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Appendix 1 - Derivation of Equation 41

In the absence of treatment we model the within-host dynamics using a system of2

differential equations3

dP

dt
=F (P,X) (1-1a)

dX

dt
=G(P,X) (1-1b)

where P is the density of the wild type and X is a vector of variables describing the4

within-host state (e.g., RBC count, densities of different immune molecules, etc). The5

initial conditions are P (0) = P0 X(0) = X0. At some point, t∗, drug treatment is6

introduced. Using lower case letters to denote the dynamics in the presence of treatment,7

we then have8

dp

dt
=f(p, x; c) (1-2a)

dx

dt
=g(p, x; c) (1-2b)

with initial conditions p(0; c) = P (t∗) and x(0; c) = X(t∗), and where c is the dosage. For9

simplicity, here we assume that a constant drug concentration is maintained over the10

course of the infection. Appendix 6 considers the pharmacokinetics of discrete drug dosing.11

The notation p(t; c) and x(t; c) reflects the fact that the dynamics of the wild type and the12

host state will depend on dosage. For example, if the dosage is very high p will be driven to13

zero very quickly.14
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As the drug removes the wild type pathogen, resistant mutations will continue to arise15

from the wild type population stochastically. For example, if mutations are produced only16

during replication of the wild type, then the rate of mutation will have the form µr(c)p(t; c)17

where µ is the mutation rate and r(c) is the replication rate of the wild type pathogen18

(which depends on drug dosage c). With this form of mutation, if we could administer the19

drug at concentrations above the MIC at the very onset of infection, then resistance20

evolution through de novo mutation would not occur. In reality symptoms and therefore21

drug treatment typically do not occur until later in the infection, meaning that some22

resistant strains might already be present at low frequency at the onset of treatment.23

There are also other plausible forms for the mutation rate as well, and therefore we simply24

specify this rate by some general function λ[p(t; c), c].25

Whenever a resistant strain appears it is subject to stochastic loss. We define π as the26

probability of avoiding loss (which we refer to as ‘escape’). To simplify the present27

analysis, we use a separation of timescales argument and assume that the fate of each28

mutant is determined quickly (essentially instantaneously) relative to the dynamics of the29

wild type and host state (we relax this assumption in all numerical examples). Thus, π for30

any mutant will depend on the host state at the time of its appearance, x(t; c), and it will31

therefore depend indirectly on c. Note that π will also depend directly on c, however,32

because drug dosage might directly suppress resistant strains as well if the dose is high33

enough. Therefore we use the notation π[x(t; c), c], and assume that π is an increasing34

function of x and a decreasing function of c.35

With the above assumptions the host can be viewed as being in one of two possible states36

at any point in time during the infection: (i) resistance has emerged (i.e., a resistant strain37

has appeared and escaped), or (ii) resistance has not emerged. We model emergence as an38

inhomogeneous birth process, and define q(t) as the probability that resistance has emerged39

by time t. A conditioning argument gives40
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q(t+ ∆t) = q(t) + (1− q(t))λ∆tπ + o(∆t) (1-3)

where λ∆t is the probability that a mutant arises in time ∆t, and π is the probability that41

such a mutant escapes. Re-arranging and taking the limit ∆t→ 0 we obtain42

dq

dt
= (1− q(t))λπ (1-4)

with initial condition q(0) = q0. Note that q0 is the probability that emergence occurs as a43

result of resistant mutants being present at the start of treatment. Again employing a44

separation of timescales argument, if there are n mutant individuals present at this time,45

then q0 = 1− (1− π[x(0; c), c])n.46

The solution to the above differential equation is47

q(t) = 1− (1− π[x(0; c), c])n exp

(
−
∫ t

0

λπds

)
. (1-5)

If a is the time at which treatment is stopped, and Q is the probability of emergence48

occurring at some point during treatment, then Q = q(a). If we further define49

S = −n ln (1− π[x(0; c), c]) then we can write Q as50

Q = 1− exp(−D − S) (1-6)

where D =
∫ a

0
λπds. We refer to D as the de novo hazard and S as the standing hazard. D51

is the contribution to escape that is made up of mutant microbes that arise during the52

course of treatment. S is the contribution to escape that is made up of mutant microbes53
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already presents at the start of treatment.54

