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1 Minimal control systems

In the section we review the analysis of Komarova (2013) in the context of
the present work, see also figure 3 of the main text. For the two-compartment
model, we note that at least two of the four quantities, (qx, qy, px, py), must
be nonzero to satisfy the stability condition: ∆ ≡ pyqx − pxqy > 0. In fact,
there are exactly two cases where only two of the four derivatives are nonzero
and satisfy the other stability condition: B ≡ 2L∗S∗(px − py)− qy > 0:
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#1 qx < 0, py < 0, qy = px = 0;

#2 qy < 0, px > 0, qx = py = 0.

Extending the analysis to three nonzero controls, we find that there are
exactly three cases that satisfy both stability conditions:

#3 qy < 0, qx > 0, 0 < py < − qy
2L∗S∗

, px = 0;

#4 qy > 0, qx = 0, px < 0, py < px − qy
2L∗S∗

< 0;

#5 qy = 0, qx > 0, px > py > 0.

Note that the case where py = 0 yields a system of controls that is reducible
to the two-control model #2 by setting qx = 0.

2 Stability analysis

A deterministic description of the system is given by equations

ẋ = LS(1− P )− LSP = LS(1− 2P ), (1)

ẏ = 2LSP + L(1− S)−D, (2)

The equilibria are defined by

Li0,j0 = Di0,j0 = L∗, Pi0,j0 =
1

2
, S∗ = Si0,j0 . (3)

Li0,j0 = Di0,j0 = L∗, Si0,j0 = 0, P∗ = Pi0,j0 . (4)

We can compute the Jacobian of the system, evaluated at mixed divisions
steady state (3):

J =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
,

where f = LS(1 − 2P ), g = 2LSP + L(1 − S) − D, and all derivatives are
evaluated at the equilibrium (i0, j0).

Let det, τ be the determinant and the trace of J , respectively. Then,

det =
∂f

∂x
· ∂g
∂y
− ∂f

∂y
· ∂g
∂x

=
2L∗S∗(qxpy − qypx)

ε2
;

τ =
∂f

∂x
+
∂g

∂y
= −2L∗S∗(px − py)− qy

ε
.
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The stability of the system requires det > 0 and τ < 0. It follows that mixed
divisions steady state is stable as long as ∆ > 0 and B > 0, where we defined

∆ = qxpy − qypx, B = 2L∗S∗(px − py)− qy.

Similarly, we evaluate the Jacobian at purely asymmetric divisions steady
state (4), and we obtained in this case:

det =
L∗(2P∗ − 1)(qxsy − qysx)

ε2
;

τ =
L∗(sy − sx)(2P∗ − 1) + qy

ε
.

It follows that purely asymmetric divisions steady state is stable as long as
δ > 0 and b > 0, where

b = −L∗(sy − sx)(2P∗ − 1)− qy, δ = (2P∗ − 1)(qxsy − qysx).

3 Purely asymmetric divisions steady state

The analysis of the mixed divisions steady state is presented in the main
text, and the result for the variances is given by

V ar[I] =
Kx

4B∆
, V ar[J ] =

Ky

4B∆
. (5)

Here we present analysis of the dynamics in the vicinity of the purely asym-
metric divisions equilibrium, equation (4).

3.1 Results for the cell number means and variances

It is important to note that in the limit of S∗ → 0 (asymmetric divisions only)
formulas (5) break down. When S∗ = 0, the numbers of stem cell cannot
change in the model. The state space becomes one-dimensional. By using
the same approach of “linear noise approximation” (Yang et al., 2015), we
can obtain the means and the variances of the cell population to the highest
order:

E[I] = i0, E[J ] = j0; (6)

V ar[I] =
{L∗(2P∗ − 1)sy}2

bδ
, (7)

V ar[J ] =
L∗

b
+
{L∗(2P∗ − 1)sx}2

bδ
. (8)

