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A Pooling of Noisy Threshold Units - Mathe-

matical Considerations

Integral Expression

We pool N channels (or processes) with independent Gaussian noise in each
channel,

V =
1

N

N∑

i=1

[V0 + σξi −∆0]
+

(A1)

where [·]+ ≡ max (·, 0) denotes half-wave rectification, and ∆0 is a threshold.
The ξi are random numbers drawn from the standard normal distribution. It is
scaled by σ and shifted by voltage V0, such that the resulting distribution has
an effective mean at x ≡ V0 −∆0 with standard deviation σ.
The result for V from pooling can be calculated by

V (x) =

∫ ∞

−∞
[ξp(ξ)dξ]

+
=

1

σ
√
2π

∫ ∞

−∞

[

ξe−(ξ−x)2/2σ2

dξ
]+

(A2)

Because of exp(·) ≥ 0 we can drop half-wave rectification,

V (x) =
1

σ
√
2π

∫ ∞

0

ξe−(ξ−x)2/2σ2

dξ =
1

σ
√
2π

∫ ∞

−x

(z + x)e−az2

dz (A3)

where we substituted the integration variable z ≡ ξ − x and furthermore
defined a := 1/2σ2. We split this integral in two parts,

V (x) =
1

σ
√
2π









∫ 0

−x

(z + x)e−az2

dz

︸ ︷︷ ︸

I(x)

+

∫ ∞

0

(z + x)e−az2

dz

︸ ︷︷ ︸

=σ2+xσ
√

2/π









(A4)

Now, continuing with solving I(x),

I(x) =
∫ 0

−x

ze−az2

dz

︸ ︷︷ ︸

I1(x)

+ x

∫ 0

−x

e−az2

dz

︸ ︷︷ ︸

=σx erf(x/σ
√
2)
√

2/π

(A5)

where erf(x) = 2√
π

∫ x

0
exp(−t2)dt is the error function, and

I1(x) =
∞∑

n=0

(−a)n
n!

∫ 0

−x

z2n+1dz = −
∞∑

n=0

(−a)n
(2n+ 2) · n!x

2n+2 (A6)

where the power series definition of the exponential function was used. For
numerical computation, it is sufficient to sum the first terms of the series. Fi-
nally, the complete result:
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V (x) =
x

2

(

1 + erf(
x

σ
√
2
)

)

+
1

σ
√
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[

σ2 −
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(−a)n
n!

· x2n+2

(2n+ 2)

]

(A7)

=
x

2

(

1 + erf(
x

σ
√
2
)

)

+
σ√
2π
e−x2/2σ2

Where the last equation is from references [2, 3], and can be obtained via a
software for symbolic mathematics (e.g. Mathematica). The equality of the last
two equations was verified by means of computer simulations.
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(a) l/v = 10ms (b) l/v = 30ms (c) l/v = 50ms

Supplementary Figure A1 | Illustration of the impact of excitatory

noise. The figures show the membrane voltage Equation (6) with noise in the
excitatory pathway according to Supplementary Equation (B1) (dashed curve;
noise amplitude σe = 0.25: excitatory and inhibitory noise) and without (solid
violet curve: only inhibitory noise), for three representative half-size to velocity
ratios (a) l/v = 10ms; (b) l/v = 30ms (c) l/v = 50ms. The time of collision tc
is indicated by a dashed vertical line in each plot. Excitatory noise distorts the
n-ψ response curves and shifts their maxima slightly towards tc (by 2, 3 and
14ms, respectively). With twice the excitatory noise σe = 0.50, the maxima
would shift towards tc by 0, 7 and 19ms, respectively, relative to having no
excitatory noise, but only inhibitory noise. Corresponding fits of the η-function
are shown as well, with α, the root mean squared error (rmse), and the degree-of-
freedom adjusted coefficient of determination (R2) being indicated in the figure
legends.