Given the expression for Q, all else equal, resistance management would seek the treatment55

strategy, c that makes Q as small as possible. Since Q is a monotonic function of D + S,56

we can simplify matters by focusing on these hazards instead. Thus we define57

H =

∫ a

0

λπds+ S (1-7)

which is the ‘total hazard’ during treatment. Equation (4) is then obtained by58

differentiating the the total hazard H with respect to c.59

All of the simulation results presented in the main text and in the supporting information60

show that hazard H(c) is a unimodal function of dose. Indeed we have not found a case61

where the hazard has a more complicated shape, and the extensive body of empirical62

results discussed in the main text show that a unimodal relationship is the norm as well.63

Nevertheless, in principle there is no obvious reason why the hazard couldn’t have a64

multimodal shape. Even in such cases, however, once noise is introduced in the form of65

physiological variation across treated individuals, this will tend to result in an overall66

unimodal relationship.67

To see why, suppose that a dose c is administered but physiological variation results in the68

realized dose taking on a different value α. We define p(α; c) to be the probability density69

that α is the realized dose in a randomly chosen patient when the administered dose is c. If70

we then compute the average hazard over all individuals treated with dose c we get71

H̃(c) =
∫ a

0
H(α)p(α; c)dα. Now if we expand H(α) in a Taylor series around c we get72
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H̃(c) =

∫ a

0

{H(c) +H ′(c)(α− c) +
H ′′(c)

2
(α− c)2 + · · · }p(α; c)dα

= H(c) +H ′(c)

∫ a

0

(α− c)p(α; c)dα +
H ′′(c)

2

∫ a

0

(α− c)2p(α; c)dα + · · ·

Finally, if the variation is small and unbiased (i.e., the mean value of α for an administered73

dose of c is c) then this can be approximated as74

H̃(c) ≈ H(c) +
H ′′(c)

2
σ2
c (1-8)

where σ2
c is the variance in the realized dose for an administered dose of c. From (1-8) we75

can see that physiological variation will tend to increase the value of the average hazard76

H̃(c) compared to the function H(c) for values of c where H(c) is concave up (i.e.,77

H ′′(c) > 0) and it will tend to decrease the value of the average hazard H̃(c) compared to78

the function H(c) for values of c where H(c) is concave down (i.e., H ′′(c) < 0). This means79

that H̃ will tend to be a ‘smoothed’ version of H(c), where the dips are filled in and the80

peaks are lowered.81
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Appendix 2 - Extensions involving intermediate strains82

and horizontal gene transfer83

The results of the main text (which are derived in Appendix 1) are based on the84

assumption that a single mutational event can give rise to high-level resistance. In some85

situations several mutational events might be required. These so-called ‘stepping stone86

mutations’ towards high-level resistance might themselves confer an intermediate level of87

resistance. One of the arguments in favour of aggressive chemotherapy has been to prevent88

the persistence of these stepping stone strains, and thereby better prevent the emergence of89

high-level resistance [1–8]. Here we incorporate such stepping stone mutations into the90

theory, again placing primary attention on the emergence of high-level resistance.91

As in Appendix 1, in the absence of treatment we model the within-host dynamics using a92

system of differential equations93

dP

dt
=F (P,X) (2-1a)

dX

dt
=G(P,X) (2-1b)

but now P is also a vector containing the density of the wild type and all potential94

intermediate mutants. All intermediate strains are assumed to bear some metabolic or95

replicative cost as well, meaning that they are unable to increase in density in the presence96

of the wild type. Mechanistically again this is because the wild type has suppressed the97

host state, X, below the minimum value required for a net positive growth by any98

intermediate strain. Thus, in the absence of treatment we expect most of these mutants to99

have negligible density. Once treatment is introduced we have100
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dp

dt
=f(p, x; c) (2-2a)

dx

dt
=g(p, x; c) (2-2b)

where again p is now a vector. As before we have initial conditions p(0; c) = P (t∗) and101

x(0; c) = X(t∗), and where c is the dosage. Now, however, different choices of c will102

generate different distributions of strain types p(t; c) during the infection. Furthermore,103

each type will give rise to the high-level resistance strain with its own rate. Therefore, the104

function specifying the rate of mutation to the HLR strain λ[p(t; c), c] is a function of the105

vector variable p(t; c).106

The calculations in Appendix 1 can again be followed. We obtain an equation identical to107

equation (4) except that the first term is replaced by108

∫ a

0

π

(
∇pλ · pc +

∂λ

∂c

)
ds (2-3)

where subscripts denote differentiation with respect to that variable. The difference is that109