3



We provide a Mathematica file to compute the means and the variances given
above. Evaluating this at the equilibrium, we obtain the correct answer for
strictly asymmetric divisions (by taking the limit S∗ → 0):

V ar[I] = 0, V ar[J ] = −L∗

qy
. (9)

3.2 A case study with a purely symmetric divisions
equilibrium

In this section, we will demonstrate that the analytic results of section 3.1
agree with the numerical results. We will use the example of two-control
model #2 in figure 3 of the main text, and equip it with a control of division
symmetry parameter, S. This model is characterized by negative control on
division and positive control on differentiation. We consider the following
functional forms:

L(x, y) =
1

1 + y
, P (x, y) = 0.7 · tanh(x),

D(x, y) = 1− L(x, y), S(x, y) =
(

1− 1

cx

)2
, (10)

where c is a positive constant.

The equilibria. We have qx = py = sy = 0, qy = −2ε(1 + y)−2 < 0, px =

0.7ε · sech2(x) > 0, and sx = 2ε
(

1 − 1
cx

)
· 1
cx2 . The mixed divisions steady

state can be obtained by solving P (x, y) = 1/2, and L(x, y) = D(x, y):

xm =
log(6)

2
, ym = 1 (or im =

log(6)

2ε
, jm =

1

ε
). (11)

The purely asymmetric divisions steady state can be obtained by solving
S(x, y) = 0, and L(x, y) = D(x, y):

xa =
1

c
, ya = 1 (or ia =

1

cε
, ja =

1

ε
). (12)

By using the theory in the main text, we can obtain the means and the
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variances for the mixed divisions solution:

E[I] =
log(6)

2ε
, (13)

E[J ] =
1

ε
, (14)

V ar[I] =
2L∗S∗∆ + q2y

4B∆
, (15)

V ar[J ] =
2L∗(2 + S∗)∆ + 8L2

∗S∗p
2
x

4B∆
, (16)

where all the partial derivates are evaluated at the mixed divisions steady
state, and L∗ = 1/2, S∗ = (1− 2

c log(6)
)2, ∆ = −qypx, and B = 2L∗S∗px − qy.

Similarly, we obtain the means and the variances for the purely asym-
metric solution by equations (6-8):

E[I] =
1

cε
, E[J ] =

1

ε
, (17)

V ar[I] = 0, V ar[J ] = −L∗

qy
. (18)

where L∗ = 1/2, and qy is evaluated at the purely asymmetric equilibrium.

Stability analysis. The mixed solution is stable in this case (since det > 0,
and τ < 0), but the stability of asymmetric solution is ambiguous (since
det = 0, and τ < 0), see Section 2. Nevertheless, a nonlinear stability
analysis can be performed in this case. Let c∗ = 1/xm, then if c > c∗,
xm > xa, and if c < c∗, xm < xa. We have the following results by nonlinear
stability analysis:

1. If c > 2
log(6)

, and the system starts near (xa, ya) with x > 1
c
, then the

solution will converge to (xm, ym) from below.

2. If c > 2
log(6)

, and the system starts near (xa, ya) with x < 1
c
, then the

solution will converge to (xa, ya) from below.

3. If c < 2
log(6)

, and the system starts near (xa, ya) with x > 1
c
, then the

solution will converge to (xa, ya) from above.

4. If c < 2
log(6)

, and the system starts near (xa, ya) with x < 1
c
, then the

solution will converge to (xm, ym) from above.
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Figure S1: The behavior of the means and variances of the system described by (10)
with ε = 0.005. The system starts at ( 3im+ia

4 , ja) for c < c∗ = 2/ log(6), and it starts at
(ia − 20, ja) when c > c∗. The analytical results given by (13-18) (solid line for mixed
division and dashed line for purely asymmetric division) are compared with numerical
results (stars), for different values of c. (‘ss1’) stands for the mixed division solution, (‘ss2’)
stands for the purely asymmetric division solution, and (‘N’) stands for the numerical
results.
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Figure S2: Analogous graph as figure S1, except the system starts at (ia + 10, ja) for
c < c∗, and it starts at ( 3im+ia