B Noise in the Excitatory Pathway

In the locust visual system, noise increases along the excitatory pathway from
the photoreceptors to the LGMD [4]. But to the best of our knowledge there are
no data available about the noise levels in the inhibitory pathway. The results
of the simulations shown in this study, however, depend critically on noise in the
inhibitory pathway. This leads to the question about the impact of excitatory
noise on our results. We verified that excitatory noise will not interfere strongly
with the predictions of n-ψ. In order to illustrate, we replace Equation (10) by

gexc(t) =
γe
Ne

Ne∑

i=1

[ϑ(t) + σexc · ξi −∆e]
+
, (B1)

where the subscript ”e” denotes the corresponding noise parameters for the
excitatory pathway. Supplementary Figure A1 shows that n-ψ peaks slightly
later in the presence of excitatory and inhibitory noise, in contrast to having
only inhibitory noise. In addition, the n-ψ response gets slightly distorted when
having noise in the excitatory pathway.
One important signature of the LGMD is the linear dependence of trel ≡ tc−tmax

on l/v [5] (Eq. 2). Supplementary Figure A2a shows that the linear relationship
remains intact in the presence of excitatory noise. In addition, the line fit slopes
α vary only weakly as a function of the excitatory noise level σe, compared
with similar variations of the inhibitory noise level (Fig. 4b). Supplementary
Figure A2b repeats the simulation from Supplementary Figure A2a with a bigger
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(a) ∆e = 0.25 (b) ∆e = 0.9

Supplementary Figure A2 | Excitatory noise does not compromise

the linear dependence of trel from l/v. In both figures, the inhibitory
noise level was left constant at σ = 0.25, and the excitatory noise level σe
varied. (a) Different symbols for data points trel versus l/v represent different
values of excitatory noise σe (see figure legend). The continuous lines represent
corresponding line fits (linear regression) to data points with the same σe. The
line slopes α are indicated in the figure legend (where “normal” means that the
residuals are normal-distributed). The α do not depend strongly on σe. (b)
Setting a different value for the threshold ∆e = 0.9 does not compromise the
linearity either, but causes only a decrease of the overall slopes α relative to
those with ∆e = 0.25.

threshold ∆e. This causes an overall decrease of the α, but does not affect
linearity.
If the equilibrium solution Equation (7) is used instead of explicitly integrating
the differential Equation (6), then the linear dependence of trel on l/v starts to
deteriorate for either ∆e > 0.6 (with fixed σe = 0.5) or σe > 1.6 (with fixed
∆e = 0.25).
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(a) l/v = 10ms (b) l/v = 30ms (c) l/v = 50ms

Supplementary Figure B1 | Integration time constant dt = 500µs ver-

sus dt = 100µs. The figure shows the membrane voltage (=n-ψ-response; Eq.
6) which is integrated with the default integration step size dt = 500µs (solid
violet curve) and with dt = 100µs (dashed curve). Corresponding fits of the
η-function are shown with green and yellow curves, respectively. α, the root
mean squared error (rmse), and the degree-of-freedom adjusted coefficient of
determination (R2) of the fitted η-function are indicated in the legends. Colli-
sion time is indicated by a vertical dashed red line in each plot. The integration
method was Runge-Kutta 4th order. The figure demonstrates that bigger values
of dt move the response curves closer to the equilibrium solution V∞ (see next
figure) and thus the curves peak earlier. Each figure panel shows a different
halfsize-to-velocity ratio l/v.

(a) l/v = 10ms (b) l/v = 30ms (c) l/v = 50ms

Supplementary Figure B2 | Integration with dt = 500µs versus

steady-state V∞. This figure compares the n-ψ-responses (violet curve: Eq.
6 integrated with dt = 500µs) for different halfsize-to-velocity ratios l/v with
the equilibrium solution V∞ (dashed curve: Eq. 7). The fit of the η-function
to the equilibrium n-ψ-responses is represented by a yellow curve. The green
curve is the fit to the numerically integrated n-ψ-function (see previous figure
for further details). The figure suggests that the default integration step size
dt = 500µs with nrelax = 250 relaxation steps is very close to the equilibrium
solution. Collision time is indicated by a vertical dashed red line in each plot.