(∂λ/∂p)(∂p/∂c) in equation (4) is replaced with ∇pλ · pc. The quantity pc is a vector whose110

components are the changes in the density of each intermediate strain arising from an111

increased dosage. The quantity ∇pλ is the gradient of the mutation rate with respect to a112

change in the density of each intermediate strain. The integral of the dot product of the113

two, ∇pλ · pc, is therefore the overall change in mutation towards the HLR strain during114

treatment. Whereas the first term of equation (4) is expected to be negative, expression115

(2-3) can be negative or positive depending on how different doses affect the distribution of116

intermediate mutants during the infection (i.e., the elements of pc) and the rate at which117

each type of intermediate mutant gives rise to the strain with high level resistance (i.e., the118
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elements of ∇pλ). Either way, however, this does not alter the salient conclusion that the119

optimal resistance management dose will depend on the details.120

In an analogous fashion we might also alter the derivation in Appendix 1 to account for the121

possibility that some microbes acquire high-level resistance via horizontal gene transfer122

from other, potentially commensal, microbes. To do so we would simply need to alter the123

way in which λ is modelled. In particular, it might then be a function of the densities of124

commensal microbes as well, who themselves could be affected by drug dosage. Thus, once125

treatment has begun, we might have a system of equations of the form126

dp

dt
=f(p, x, y; c) (2-4a)

dx

dt
=g(p, x, y; c) (2-4b)

dy

dt
=h(p, x, y; c) (2-4c)

where y is a vector of commensal microbe densities. We might then model λ as127

λ[p(t; c), y(t; c)]. Again, calculations analogous to those of Appendix 1 can be followed to128

obtain an appropriate expression for the resistance hazard. As with the above examples,129

there will again be a tradeoff between components of this expression as a function of drug130

dosage.131

9



Appendix 3 - A Model of acute immune-mediated132

infections133

The dynamics of the mutant and wild type in the absence of treatment are modeled as134

dP

dt
= [r(0)(1− µ)− γ]P − κPI (3-1)

dPm

dt
= [rm(0)− γm]Pm − κPmI + r(0)µP (3-2)

dI

dt
= α(P + Pm)− δI. (3-3)

where r(·) and rm(·) are the growth rates of the wild type and mutant as a function of drug135

concentration, µ is the mutation probability from wild type to resistant, and γ and γm are136

the natural death rates of each. We assume a cost of resistance in the absence of137

treatment, meaning that r(1− µ)− γ > rm − γm The immune response, I, grows in138

proportion to the density of the pathogen population and decays at a constant per capita139

rate δ. Immune molecules kill the pathogen according to a law of mass action with140

parameter κ for both the wild type and the resistant strain (i.e., immunity is completely141

cross-reactive). This is a simple deterministic model for an immune-controlled infection.142

When the mutation rate is zero (µ = 0) and the pathogen can increase when rare, the143

model displays damped oscillations towards an equilibrium with the wild type present144

(P̂ = (r − γ)δ/ακ), the mutant extinct (P̂m = 0), and the immune system at a nonzero145

level (Î = (r − γ)/κ). For many choices of parameter values (including those that we focus146

on here) the first trough in pathogen density is very low, and therefore once we introduce147

stochasticity the entire pathogen population typically goes extinct at this stage, at which148

point the immune molecules then decay to zero. It is in this way that we model an149
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immune-controlled infection.150

Under treatment the dynamics are the same as above but where r(·) and rm(·) are then151

evaluated at some nonzero drug concentration. Throughout we assume that the152

dose-response functions r(·) and rm(·) are given by the function b1(1− tanh(b2(c− b3))) for153

some constants b1, b2, and b3. The model used to explore the emergence of resistance154

employs a stochastic implementation of the above equations using the Gillespie algorithm.155

Figure S1 presents output for several runs of the model using three different drug156

concentrations. In all cases we have set the mutation rate to zero (no resistant strains157

arise). In the absence of treatment an infection typically results in a single-peak of wild158

type pathogen before the infection is cleared. To model realistic disease scenarios we159