4 , ja) for c > c∗.
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Numerical results. For each set of ε and c, we ran numerical simulations
starting near (xa, ya), and finishing either when the number of time steps
reached 2 · 106, or if any of the cell types went extinct. We then computed
the means and the variances of the cell population over the time-course of
each simulation. From figure S1, we observe that when the system starts near
(xa, ya) with x < 1

c
, the numerical results agree with the analytic results given

by cases (2) and (4) in the above stability analysis. As observed in figure S2,
the numerical results are consistent with the analytic results given by cases
(1) and (3) in the stability analysis when the system starts near (xa, ya) with
x > 1

c
.

4 Numerical simulations

The numerical simulations presented in this paper are set up in the fol-
lowing way. At each time-step, one of two events happen: either a SC di-
vides with probability L(i,j)

L(i,j)+D(i,j)
, or a differentiated cell dies with probability

D(i,j)
L(i,j)+D(i,j)

. In the case of a SC division, its nature is determined based on

the probabilities S(i, j) and P (i, j). In this algorithm, each time-step corre-
sponds to a cellular event (a division or a death). In other words, we have a
non-uniform clock which only advances if a biological event takes place.

This is in contrast with a real-time, physical clock, which continues “tick-
ing” even if no events take place. If we were to implement the latter, more re-
alistic simulation, we could use the well-known Gillespie algorithm, where the
probabilities of different events are determined as above, but the time-steps
between the events, ∆ti, are assigned according to an exponential distribu-
tion. The latter type of a simulation would present a picture of population
dynamics as it happens in physical time.

For our purposes, however keeping track of biological time is unnecessary.
We are only concerned with calculating the means and the variances of the
cell population, which are the same in our simulation and in the real-time
simulation just described. To show this, let us suppose that we need to
calculate the mean value of a stochastic variable fi, which stands for the
population size of interest at time-step i of our simulation. Then the mean
value obtained from our simulation after n time-steps is simply given by

〈f〉1 =

∑n
i=1 fi
n

.
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The value obtained from the simulation which keeps track of biological time
is given by

〈f〉2 =

∑n
i=1 fi∆ti∑n
i=1 ∆ti

.

The two expressions are equal because∑n
i=1 fi
n

∑n
i=1 ∆ti
n

=

∑n
i=1 fi∆ti
n

,

where the left hand side is 〈f〉1〈∆t〉1, and the right hand side is 〈f∆t〉1.
Because the two variables are independent, this equality holds.

The same argument holds for the moments of the variable fi, where for
kth moment we simply consider the mean value of the quantity (fi)

k.

5 Modeling micro-injuries

Let us suppose that as a result of micro-injuries, both SCs and differentiated
cells experience a certain level of death, which in the ODE framework can
be expressed as the following modification of system (1-2):

ẋ = LS(1− P )− LSP − Aη = LS(1− 2P )− Aη, (19)

ẏ = 2LSP + L(1− S)−D −Bξ, (20)

where functions Aη and Bξ describe the effect of the micro-injuries on the
populations of SCs and differentiated cells respectively, and in general can
depend on x and y. It is convenient to use the constants A and B to measure
the magnitude of the cell death.

5.1 Loss of differentiated cells

Let us start our general analysis with the case where A = 0. For example,
removing a fixed fraction of the differentiated cell population (as modeled in
figure 10 of the main text) corresponds to

A = 0, ξ = y.

As long as A = 0, at steady state we have, as before, P = 1/2, and the
equilibrium is defined by

Pi0,j0 = 1/2, Li0,j0 −Di0,j0 = ξi0,j0 .
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(compared with solution (3)). This shows that when SCs are not killed by
micro-injuries, the percentage of symmetric divisions, S, does not influence
the equilibrium. Let us denote the derivatives of the equilibrium values of
SCs and differentiated cells with respect to S by xS and yS respectively. We
have

xS = yS = 0.

