Computation of k3

In this section, we derive the regular graph approximation for the average joint
third cumulant. We start with the following formula.
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These 6 terms each correspond to one of the 6 possible rooted trees, depicted in
Fig. 4. First, let us compute the terms inside the square brackets. The following
result holds :

Let T be an arbitrary rooted tree with at most N nodes. Then, the "square
bracket” corresponding to it (obtained by summing over all possible indices of
nodes in a tree with a fized number of branches) can be computed using the
following pseudo-algorithm :

1. Set X =1.
2. For every leaf of T, X + X * N
3. For every edge in T, X + X xp

4. For every internal node of out-degree k (where the root counts as an in-

ternal node) of T, X + X % “<k;'N, where p\®) is defined as the average
common input, shared by k nodes, and is defined by
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It is not difficult to prove that this is equivalent to :



Let T be an arbitrary rooted tree with n < N nodes and | < n — 1 leaves.
Then, the corresponding ”square bracket term” is equal to
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where the product is over all internal nodes (i.e. nodes that are not leaves) of T
and k, is the out-degree of node v. The numbersly,--- 1,1 encode the lengths
of branches of T, of which there are n — 1 (in a tree with n nodes).

We now use the previous result to compute ”square bracket terms” for all
the trees in Fig. 4. We have
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where l1, I3 and I3 are fixed lengths of the three branches of the first tree
and 11712,13 > 1.
2. T2 .
Xy = N3pu® [u(1)N}l1+1272.

3. T3,Ty - they have the same number of nodes and their internal nodes have
the same distribution of out-degrees :
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Now, we are finally ready to compute the sums of the "bracket terms” over
the lengths of branches {l;}1<;<x. Looking at the expressions for {Xj}1<k<e,
it is easy to see that the only place where the lengths [; explicitly appear is as
powers of the term (Y N. Thus, to compute sums over lengths of branches, we
have to be able to compute
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First, we make the following observation.

The sum Sy can be written as
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To see why this is true, consider that, by definition, Sy =7 >y >, aXica(i=1)

If we introduce a new variable r = Zi;l l;, we have that r > k, asl; > 1, for all

i. Furthermore, the number of different k-tuples (Iy,--- 1) that result in the
same value of r is equal to the number of compositions of the number r into k
r—1

parts, which is equal to (k71)' The claim then readily follows.
In addition, we also have the following :

The sum Sy, is explicitly summable for all |a] <1 and equals
(~1)--2
(1—a)*

To prove this fact, we start from the result of the previous proposition and
substitute r — 1 = x, getting

Sy = (5)
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Now, lettingn =k — 1 and r = x we obtained
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On the other hand, for |a| < 1,
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and therefore

But, by induction,
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Thus, we have, after letting n +1 =k,
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which proves our claim.

We are now almost done. Indeed, from our previous considerations, we have
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2. Ty (k=2, 8 = 72) :

(1—a)?

li+lp—2 N3pu®
3,,,(2) (1) _
> Nopu® [N TSN

l1,l2

3. Tg,T4 (k = 3) :

Litla+iz—3 N4y, (1), (2)
4, ..(1) (1) _ by
> N [uN | L= uON)3

U1,02,l3

4. T (k=2):

2 li+ls—2 N3 [ 2
Lk [u(”} {M(DN] R (1—£t(”11f)2

l1,l2
5. TG (k‘—4 54 lla)4):

Litlatls+la—d  NOp? [u@)]z
] ECEOIGE

> o [0 [

l1,l2,l3,la

Finally, we are ready to write the formula for Rs. It reads
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