(arbitrarily) suppose that infected individuals become symptomatic only once the pathogen160

density exceeds a threshold of 100 and treatment is used only once an infection is161

symptomatic. For the parameter values chosen in this example, 99% of untreated162

infections are symptomatic (Figure S1a,b). We further suppose (again arbitrarily) that a163

pathogen load greater than 200 results in substantial morbidity and/or mortality. With164

these assumptions we can then proceed to define the therapeutic window. The upper limit165

cU is arbitrary in the model and so we set cU = 0.5. The lower limit cL is the smallest dose166

that prevents significant morbidity and/or mortality. Therefore it is the smallest dose that,167

in the absence of resistance emergence, keeps pathogen load below 200. Figure S1c shows168

that, for the parameter values used, cL ≈ 0.3. Notice from Figure S1a that a dose of169

c = 0.3 does not fully suppress growth as measured in vitro but it nevertheless controls the170

infection in vivo because the immune response also contributes to reducing the pathogen171

load.172
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173

Figure S1. Dynamics in the absence of resistance. (a) The dose-response curve

r(c) = 0.6(1 − tanh(15(c − 0.3))) as well as the therapeutic window in green. (b), (c)

and (d) show wild type pathogen density (blue) and immune molecule density (black)

during infection for 1000 representative realizations of a stochastic implementation of the

model. (b) no treatment, (c) treatment at the smallest effective dose cL, (d) treatment

at the maximum tolerable dose cU . Parameter values are P (0) = 10, I(0) = 2, α = 0.05,

δ = 0.05, κ = 0.075, µ = 0, and γ = 0.01.174

For simulations in which the mutation rate to resistance is non-zero we quantify the175

emergence of resistance in the following way. For each simulation run we record the176

maximum density of the resistant strain before the infection is ultimately cleared. Runs in177

which this density reaches a level high enough to cause symptoms (a density of 100 in this178

case) are deemed to be infections in which resistance has emerged. The probability of179

resistance emergence is quantified as the fraction of runs in which this threshold level is180

reached. In Figure 4 of the text we also consider the consequences of using other threshold181

densities to define emergence.182

The simulation results of the main text assume that all resistant strains arise de novo in a183

infection but in some cases we might expect resistant strains to already be present at the184

start of infection. The general theory presented in the main text reveals that again we185

should not expect any simple generalities. For example, one might expect that when the186

initial infection already contains many resistant microbes the relevance of de novo mutation187

might be diminished and so a lower dose might be optimal for managing resistance.188

Although this is sometimes the case (Day, unpubl. results) the opposite is possible as well.189

As an example, Figure S2 presents results for the probability of emergence as a function of190

dose, for three different levels of resistance frequency in the initial infection. As the191
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frequency of resistance in the initial infection increases, the optimal concentration changes192

from a low dose to a high dose. The reason is that, if resistance is already very common193

early in the infection, then the competitive release that occurs from removing the wild type194

is greatly diminished since the resistant strain will have already managed to gain a195

foothold before the wildtype numbers increase significantly. Put another way, the benefits196

of low dose therapy have decreased because the magnitude of competitive release (the blue197

terms in equation (4) of the main text) has decreased. Experimental results have verified198

this prediction; namely, that drug resistant pathogens can reach appreciable within-host199

densities in the absence of treatment if the initial infection contains a substantial number200

of these [9].201

202

Figure S2. The effect of different levels of standing variation for resistance

in the initial infection. Simulation is identical to that for Figure 3a except for the

initial conditions. The dose-response curves for the wild type in blue (r(c) = 0.6(1 −

tanh(15(c−0.3)))) and the resistant strain in red (rm(c) = 0.59(1−tanh(15(c−0.6)))) as

well as the therapeutic window in green. Red dots indicate the probability of resistance

emergence, and for three different initial conditions. Probability of resistance emergence

is defined as the fraction of 5000 simulations for which resistance reached a density of at

least 100 (and thus caused disease). Top set of dots have P (0) = 5, Pm(0) = 5; middle

set of dots have P (0) = 7, Pm(0) = 3; bottom set of dots have P (0) = 10, Pm(0) = 0.