The actual equilibrium values can be modified by the presence of the
micro-injuries. To find out the dependence of the equilibrium number of
cells on the intensity of cell death, we write down the equations that define
the equilibrium of system (19-20):

P (x, y) =
1

2
, (21)

L(x, y)−D(x, y) = Bξ(x, y). (22)

To be specific, we assume the following dependencies of the functions of their
variables at the equilibrium:

px > 0 py > 0, (23)

qx > 0, qy = 0, (24)

ξx = 0, ξy > 0. (25)

The first two lines above correspond to control system of type #5, and the
last line assumes that the rate of differentiated cell removal growth with their
numbers. Let us differentiate system (21-22) with respect to B, and denote
the derivatives of the equilibrium numbers of SCs and differentiated cells
with respect to B as xB and yB respectively. We have from the first equation

pxxB + pyyB = 0,

which means that xB and yB must have different signs. From equation (22)
we obtain

yB =
−ξ

Bξy + qxpy/px
< 0.

We conclude that the equilibrium number of SCs increases with the magni-
tude of the differentiated cell death rate, and the number of differentiated
cells decreases. This trend was observed for example in the system studied in
figure 10 of the main text. As the micro-injury intensity changed from 1% to
10% to 20%, the mean value of the differentiated cell population decreased.
This was factored in the calculations of the relative standard deviation, figure
10(d) of the main text.
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5.2 Loss of SCs

If SCs are directly affected (i.e. killed) by the micro-injury process, the situa-
tion changes. In this case, the population level at the equilibrium becomes a
function of S. To demonstrate this, we write down the equations that define
the equilibrium of system (19-20):

P (x, y) =
1

2
− 1

S

Aη

L
, (26)

L(x, y)−D(x, y) = Aη(x, y). (27)

We will assume that conditions (23-24) hold, and add the following assump-
tion:

ηx > 0, ηy = 0,

that is, the rate of SC removal growth with their numbers. Differentiating
equation (27) with respect to S, we obtain

qxxS = BηxxS,

which in the general case implies that

xS = 0,

that is, the equilibrium number of SCs does not depend on the frequency
of symmetric divisions. Further, differentiating (26) with respect to S, we
obtain that

yS =
Aη

2LS2py
> 0. (28)

In other words, the equilibrium number of differentiated cells increases with
S. To investigate the dependence of the equilibrium values of the cell numbers
on the level of SC death, A, one would need to differentiating equations (26-
27) with respect to A, similar to the method used before.

The calculations presented here are illustrated by the following example.
In figure S3 we assumed that in 0.1% of the updates, the number of SCs is
reduced by 1%, that is, in system (19-20),

η = x, B = 0,

where B is a constant. In figure S3(a) we set c = 0, which corresponds to
purely asymmetric divisions. As can be seen, this system cannot tolerate
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Figure S3: Modeling micro-injuries by introducing a 1% increase in the number of SCs
in 0.1% of randomly chosen temporal updates. The numbers of differentiated and SCs are
plotted as functions of time, for a typical run, with (a) S = 0 and (b) S = 1. Parameter
h = 0.3 was used in equations (11-12) of the main text.

SCs death because there is no mechanism to replenish SCs. In this case, the
number of SCs steadily decreases, and the population of differentiated cells
also plunges. There is no biologically relevant steady state in this system.
Figure S3(b) shows a very different behavior. Now, a significant percentage of
SC divisions are symmetric. In such cases, the micro-injuries experienced by
the system do not lead the a catastrophic decrease in cell numbers. Instead,
the system finds a quasi-steady state solution. The levels of differentiated
cells at equilibrium is an increasing function of S, see figure S4.