C Integration time constant dt and nrelax

After each integration step of the membrane potential (=n-ψ -response; Eq. 6)
with integration step size dt, a number of relaxation time steps nrelax is inter-
calated. During this “relaxation phase”, the excitatory and inhibitory synaptic
input (Eqs. 10 and 11, respectively) are held constant. If a suitably small inte-
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(a) dt = 100µs (b) dt = 500µs

Supplementary Figure B3 | Influence of relaxation steps nrelax on

the linear dependence of trel from l/v. Different symbols correspond to
different values of nrelax as indicated in the figure legends. The continuous lines
represent corresponding linear regressions to the data points. The resulting line
slopes α are indicated in the legends as well (“normal” means that the residuals
are normal-distributed). (a) With an integration step size of dt = 100µs, the
number of relaxation time steps nrelax have a notable influence on the line
slopes, because the n-ψ model is far from its equilibrium solution. Taking more
relaxation time steps will move the response maxima of n-ψ away from tc (i.e.,
to earlier times), thus trel increases. (b) With the default integration step size
dt = 500µs, n-ψ is already close to its steady-state, and therefore the slope
values α depend only weakly on nrelax.

gration time constant dt is chosen, it is therefore possible to study the responses
of n-ψ close or far from the equilibrium state. In reference [1], stimulation far
away from the equilibrium state has been put forward as an explanation of why
the response peak of the LGMD neuron could occur after collision time tc.
Here we do not repeat those numerical experiments, but are rather interested
to select dt (and nrelax) such that we are reasonably close to the equilibrium.
In Supplementary Figure B1 the n-ψ-responses (nrelax = 250) with dt = 100µs
(i.e., somewhat away from equilibrium) are compared with dt = 500µs (close to
equilibrium). Supplementary Figure B2 compares the n-ψ-responses (default:
dt = 500µs and nrelax = 250) with the steady-state solution (V∞), and con-
firms that the default values are close to the equilibrium state. Supplementary
Figure B3 illustrates the influence of nrelax on the maxima of n-ψ -responses
for dt = 100µs and dt = 500µs, respectively, and confirms once more that the
latter (default) value is close to the equilibrium state.
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Supplementary Figure C1 | Fitting explained. This figure introduces the
symbols and curves that are used for presenting the fitting results. The light
gray curve are the raw data from a respective publication. The publication is
either denoted by a symbol (Supp. Figs D2 & D3), or a corresponding label
(Figure 6a; Supp. Figs D5 to D23), see figure key. In the summary plots (Supp.
Figs D2 & D3), data from the same paper that have the same graphical symbol
are further distinguished by their respective halfsize to velocity ratio l/v. Only
in a few occasions we have ambiguities (i.e. two data sets from one paper have
equal l/v ratios). In the individual fits (Figure 6a; Supp. Figs D5 to D23),if
a light gray curve is shown at the same time with a dark gray curve, then
the latter curve corresponds to smoothed raw data. Otherwise, the dark gray
curve are the raw data. The vertical red line indicates the projected time of
collision. The fitting parameters for n-ψ are in pink fonts, and those of the
η-function in blue fonts. Here, “fit 2 raw” means that n-ψ was fitted to the raw
data, and η was fitted to the smoothed data (“fit 2 smooth”). The references
for the labels: NakHon10=[6], PerGab09=[7], GueGra06=[8], GaKrKo02=[9],
GaKrLa99=[5], GaMoLa01=[10], HaGaLa95=[11], and RiSi97=[12].

D Fitting the n-ψ and the η-Function to Neu-

ronal Recordings

Collision-sensitive neurons with similar response properties are found in the
brains of many mammals and insects [13]. A particular class of these neurons
reveal a response maximum when an object approaches the eye with constant
velocity. The η-function was the first model for describing the response proper-
ties of these neurons [11]. It is commonly used for fitting corresponding neuronal
recording curves (of “η-type” neurons). The purpose of this section is to jux-
tapose fitting results of the η-function with those of n-ψ. To this end, 36 data
sets from eight publications were scanned and fitted (Supplementary Fig. C1a),
analogous to Supplementary Section S4 in reference [13]. Thus, many previously
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label(s) fitted function fitting parameters
TR3, LM3 η {A,α, o}
TR4, TR41 η {A,α, δ, o}