Other parameter values are I(0) = 2, α = 0.05, δ = 0.05, κ = 0.075, µ = 10−2, and

γ = 0.01.203

A common suggestion is that, when strains with intermediate levels of resistance are204

possible, aggressive chemotherapy is then optimal because anything less will allow these205

intermediate strains to persist and thereby give rise to HLR through mutation. We206

therefore conducted simulations to explore this idea. We note, however, that again the207

general theoretical results of Appendix 2 reveal that no generalities should be expected and208
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our simulations bear this out. For example, we extended equations for the within-host209

dynamics to allow for a strain with intermediate resistance by using the following equations:210

dP

dt
= [r(c)(1− µ)− γ]P − κPI (3-4)

dPm1

dt
= [rm1(c)− γm1]Pm1 − κPm1I + r(c)µP (3-5)

dPm2

dt
= [rm2(c)− γm2]Pm2 − κPm2I + rm1(c)µ1Pm1 (3-6)

dI

dt
= α(P + Pm1 + Pm2)− δI. (3-7)

where Pm1 is the density of the mutant strain with intermediate resistance and Pm2 is the211

strain with HLR. Also, r(·), rm1(·), and rm2(·) are the growth rates of the wild type and212

the two mutant types as a function of drug concentration, µ is the mutation probability213

from wild type to the intermediate strain, µ1 is the mutation rate from the intermediate214

strain to HLR, and the γ’s are the natural death rates of each. Again the immune215

response, I, grows in proportion to the density of the pathogen population and decays at a216

constant per capita rate δ.217

Again the simulation was conducted with a stochastic implementation of the above model218

using the Gillespie algorithm. While the presence of intermediate strains does alter the219

relative balance of factors affecting resistance emergence, this balance can still move in220

either direction.221

As an example, Figure S3 presents simulation results in which low-dose treatment yields222

the lowest probability of HLR emergence. Note, however, that high-dose treatment controls223

the emergence of the intermediate strain the best.224

225
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Figure S3. Simulation results when there is a strain with intermediate resis-

tance. (a) The dose-response curves for the wild type in blue (r(c) = 0.6(1−tanh(15(c−

0.3)))), the intermediate strain in yellow (rm2(c) = 0.595(1 − tanh(15(c − 0.45)))), and

the HLR strain in red (rm2(c) = 0.59(1− tanh(15(c− 0.6)))) as well as the therapeutic

window in green. Dots indicate the probability of emergence for the intermediate strain

(yellow) and the HLR strain (red). Probability of emergence is defined as the fraction of

5000 simulations for which the strain reached a density of at least 100. (b) and (c) wild

type density (blue), intermediate strain density (yellow), HLR strain density (red), and

immune molecule density (black) during infection for 1000 representative realizations of

a stochastic implementation of the model. (b) treatment at the smallest effective dose

cL, (c) treatment at the maximum tolerable dose cU . Parameter values are P (0) = 10,

Pm1(0) = 0, Pm2(0) = 0, I(0) = 2, α = 0.05, δ = 0.05, κ = 0.075, µ = 10−2, µ1 = 10−2,

and γ = γm1 = γm2 = 0.01.226

The results of Figure S3 can also be interpreted within the context of the mutant selection227

window hypothesis and the mutant prevention concentration or MPC. The MPC is the228

drug concentration that prevents the emergence of all single-step resistant mutants. Figure229

S3 we can see that the emergence of the intermediate, single step, mutant strain is230

prevented by using the maximum tolerable dose. Nevertheless, even though the HLR strain231

can arise only by mutation from this intermediate strain, it is the lowest effective dose that232

best controls the emergence of HLR. The reason for this is that it is not possible to achieve233

the MPC early enough in the infection to prevent all mutational input from occurring234

because treatment starts only once symptoms appear. For the specific case illustrated in235

Figure S3 the possibility of HLR arising is then enough to tip the balance so that the lower236

edge of the therapeutic window is the best strategy for controlling HLR.237
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Appendix 4 - Other results for the model of acute238

immune-mediated infections239

In the main text we focus on the emergence of the resistant strain but in many clinical240

studies researchers focus instead on successful treatment. For example, one common241

approach is to quantify the probability of treatment failure as a function of drug dose (or242

some proxy thereof). Such studies cannot provide information about resistance evolution243

per se but they nevertheless might involve a component of resistance evolution if this is one244

of the potential reasons for treatment failure.245

We can explore a similar idea in the context of the model in the main text. Suppose we246

measure clinical success as the complete eradication of infection by day 20. In the247

simulations some individuals then display treatment failure because, through the248

stochasticity of individual infection dynamics, they fail to clear the infection by this time.249

Figure S4a presents the probability of treatment failure, measured by the fraction of the250

simulations for which the infection (wild type or resistant) was still present on day 20 for251

the model underlying Figure 3. Failure occurs under both treatment scenarios but it252

happens more frequently for the high dose treatment (compare red portion of bar graphs in253