5.3 Numerical examples

Apart from the example presented in the main text (see figure 10 of the
main text), we have tested several alternative models of micro- injuries. In
one model, we start with the following specific control functions:

LI,J =
tanh(εI)

2 tanh(εI) + 0.4
, PI,J = tanh(εI + 0.1εJ), (29)

DI,J = h+ 0.01εJ, SI,J = c. (30)

To model micro-injuries, instead of removing cells from the system, we in-
crease the death rate of the differentiated cells in a fixed fraction of updates.
Figure S6 demonstrates the resulting behavior. In figure S6(a), all divisions
are asymmetric, and in figure S6(b) divisions are purely symmetric. Again,
we can see that symmetric divisions lead to a smaller variance.
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Figure S4: Modeling micro-injuries by introducing a 1% increase in the number of SCs
in 0.1% of randomly chosen temporal updates. The expected population sizes of SCs and
differentiated cells are plotted as functions of S, the frequency of symmetric divisions.
Parameters are as in figure S3.

Figure S5: Modeling micro-injuries by introducing a small percent (1% or 0.5%) decrease
in both SCs and differentiated cells in 0.5% or updates (randomly chosen). The relative
standard deviation of the number of differentiated cells is plotted as a function of the
proportion of symmetric divisions, S. The percentage decrease is marked above the lines.
The rest of the parameters are as in figure S3.
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Figure S6: Modeling micro-injuries by increasing the death rate of differentiated cells in
40% of temporal updates (randomly chosen): 60% of the time, h = 0.3 is used, and 40%
of the time, h = 0.4 is used in equation (30). The numbers of differentiated cells and SCs
are plotted as functions of time, for a typical run. The percentage of symmetric divisions
is 0 in (a) and 100% in (b). Increasing S from 0 to 1 for these parameters results in an
approximately 3-fold decrease in the variance of the differentiated cell population.

In other variants of the model we also included a reduction in the number
of SCs. We considered a model which included a small percentage decrease
in both the numbers of SCs and differentiated cells, such that

η = x, ξ = y, A = B.

Again, in this case the steady state values of cells increase with S, as shown
in equation 28. In figure S5 we show the relative standard deviation of the
numbers of differentiated cells as a function of S, for two different levels of
micro-injuries. As before, the relative size of fluctuations in the population
is the largest for small values of S (asymmetric divisions).

Finally, we performed a study of a similar model with an additional ran-
dom increase in the death rate of differentiated cells also included. Figure
S7 shows simulations where at a fraction of temporal updates, we remove a
small fraction of both SCs and differentiated cells, and also increase the death
rate of SCs. In this case, increasing the symmetry of divisions does not only
stabilize the system but also increases the steady state level of differentiated
cells, as in equation 28.
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Figure S7: Modeling micro-injuries by introducing a 0.005% decrease in the number of
both stem and differentiated cells in 20% of temporal updates (randomly chosen), and
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typical run. In (a), most divisions are asymmetric (S = 0.1), and in (b), all divisions are
symmetric (S = 1). (c,d) The variance and the mean of the number of differentiated cells
as a function of the percentage of symmetric divisions.
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6 Modeling the effect of hair follicles

6.1 An exogenous source of SCs

It can be argued that hair follicles can serve as alternative (backup) source
of differentiated cells in haired skin, such as back skin, ear skin, and tail
skin. Lack of hair follicles as a backup SC source puts all the “pressure” on
epidermal SCs to compensate for all types of cell loss. To include the hair
follicles as an exogenous source of SCs, we consider the following model:

ẋ = LS(1− P )− LSP + E − Aη = LS(1− 2P ) + E − Aη, (31)

ẏ = 2LSP + L(1− S)−D −Bξ, (32)

where E(x, y) is the influx of SCs from the hair follicles. We will assume that

Ex < 0, Ey = 0,

that is, the hair follicles respond to the lack of SCs in the epidermis by
providing a back-up supply. In the simplest case where A = B = 0, we can
use the previous analysis of system (26-27) to obtain that

xS = 0, yS < 0.

