node) of $\mathcal{T}, X \leftarrow X * \frac{\mu^{(k)} \cdot N}{p}$, where $\mu^{(k)}$ is defined as the average common input, shared by k nodes, and is defined by

$$
\begin{equation*}
\mu^{(k)}=p \sum_{t} \frac{N_{t}}{N} g_{t}^{k} \tag{1}
\end{equation*}
$$

It is not difficult to prove that this is equivalent to :

Let \mathcal{T} be an arbitrary rooted tree with $n \leq N$ nodes and $l \leq n-1$ leaves. Then, the corresponding "square bracket term" is equal to

$$
\begin{equation*}
N^{n} p^{l-1} \prod_{v} \mu^{\left(k_{v}\right)}\left[\mu^{(1)} N\right]^{l_{1}+\cdots+l_{n-1}-n+1} \tag{2}
\end{equation*}
$$

where the product is over all internal nodes (i.e. nodes that are not leaves) of \mathcal{T} and k_{v} is the out-degree of node v. The numbers l_{1}, \cdots, l_{n-1} encode the lengths of branches of \mathcal{T}, of which there are $n-1$ (in a tree with n nodes).

We now use the previous result to compute "square bracket terms" for all the trees in Fig. 4. We have

1. T_{1} :

$$
X_{1}=N^{4} p^{2} \mu^{(3)}\left[\mu^{(1)} N\right]^{l_{1}+l_{2}+l_{3}-3}
$$

where l_{1}, l_{2} and l_{3} are fixed lengths of the three branches of the first tree and $l_{1}, l_{2}, l_{3} \geq 1$.
2. T_{2} :

$$
X_{2}=N^{3} p \mu^{(2)}\left[\mu^{(1)} N\right]^{l_{1}+l_{2}-2}
$$

3. T_{3}, T_{4} - they have the same number of nodes and their internal nodes have the same distribution of out-degrees :

$$
X_{3}, X_{4}=N^{4} p \mu^{(1)} \mu^{(2)}\left[\mu^{(1)} N\right]^{l_{1}+l_{2}+l_{3}-3}
$$

4. T_{5} :

$$
X_{5}=N^{3}\left[\mu^{(1)}\right]^{2}\left[\mu^{(1)} N\right]^{l_{1}+l_{2}-2}
$$

5. T_{6} :

$$
X_{6}=N^{5} p^{2}\left[\mu^{(2)}\right]^{2}\left[\mu^{(1)} N\right]^{l_{1}+l_{2}+l_{3}+l_{4}-4}
$$

Now, we are finally ready to compute the sums of the "bracket terms" over the lengths of branches $\left\{l_{i}\right\}_{1 \leq i \leq k}$. Looking at the expressions for $\left\{X_{k}\right\}_{1 \leq k \leq 6}$, it is easy to see that the only place where the lengths l_{i} explicitly appear is as powers of the term $\mu^{(1)} N$. Thus, to compute sums over lengths of branches, we have to be able to compute

$$
\begin{equation*}
S_{k} \equiv \sum_{l_{1}, l_{2}, \cdots, l_{k}} a^{\sum_{i=1}^{k}\left(l_{i}-1\right)} \tag{3}
\end{equation*}
$$

First, we make the following observation.
The sum S_{k} can be written as

$$
\begin{equation*}
S_{k}=\sum_{r \geq k}\binom{r-1}{k-1} a^{r-k}=\sum_{r \geq k} \frac{1}{(k-1)!}(r-1)(r-2) \cdots(r-k+1) a^{r-k} \tag{4}
\end{equation*}
$$

To see why this is true, consider that, by definition, $S_{k}=\sum_{l_{1}} \sum_{l_{2}} \cdots \sum_{l_{k}} a^{\sum_{i=1}^{k}\left(l_{1}-1\right)}$. If we introduce a new variable $r=\sum_{i=1}^{k} l_{i}$, we have that $r \geq k$, as $l_{i} \geq 1$, for all i. Furthermore, the number of different k-tuples $\left(l_{1}, \cdots, l_{k}\right)$ that result in the same value of r is equal to the number of compositions of the number r into k parts, which is equal to $\binom{r-1}{k-1}$. The claim then readily follows.

In addition, we also have the following :
The sum S_{k} is explicitly summable for all $|a|<1$ and equals

$$
\begin{equation*}
S_{k}=\frac{(-1)^{k-2}}{(1-a)^{k}} \tag{5}
\end{equation*}
$$

To prove this fact, we start from the result of the previous proposition and substitute $r-1=x$, getting

$$
\begin{equation*}
S_{k}=\sum_{x \geq k-1} \frac{1}{(k-1)!} x(x-1) \cdots(x-k+2) a^{x-(k-1)} \tag{6}
\end{equation*}
$$

Now, letting $n=k-1$ and $r=x$ we obtained

$$
\begin{equation*}
S_{n+1}=\frac{1}{n!} \sum_{r \geq n} r(r-1) \cdots(r-n+1) a^{r-n} \tag{7}
\end{equation*}
$$