Figure S4a). There is an important structure to these failures, however, that can be better254

appreciated by calculating the probability of failure by conditioning on whether or not a255

resistant mutation ever appeared during treatment; i.e.,256

P (F ) = P (F |M)P (M) + P (F |M c)P (M c) (4-1)

where P (F ) is the probability of failure, P (M) is the probability of a resistant mutation257

appearing during treatment (P (M c) is the probability that this doesn’t occur), and258

P (F |M) is the probability of failure given a resistant mutation appears (with P (F |M c) the259
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probability of failure given a resistant mutation does not appear). The bar graphs in Figure260

S4a show again that a high dose better controls the appearance of resistant mutations (i.e.,261

P (M) is lower for the high dose treatment), but if a resistant mutation does occur, then a262

high dose results in a greater likelihood of treatment failure (i.e., P (F |M) is higher for the263

high dose treatment - note that this quantity can be interpreted graphically as the ratio of264

the red to grey bars). And in this case the latter effect overwhelms the former, making the265

probability of treatment failure P (F ) greater overall for the high dose treatment.266

267

Figure S4. The effect of drug concentration on resistance emergence and

treatment failure. (a) The dose-response curves for the wild type in blue (r(c) =

0.6(1− tanh(15(c− 0.3)))) and the resistant strain in red (rm(c) = 0.59(1− tanh(15(c−

0.6)))) as well as the therapeutic window in green. Dots indicate the probability of

resistance emergence. Probability of resistance emergence is defined as the fraction of

5000 simulations for which resistance reached a density of at least 100 (and thus caused

disease). Parameter values are P (0) = 10, I(0) = 2, α = 0.05, δ = 0.05, κ = 0.075,

µ = 10−2, and γ = 0.01. Bar graphs: the probability that a resistant strain appears

by mutation is indicated by the left-hand grey bars for each drug concentration (the

right-hand grey bar is the probability that a resistant strain does not appear). The

probability of treatment failure for a specific drug dose is the sum of the red bars for

that dose. (b) Same as panel (a) but with mutation rate decreased to µ = 10−3.268

It is not difficult to obtain diametrically opposite results, however, with a small change in269

parameter values. Figure S4b show analogous results for the very same simulation, but270

where the probability of mutation is an order of magnitude lower. In this case we see that,271

even though a high dose results in a greater probability of failure if a resistant mutation272

appears, the effect is diminished such that, overall, the high dose results in a lower overall273

probability of failure. Notice also though that, even though a high dose results in a lower274

likelihood of treatment failure, it nevertheless still results in a higher probability of275
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resistance emergence during treatment. The former is measured only by whether or not the276

infection still persists on day 20 whereas the latter is measured by whether or not a large277

outbreak of resistance occurs at some point during treatment. This provides an example278

illustrating the general idea that treatment failure cannot be taken as a proxy for279

resistance emergence.280
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Appendix 5 - A Model of chronic infection based on281

resource competition282

In this appendix we present some additional simulation results for a model of chronic283

infection. We assume that pathogen strains interact through competition for a common284

resource (e.g., red blood cells) and that the immune response is negligible. This latter285

assumption might apply for immuno-compromised individuals but our primary reason for286

making this assumption is to demonstrate that the conclusions of the main text do not287

depend on the microbes interacting primarily through a shared immune response. In288

particular, we will show that again a seemingly small change in parameter values alters the289

outcome from one where the largest tolerable dose is optimal to one where the smallest290

effective dose is optimal.291

The equations for the resource, the wild type, and the resistant mutant are292

dR

dt
= θ − δR− r(c)PR− rm(c)PmR (5-1)

dP

dt
= r(c)(1− µ)PR− dP (5-2)

dPm

dt
= rm(c)PmR− dmPm + r(c)PRµ (5-3)

where R is the resource concentration, r(·) and rm(·) are the dose-response functions of the293

wild type and mutant for a drug concentration c, and the per capita replication rate of294

each type is governed by a type 1 functional response (i.e., r(c)R and rm(c)R respectively).295

The constant θ is the rate at which resources enter the system, δ is the per capita rate at296

which resources are lost through decay, µ is the mutation probability from wild type to297

resistant, and d and dm are the natural death rates of each. The model used to explore the298
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emergence of resistance employs a stochastic implementation of the above equations using299

the Gillespie algorithm.300

When the mutation rate is zero (µ = 0) and the pathogen can increase when rare, the301

model displays damped oscillations towards an equilibrium with the wild type present302