TR2 n-ψ {A, o}
TR32, TR40 n-ψ {A, β, γ, σ, o}

TR444 n-ψ (Fig. 7a) {σ,∆0}
TR44 n-ψ (Fig. 7b) {β, σ,∆0}
TR50 n-ψ {A, β, γ, σ,∆0, o}

Table D1 | Labels and fitting parameters The table relates the set of fitted
parameters to the corresponding labels as they are indicated in the legends. TR
means that the Trust region algorithm was used for fitting [14, 15]. LM means
that the Levenberg-Marquardt algorithm was used [16])

published data sets are united with a common fitting framework, what allows
for an unequivocal and unbiased evaluation of the fitted functions. The data
sets covered halfsize-to-velocity ratios from l/v = 5ms to 50ms.

D.1 Details for Fitting the η-Function

The fitting model for the η-function was (cf. Eq. 1)

AΘ̇(t+ δ)e−αΘ(t+δ) + o (D1)

with A = amplitude, δ = temporal delay, o = offset, = Θ angular size, Θ̇ =
angular velocity, and α is a weight. For each experimentally obtained response
curve from the LGMD, two parameter sets combined with two fitting algorithms
were tested. The best result in terms of goodness of fit measures was then
selected from the four combinations. For Supplementary Equation (D1), the
parameter set to be determined was either {A, δ, o, α} or {A, o, α} (with δ = 0).
The fitting method was either Trust-Region (legend label “TR”, [14, 15]), or
Levenberg-Marquardt (“LM ”, [16]). The respective fitting procedures are indi-
cated in the figure legends by corresponding labels which are listed in Table D1.

D.2 Details for Fitting the ψ-Model

For the purpose of comparison, fitting results for the ψ-model (see reference [1])
are shown in Supplementary Figure D2. The fitting model for ψ is based on
Equation (7):

A · V∞(t) + o (D2)

with A = amplitude and o = offset. The ψ-model is defined by assigning
excitatory and inhibitory input, respectively, in Equation (7) as follows:

gexc(t) = Θ̇(t) (D3a)

ginh(t) = [γΘ(t)]
e

(D3b)

where γ = synaptic weight and e is an exponent (notice that ψ was fit without
temporal delay). Both the Trust-Region algorithm [14, 15] and the Levenberg-
Marquardt algorithm were used [16].
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D.3 Details for Fitting the n-ψ-Model

For fitting n-ψ, only the Trust-Region algorithm was used [14, 15]. The fitting
model for n-ψ is based on Equation (7):

A · V∞(t) + o (D4)

with A = amplitude and o = offset. No lowpass filtering was employed for
fitting, thus ζ0 = ζ1 = 0 in Equations (8) and (9), respectively. The n-ψ-model
is defined by assigning excitatory and inhibitory input, respectively, according
to Equations (10) and (11). However, Equation (11) cannot be used readily
with a conventional fitting algorithm, because of thresholding. For this reason,
we used the explicit solution instead, which is smooth (Supplementary Eq. A7:
V ≡ ginh and x ≡ ϑ). The legend labels in the fitting results relate to the fitted
parameters as shown in Table D1. For example, “TR50” means that parameters
{A, β, γ, σ,∆0, o} were determined by the Trust-Region algorithm, and “TR40”
refers to the same set of parameters but excluding ∆0. In the latter case, ∆0

was held constant at 0.9.
Why fitting the noise level σ and not keeping it constant instead? The under-
lying idea is to use the n-ψ-model to measure the noise level directly from the
different data sets. The noise level ideally should settle around some value then.
However, different factors such as body temperature or stimulation conditions
(light level, stimulus velocity) could influence the effective noise level across
different studies [4, 13], so some spread could be expected around the average
value of σ.