In other words, the number of differentiated cells at the equilibrium decays
with the frequency of symmetric divisions. This result holds for A > 0, as
long as E > Aη at the equilibrium, that is, the input from the hair follicles is
greater than the loss from SC death. (In the opposite case, where E < Aη,
the equilibrium number of the differentiated cells is a growing function of S.)

This may explain the tendency of ear/tail epidermis to have fewer sym-
metric divisions, compared to the footpad epidermis. In the tail/ear epider-
mis, hair follicles serve as an exogenous source of SCs, which corresponds
to E > Aη. In this case, the number of differentiated cells is highest for
asymmetric divisions. On the contrary, in the footpad, hair follicles are ab-
sent, and in the presence of SC death, we have the opposite scenario where
E < Aη. Thus, the number of differentiated cells is the highest for S = 1,
that is, the lack of hair follicles promotes symmetric SC divisions.

This argument works if we assume that (1) maximizing the equilibrium
number of differentiated cells is a valid evolutionary objective, and (2) a
certain level of SC death is present in the footpad. In the absence of SC
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Figure S8: Models combining the effects of hair follicles and micro-injuries. The numbers
of differentiated and SCs are plotted as functions of time, for a typical run, with (a,c)
S = 0 and (b,d) S = 1, for models of (a,b) the tail/ear and (c,d) the footpad epidermis.
Equations (11-12) of the main text were used with parameters h = 0.3, ε = 0.05. In figures
marked as “Footpad” we used E = 0 (no hair follicles), and micro-injuries were modeled
by removing 10% of differentiated cells in 0.01% of randomly chosen updates. Figures
marked as “Tail/ear” contain no micro-injuries, and the hair follicles were included in the
form of the nonzero E term, equation (12) of the main text.
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Figure S9: The role of hair follicles and micro-injuries in epidermal turnover. The
relative standard deviation of the number of differentiated cells (

√
V ar(J)/E(J)) is plotted

against the fraction of symmetric divisions, in the models for “Tail/ear” and “Footpad”.
Parameters are as in figure S8.

death (that is, if we assume that micro- injuries do not remove SCs directly),
we have E = Aη = 0 in the footpad. In this case, the steady state level
of the differentiated cells is independent of S, and optimization for division
symmetry can happen over a different criterion, for example, to minimize the
variance. Again, in this case a larger proportion of symmetric divisions is
advantageous, as argued in the main text. A numerical example of a system
with and without hair follicles is shown in figures 11 and 12 of the main text.

6.2 Combining the effects of the hair follicles and micro-
injuries

In the main text the two factors, the hair follicles and the micro-injuries, are
analyzed separately. It is easy to combine them. Let us compare the footpad
epidermis model, where no hair follicles are present and an increased level
of micro-injuries is observed, with the ear/tail epidermis model, where hair
follicles serve as an external source of SCs and micro-injuries are insignifi-
cant. Figure S8 shows typical trajectories for a model of the tail/ear (in the
presence of hair follicles, and no micro-injuries), as wells a model of the foot-
pad (no hair follicles, in the present of micro-injuries). Figure S9 summarizes
the results. For the tail/ear model, the relative standard deviation is mini-
mized by asymmetric divisions, and for the footpad model, it is minimized
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by symmetric divisions.

Regardless of S, the relative size of fluctuations in systems with hair
follicles is lower due to the increase in the overall population size, which
in turn is a consequence of the exogenous SC input. A decrease in the
steady state population of differentiated cells is also observed in the presence
of micro-injuries (modeled as a SC death or differentiated cell death). A
reduction in the steady state level due to the absence of an extra source (E =
0) and an additional death terms (A > 0 and/or B > 0) are mathematically
necessary. This however appears to be in contradiction with the observation
that in the mouse footpad epidermis, the differentiated cell layer is thicker
than that in the ear/tail epidermis. We therefore must assume the presence
of other factors, unrelated to the SC division symmetries, that increase the
thickness of the epidermis in the footpad to compensate for the lack of hair
follicles and an increased death rate. These mechanisms remain beyond the
framework developed in this paper.
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