(P̂ = (θr − δd)/(dr)), the mutant extinct (P̂m = 0), and the resource at a nonzero level303

(R̂ = d/r). Occasionally the stochastic version of the model results in the pathogen304

population going extinct by chance but for the parameter values explored here most305

simulation runs result in a chronic infection.306

Figure S5 presents output for several runs of the model using three different drug307

concentrations. In all cases the mutation rate is set to zero (no resistant strains arise). In308

the absence of treatment an infection typically results in a large peak of wild type309

pathogen and then the density stabilizes at a low, chronic, level. To model realistic disease310

scenarios we (arbitrarily) suppose that infected individuals become symptomatic only once311

the pathogen density exceeds a threshold of 300 and treatment is used only once an312

infection is symptomatic. We further suppose (again arbitrarily) that a pathogen load313

greater than 700 results in substantial morbidity and/or mortality. With these assumptions314

we can then proceed to define the therapeutic window. The upper limit cU is arbitrary in315

the model and so we set cU = 0.5. The lower limit cL is the smallest dose that prevents316

significant morbidity and/or mortality. Therefore it is the smallest dose that, in the317

absence of resistance emergence, keeps pathogen load below 700. Figure S5c shows that,318

for the parameter values used, cL ≈ 0.3.319
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320

Figure S5. Dynamics of chronic infection in the absence of resistance. (a)

The dose-response curve r(c) = 0.00255(1− tanh(15(c−0.3))) as well as the therapeutic

window in green. (b), (c) and (d) show wild type pathogen density (blue) and resource

density (black) during infection for 20 representative realizations of a stochastic imple-

mentation of the model. (b) no treatment, (c) treatment at the smallest effective dose

cL, (d) treatment at the maximum tolerable dose cU . Parameter values are P (0) = 2,

R(0) = 2000, θ = 200, δ = 0.1, d = 2, and µ = 0.321

For simulations in which the mutation rate to resistance is non-zero we quantify the322

emergence of resistance in the following way. For each simulation run we record the323

maximum density of the resistant strain. Runs in which this density reaches a level high324

enough to cause symptoms (a density of 300 in this case) are deemed to be infections in325

which resistance has emerged. The probability of resistance emergence is quantified as the326

fraction of runs in which this threshold level is reached.327

Figure S6 shows results where the maximum tolerable drug concentration cU causes328

significant suppression of the resistant strain. We stress however that if this were true then,329

by definition, the resistant strain is not really HLR and thus there really is no resistance330

problem to begin with. We include this extreme example as a benchmark against which331

comparisons can be made. Not surprisingly, in this case the conventional, high-dose,332

strategy best contains resistance emergence.333
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Figure S6. Example where conventional strategy of high-dose chemotherapy

best prevents the emergence of resistance. (a) The dose-response curves for the

wild type in blue (r(c) = 0.00255(1− tanh(15(c− 0.3)))) and the resistant strain in red

(rm(c) = 0.0025(1 − tanh(15(c − 0.45)))) as well as the therapeutic window in green.

Red dots indicate the probability of resistance emergence. Probability of resistance

emergence is defined as the fraction of 1000 simulations for which resistance reached a

density of at least 300 (and thus caused disease). (b) and (c) wild type density (blue),

resistant density (red), and resource density (black) during infection for 20 representative

realizations of a stochastic implementation of the model. (b) treatment at the smallest

effective dose cL, (c) treatment at the maximum tolerable dose cU . Parameter values:

P (0) = 2, Pm(0) = 0, R(0) = 2000, θ = 200, δ = 0.1, d = 2, dm = 2.7, and µ = 10−2.335

On the other hand, Figure S7 shows results where the maximum tolerable drug336

concentration cU is not sufficient to directly suppress the resistant strain. As as result,337

from a clinical standpoint the drug is largely ineffective against the resistant strain. As can338

be seen, this seemingly small change from the results in Figure S6 reverses the prediction.339

Now the smallest effective dose best contains resistance emergence.340
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Figure S7. Example where a low-dose strategy best prevents the emergence

of resistance. (a) The dose-response curves for the wild type in blue (r(c) = 0.00255(1−

tanh(15(c−0.3)))) and the resistant strain in red (rm(c) = 0.0025(1−tanh(15(c−0.6))))

as well as the therapeutic window in green. Red dots indicate the probability of resis-

tance emergence. Probability of resistance emergence is defined as the fraction of 1000

simulations for which resistance reached a density of at least 300 (and thus caused dis-

ease). (b) and (c) wild type density (blue), resistant density (red), and resource density