D.4 Summary Results

We fitted the η-function, the ψ-model, and the n-ψ-model to the data sets ref-
erenced by Supplementary Figure C1. We then plotted the ‘important” fitting
parameters of these models versus l/v (“important” are those model parameters
which determine the location of the activity maximum). Supplementary Figure
D2a shows the dependence of α of the η-function from l/v. The median value
±1σrob is 3.1± 0.7, where the α were more scattered for smaller l/v.
Supplementary Figure D2b shows the exponent e of the ψ-model versus l/v,
where e = 2.7± 0.5 (median ±1σrob). Although most of the values fall approxi-
mately between 2 and 3.5, occasionally much bigger values were obtained across
the whole l/v domain.
For the n-ψ -model, we get the median noise level σ = 0.4±0.1 (Supplementary
Fig. D3a), and the median threshold ∆0 = 0.9±0.1 (Supplementary Fig. D3b).
Note, however, that ∆0 was held constant 0.9 while fitting as far as possible. If
∆0 was to be determined by the fitting algorithm, then these values are often
different from 0.9. This variation in ∆0 is reflected also in the σ: The highest
deviations of σ from its median value are observed when ∆0 was fitted at the
same time.
We asked whether some parameters of the different models correlated across the
fitted data. Correlations between two parameters could be suggestive of that
they play similar roles in the considered models.
Supplementary Figure D4 visualizes the correlations between most variables.
In order to achieve a better visualization, positive correlations are displayed
above the diagonal (=self-correlations), and negative values below (cf. figure
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(b) ψ-function: exponent e

Supplementary Figure D2 | Fit results I The figure shows the fitting results
of the important model parameters of η and ψ, respectively, to the neuronal data
sets which can be identified by their symbols (cf. Fig. C1): (a) α versus l/v (η-
function fit, Eq. D1). (b) The exponent e versus l/v (ψ-function fit, Eq. D3b).
The broken lines denote the median value if more than one value of α (or e) was
available at some l/v. Green symbols mark values which were smaller than two
times the robust estimation of spread (”σrob”) via the median absolute deviation
(”MAD”), that is σrob ≡ MAD/0.6745 (e.g. [17]). For both function, the green
symbols appear to be reasonably independent from l/v. Since the α and e,
respectively, determine the location of the LGMD’s response maximum, their
approximate independence from l/v may indicate a specific tuning of the LGMD
to certain ecological conditions. In agreement with the latter interpretation, the
bullfrog-data (six-pointed stars; [6]) seem to suggest much bigger values – but
this has to be confirmed with a bigger sample size.

legend for more details). No correlation value was sufficiently high in order to
suggest a possible link between any parameter pair. The highest correlation
was −0.51 between e and σ, and the correlation between σ and ∆0 was 0.77.
The relative high correlation between σ and ∆0 can be explained by the fitting
procedure, where strong co-variations can be observed between both values in
Supplementary Figure D3 if ∆0 and σ were fitted together (compared to holding
∆0 constant at 0.9). Furthermore, it is likely that the low correlation values
are a consequence of our sample size being too small (36 data sets), because
statistical variations in the fitting results did not average out.
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(a) n-ψ-function: σ
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(b) n-ψ-function: ∆0

Supplementary Figure D3 | Fit results II The figures show fitting results
of two n-ψ-parameters: The noise level σ and the threshold ∆0. σ was fitted
rather than being set to some fixed value in order to “measure” noise levels
from the the neuronal data sets (identifiable by their symbols, see Fig. C1).
∆0 was only fitted if goodness of fit measures with a fixed ∆0 were poor. (a)
Noise level σ versus l/v (n-ψ-function fit, Eq. 11). The median noise level
(here dimensionless) is σ = 0.4± 0.1 (mean ± 1 SD), what should be compared
with the experimentally found values from ref. [4] (p. 1071: mean spontaneous
noise levels relative to rest in photoreceptors = 0.19mV, LMCs = 0.4mV, and
LGMD=1.05mV). (b) Threshold ∆0 versus l/v (n-ψ-function fit, Eq. 11). The
broken lines denote the median value if more than one value of σ (or ∆0) was
available at some l/v. Green symbols mark values which were smaller than two
times the robust estimation of spread (”σrob”) via the median absolute deviation
(”MAD”), that is σrob ≡ MAD/0.6745 (e.g. [17]).
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Supplementary Figure D4 | Fit results III: Correlations This figure dis-
plays the correlations between various model parameters. Positive correlations
are above the diagonal (= white squares), and negative correlations are shown
below. Labels: LV = l/v, diameter dia = 2l; β, A and γ refer to the ψ-model,
while n-β, n-A and n-γ refer to n-ψ. The highest correlation (0.9) occurs be-
tween β and A of the ψ model. For n-ψ, the correlation between n-β and n-A
is 0.7, the correlation between σ and ∆0 is 0.77, and between n-A and LV it is
0.72. Furthermore, across the “important” model parameters, we found −0.51
between e and σ, −0.42 between α and σ, and finally 0.13 between α and e.
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D.5 Detailed Results