On the other hand, for $|a|<1$,

$$
\begin{aligned}
\frac{d}{d a^{n}}\left(\frac{1}{1-a}\right) & =\frac{d}{d a^{n}} \sum_{r \geq 0} a^{r}=\sum_{r \geq 0} r(r-1) \cdots(r-n+1) a^{r-n} \\
& =\sum_{r \geq n} r(r-1) \cdots(r-n+1) a^{r-n}
\end{aligned}
$$

and therefore

$$
\begin{equation*}
S_{n+1}=\frac{1}{n!} \frac{d}{d a^{n}}\left(\frac{1}{1-a}\right) \tag{8}
\end{equation*}
$$

But, by induction,

$$
\begin{equation*}
\frac{d}{d a^{n}}\left(\frac{1}{1-a}\right)=\frac{(-1)^{n-1} n!}{(1-a)^{n+1}} \tag{9}
\end{equation*}
$$

Thus, we have, after letting $n+1=k$,

$$
\begin{equation*}
S_{k}=\frac{(-1)^{k-2}}{(1-a)^{k}} \tag{10}
\end{equation*}
$$

which proves our claim.
We are now almost done. Indeed, from our previous considerations, we have

1. $T_{1}\left(k=3, S_{3}=\frac{-1}{(1-a)^{3}}\right)$:

$$
\begin{equation*}
\sum_{l_{1}, l_{2}, l_{3}} N^{4} p^{2} \mu^{(3)}\left[\mu^{(1)} N\right]^{l_{1}+l_{2}+l_{3}-3}=\frac{-N^{4} p^{2} \mu^{(3)}}{\left(1-\mu^{(1)} N\right)^{3}} \tag{11}
\end{equation*}
$$

2. $T_{2}\left(k=2, S_{2}=\frac{1}{(1-a)^{2}}\right):$

$$
\begin{equation*}
\sum_{l_{1}, l_{2}} N^{3} p \mu^{(2)}\left[\mu^{(1)} N\right]^{l_{1}+l_{2}-2}=\frac{N^{3} p \mu^{(2)}}{\left(1-\mu^{(1)} N\right)^{2}} \tag{12}
\end{equation*}
$$

3. $T_{3}, T_{4}(k=3):$

$$
\begin{equation*}
\sum_{l_{1}, l_{2}, l_{3}} N^{4} p \mu^{(1)} \mu^{(2)}\left[\mu^{(1)} N\right]^{l_{1}+l_{2}+l_{3}-3}=\frac{-N^{4} p \mu^{(1)} \mu^{(2)}}{\left(1-\mu^{(1)} N\right)^{3}} \tag{13}
\end{equation*}
$$

4. $T_{5}(k=2):$

$$
\begin{equation*}
\sum_{l_{1}, l_{2}} N^{3}\left[\mu^{(1)}\right]^{2}\left[\mu^{(1)} N\right]^{l_{1}+l_{2}-2}=\frac{N^{3}\left[\mu^{(1)}\right]^{2}}{\left(1-\mu^{(1)} N\right)^{2}} \tag{14}
\end{equation*}
$$

5. $T_{6}\left(k=4, S_{4}=\frac{1}{(1-a)^{4}}\right):$

$$
\begin{equation*}
\sum_{l_{1}, l_{2}, l_{3}, l_{4}} N^{5} p^{3}\left[\mu^{(2)}\right]^{2}\left[\mu^{(1)} N\right]^{l_{1}+l_{2}+l_{3}+l_{4}-4}=\frac{N^{5} p^{3}\left[\mu^{(2)}\right]^{2}}{\left(1-\mu^{(1)} N\right)^{4}} \tag{15}
\end{equation*}
$$

Finally, we are ready to write the formula for $\bar{\kappa}_{3}$. It reads

$$
\begin{aligned}
\bar{\kappa}_{3} & =\frac{\bar{\Lambda}}{N^{3}} \frac{-N^{4} p^{2} \mu^{(3)}}{\left(1-\mu^{(1)} N\right)^{3}}+\frac{3 \bar{\Lambda}}{N^{3}} \frac{N^{3} p \mu^{(2)}}{\left(1-\mu^{(1)} N\right)^{2}}+\frac{3 \bar{\Lambda}}{N^{3}} \frac{-N^{4} p \mu^{(1)} \mu^{(2)}}{\left(1-\mu^{(1)} N\right)^{3}} \\
& +\frac{6 \bar{\Lambda}}{N^{3}} \frac{-N^{4} p \mu^{(1)} \mu^{(2)}}{\left(1-\mu^{(1)} N\right)^{3}}+\frac{6 \bar{\Lambda}}{N^{3}} \frac{N^{3}\left[\mu^{(1)}\right]^{2}}{\left(1-\mu^{(1)} N\right)^{2}}+\frac{3 \bar{\Lambda}}{N^{3}} \frac{N^{5} p^{3}\left[\mu^{(2)}\right]^{2}}{\left(1-\mu^{(1)} N\right)^{4}} .
\end{aligned}
$$