(black) during infection for 20 representative realizations of a stochastic implementation

of the model. (b) treatment at the smallest effective dose cL, (c) treatment at the max-

imum tolerable dose cU . Parameter values: P (0) = 2, Pm(0) = 0, R(0) = 2000, θ = 200,

δ = 0.1, d = 2, dm = 2.7, and µ = 10−2.342
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Appendix 6 - Generalizing the pharmacokinetics343

Here we illustrate how the qualitative conclusions of the main text hold more broadly by344

deriving the analogue of equation (4) for quite general forms of pharmacokinetics. For345

simplicity we will ignore the possibility that resistant strains might be present at the start346

of treatment.347

For the sake of illustration we suppose that the drug is administered in some arbitrary way348

for a period of time of length T and then treatment is stopped. The question we ask is,349

how does increasing the duration of treatment T affect the probability of resistance350

emergence? More generally we might alter other aspects of treatment like dose size,351

inter-dose interval, etc but our focus on T will be sufficient to see how one would deal with352

these other factors as well.353

To allow for more general pharmacokinetics we must model the dynamics of drug354

concentration explicitly. Once treatment has begun the model becomes355

dp

dt
=f(p, x, c) (6-1a)

dx

dt
=g(p, x, c) (6-1b)

dc

dt
=h(p, x, c, t) (6-1c)

The third equation accounts for the pharmacokinetics of the drug and allows for the356

treatment protocol to vary through time. These equations must also be supplemented with357

an initial condition specifying the values of the variables at the start of treatment.358

After time T has elapsed treatment is stopped and the dynamics then follow a different set359

of equations given by360

24



dp̃

dt
=f̃(p̃, x̃, c̃) (6-2a)

dx̃

dt
=g̃(p̃, x̃, c̃) (6-2b)

dc̃

dt
=h̃(p̃, x̃, c̃, t) (6-2c)

The tildes reflect the fact that the functional form of the dynamical system might change361

when treatment is stopped (e.g., there is no longer any input of the drug in the function h̃362

as compared with the function h), and thus the variables follow a different trajectory than363

they would have under treatment. This system of differential equation must also be364

supplemented with an initial condition as well, and this requires p̃(T ) = p(T ), x̃(T ) = x(T ),365

and c̃(T ) = c(T ). Notice that the trajectories of the new variables p̃, x̃ and c̃ therefore366

depend on the duration of treatment T because this duration will affect their initial values.367

With the above formalism we can write the hazard as368

H(T ) =

∫ T

0

λπds+

∫ ∞
T

λ̃π̃ds (6-3)

where we have simplified the notation by using a tilde above a function to indicate that the369

function is evaluated along the variables with a tilde. Differentiating with respect to T gives370

dH

dT
= λπ|s=T − λ̃π̃|s=T +

∫ ∞
T

d

dT
λ̃π̃ds (6-4)

By the continuity of the state variables the first two terms cancel and therefore we have371
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dH

dT
=

∫ ∞
T

d

dT
λ̃π̃ds (6-5)

Now λ̃ and π̃ depend on T because they depend on the trajectories of the variables p̃, x̃ and372

c̃, and the trajectories of these variables in turn depend on their initial conditions (which373

depend on T as described above). We can capture this notationally by treating the374

variables p̃, x̃ and c̃ as functions of T . Thus we have375

dH

dT
=

∫ ∞
T

d

dT
λ̃π̃ds

=

∫ ∞
T

π

(
∂λ

∂p̃

∂p̃

∂T
+
∂λ

∂c̃

∂c̃

∂T

)
+ λ

(
∇x̃π · x̃T +

∂π

∂c̃

∂c̃

∂T

)
ds

We can see that this has a form that is identical to de novo part of equation (4) except that
now the drug concentration is no longer directly under our control. Instead, changes in T
affect resistance emergence by how they affect changes in drug concentration. More generally,
the very same potentially opposing processes as those in equation 4 will arise regardless of how
we alter the drug dosing regimen because any such alteration must ultimately be mediated
through its affect on the drug concentration at each point in time during an infection.
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