(This section is analogous to Supplementary Text S4 in reference [13]). The
Supplementary Figures D5 to D23 juxtapose the detailed fitting results of the
η-function with those of n-ψ . Each figure legend has a label that identifies the
data set via Figure Supplementary C1. Goodness of fit measures and model
parameters are indicated as well.
The target data for fitting are always plotted with a thick and dark gray line.
Occasionally the noisy neuronal data were smoothed. In that case, the original
neuronal data are drawn with a thin and light gray line, and the smoothing
method (along with its corresponding parameter value) is indicated as follows:

“robLR1st” robust local regression with weighted linear least squares and a 1st degree
polynomial model. The parameter specifies the span (= number of data
points for computing a smoothed value) in terms of percentage of total
number of data points.

“robLR2nd” robust local regression with weighted linear least squares and a 2nd degree
polynomial model. The parameter specifies the span in terms of percent-
age of total number of data points.

“sgolay” Savitzky-Golay method with polynomial degree 2. Parameter value p
means that the span in terms of number of data points is 2p+ 1.

If no clear response peak could be detected in the neuronal data, or if successive
data points were too separated in time, we proceeded with selecting a smoothing
algorithm. In that case, the tuning criteria were (i) to leave the original data
as less distorted as possible, and (ii) to assure, by visual inspection, a sound
location of the response peak in the smoothed data. This is to say that tmax

of the smooth data should coincide with where an experienced observer would
place it.
The label “fit 2 smooth” means that η or n-ψ were fit to the smoothed data,
and “fit 2 raw” means that the corresponding models was fitted to the non-
smoothed (= raw) data.
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Supplementary Figure D5 | NakHon10 Bullfrog rana catesbeiana, l/v =
10ms, figure 8 and 9, respectively, from reference [6]. The stimulus was a
35mm × 35mm black square (l ≈ 2cm), tmax at around 2600ms (400ms be-
fore tc). (Abscissa in units of seconds). Table D1 relates the legend labels to
the set of fitted parameters.

(a) l/v = 11.7ms (b) l/v = 46.7ms

Supplementary Figure D6 | GueGra06 Locust. Figure from reference [8].
The stimulus was a black disk. (Abscissa in units of seconds). Table D1 relates
the legend labels to the set of fitted parameters.
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(a) control (b) TTX-injection

Supplementary Figure D7 | GaKrKo02 Locust. Figure 4b from reference
[9], l/v = 10ms, black squares. (Abscissa in units of seconds). Table D1 relates
the legend labels to the set of fitted parameters.

(a) l/v = 10ms (b) l/v = 30ms (c) l/v = 50ms

Supplementary Figure D8 | PerGab09 Locust. Figure 4 from reference [7],
black disks. (Abscissa in units of seconds). Table D1 relates the legend labels
to the set of fitted parameters.

(a) l/v = 10ms (b) l/v = 20ms

Supplementary Figure D9 | GaMoLa01 I Locust. Figure 1c from reference
[10], looming squares. (Abscissa in units of seconds). Table D1 relates the legend
labels to the set of fitted parameters.
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(a) l/v = 30ms (b) l/v = 40ms

Supplementary Figure D10 | GaMoLa01 II Locust. Figure 1c from refer-
ence [10], looming squares. (Abscissa in units of seconds). Table D1 relates the
legend labels to the set of fitted parameters.

(a) l/v = 50ms (b) l/v = 50ms

Supplementary Figure D11 | GaMoLa01 III Locust. (a) Figure 1c, (b)
Figure 1b, both from reference [10], looming squares. (Abscissa in units of
seconds). Table D1 relates the legend labels to the set of fitted parameters.
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(a) l/v = 05ms (b) l/v = 10ms

Supplementary Figure D12 | GaKrLa99 I Locust. Figure 3 from reference
[5], dark squares. (Abscissa in units of seconds). Table D1 relates the legend
labels to the set of fitted parameters.

(a) l/v = 15ms (b) l/v = 20ms

Supplementary Figure D13 | GaKrLa99 II Locust. Figure 3 from reference
[5], dark squares. (Abscissa in units of seconds). Table D1 relates the legend
labels to the set of fitted parameters.
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(a) l/v = 25ms (b) l/v = 30ms

Supplementary Figure D14 | GaKrLa99 III Locust. Figure 3 from ref-
erence [5], dark squares. (Abscissa in units of seconds). Table D1 relates the
legend labels to the set of fitted parameters.

(a) l/v = 35ms (b) l/v = 40ms

Supplementary Figure D15 | GaKrLa99 IV Locust. Figure 3 from ref-
erence [5], dark squares. (Abscissa in units of seconds). Table D1 relates the
legend labels to the set of fitted parameters.
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(a) l/v = 45ms (b) l/v = 45ms

Supplementary Figure D16 | GaKrLa99 V Locust. (a) Figure 2, (b)
Figure 3, both from reference [5], dark squares. (Abscissa in units of seconds).
Table D1 relates the legend labels to the set of fitted parameters.

Supplementary Figure D17 | GaKrLa99 VI Locust, l/v = 50ms. Figure
3 from reference [5], dark squares. (Abscissa in units of seconds). Table D1
relates the legend labels to the set of fitted parameters.
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(a) l/v = 7ms (b) l/v = 30ms

Supplementary Figure D18 | RiSi97 I Locust, Figure 1B, C from reference
[12], approach speed v = 2m/s, (a) disk 17o (l ≈ 0.015m) (b) disk 62o (l ≈
0.06m). (Abscissa in units of seconds). Table D1 relates the legend labels to
the set of fitted parameters.

(a) l/v = 39ms (b) l/v = 10ms

Supplementary Figure D19 | RiSi97 II Locust, Figure 1D, E from reference
[12], 30mm×40mm black rectangle (l ≈ 0.02m) approach speed (a) v = 0.5m/s,
(b) v = 2m/s. (Abscissa in units of seconds). Table D1 relates the legend labels
to the set of fitted parameters.
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Supplementary Figure D20 | RiSi97 III Locust, l/v = 5ms. Figure 1F
from reference [12], 30mm× 40mm black rectangle (l ≈ 0.02m, approach speed
v = 4m/s). (Abscissa in units of seconds). Table D1 relates the legend labels
to the set of fitted parameters.

(a) l/v = 3.39ms (b) l/v = 6.77ms

Supplementary Figure D21 | HaGaLa95 I Locust, Figure 3Ai, Aii from
reference [11], 3cm black square (l ≈ 0.017m) approach speed (a) v = 5m/s, (b)
v = 2.5m/s. (Abscissa in units of seconds). Table D1 relates the legend labels
to the set of fitted parameters.
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(a) l/v = 2.26ms (b) l/v = 9ms

Supplementary Figure D22 | HaGaLa95 II Locust, Figure 3Bi, Bii from
reference [11], 4cm black square (l ≈ 0.023m) approach speed (a) v = 10m/s,
(b) v = 2.5m/s. (Abscissa in units of seconds). Table D1 relates the legend
labels to the set of fitted parameters.

(a) l/v = 6.77ms (b) l/v = 13.54ms

Supplementary Figure D23 | HaGaLa95 III Locust, Figure 3Ci, Cii from
reference [11], 6cm black square (l ≈ 0.034m) approach speed (a) v = 5m/s, (b)
v = 2.5m/s. (Abscissa in units of seconds). Table D1 relates the legend labels
to the set of fitted parameters.
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Supplementary Figure D24 | (See Figure 6 for details).
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Supplementary Figure D25 | (See Figure 6 for details).

D.6 Fit to Recording Traces

Figures 6, D24 and D25 show recording traces from the Descending Contralat-
eral Movement Detector neuron (DCMD). All five recording traces were kindly
provided by Steve Rogers [18]. The DCMD replicates the firing patterns of the
LGMD (cf. [19, 20, 21]). The spike traces (sampled at 104Hz) were full wave rec-
tified, lowpass filtered, and sub-sampled to 1ms resolution. Firing rates were es-
timated with Savitzky-Golay filtering (“sgolay”). The η-function and n-ψ were
fitted to these firing rate estimates with the Trust-Region algorithm [14, 15].
The respective parameter sets were {A,α, o} for the η-function (“TR:3”) and
{A, β, γ, σ, o} for n-ψ (“TR:32”). For all fits, the temporal delay was set to zero
(δ = 0).
The results can be summarized in just a few words: Both functions describe the
data excellently, and η fits them marginally better than n-ψ.
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(a) Θ̇ = 126o/s (b) Θ̇ = 63o/s

Supplementary Figure D26 | This figure is analogous to Figure 7 in the main
text. The difference is that instead of fitting n-ψ∞, here the dynamic version of
n-ψ (equation 6) was used. This of course implies transient effects, which are
reflected at the beginning by an increase in activity to a maximum. For this
reason, the (dynamic) n-ψ-predictions were manually adjusted (trial and error)
in order achieve a good match with the smoothed version of the recording curve
was achieved (the smoothed curves are not shown, though). The optimization
criterion was the maximization of the coefficient of determination (R2). Even
in this way n-ψ matches the original (i.e. unsmoothed) data better than the
η-function. All goodness of fit measures in this figure refer to the unsmoothed
data.
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E List of Symbols

symbol eq. description
Θ 12 angular size

Θ̇ 13 angular velocity or rate of expansion

Θ̈ 4 angular acceleration
t time (independent variable)
T delayed time T = t+ δ (used with η)
tc time to collision (constant)
v speed of approaching object (constant)
x0 initial distance at which the approach starts, x0 = v · tc (constant)
x(t) running distance until collision, x(t) = x0 − vt
l an object’s half diameter
l/v halfsize-to-velocity ratio
tmax time of activity maximum
Tmax delayed tmax, Tmax = tmax + δ
Θmax 14 Θmax ≡ Θ(Tmax), angular size at tmax + δ
trel = tc − tmax (time from peak to tc)
Trel = tc − Tmax

α 1 inhibitory strength of η-function...
2 ...and at the same time line slope of Trel versus l/v

δ 1 temporal delay between the peak at tmax and angular size Θ(tmax)...
2 ...and at the same time line intercept of Trel versus l/v

gp(t) 3 p-th order power law: gp(t) ≡ [log(η)]p

β 6 leakage conductance (n-ψ-model)
Cm 6 membrane capacitance (set to unity)
τm membrane time constant τm ≡ Cm/β
V 6 membrane voltage and output of n-ψ
V∞ 7 steady-state membrane voltage
Vrest 6 resting potential(n-ψ-model)
gexc 6 excitatory input to n-ψ where gexc ≥ 0
ginh 6 inhibitory input to n-ψ where ginh ≥ 0
Vexc 6 excitatory reversal potential; upper bound to V : V ≤ Vexc
Vinh 6 inhibitory reversal potential; lower bound to V : V ≥ Vinh

ϑ 8 low-pass filtered angular size

ϑ̇ 9 low-pass filtered rate of expansion (angular velocity)
ζ0 8 filter memory constant: no memory 0 ≤ ζ0 ≤ 1 infinite memory
ζ1 9 filter memory constant for lowpass filtering of angular velocity

∆tstim 8,9 stimulation time scale (temporal resolution of Θ & Θ̇)
γ 11 inhibitory synaptic weight (for n-ψ but also for fitting ψ, cf. eq. D3b)
N 11 pool size (number of inhibitory processes to be averaged)
ξi 11 Gaussian random variable with mean zero and standard deviation one
σ 11 standard deviation of noise in the inhibitory pathway
∆0 11 threshold

nrelax number of relaxation time steps (see Methods and Supp. Section C)
dt integration time step (see Methods and Supp. Section C)
γe B1 excitatory synaptic weight (excitatory noise, see Supp. Section B)
Ne B1 pool size (excitatory noise, see Supp. Section B)
σexc B1 standard deviation of noise in the excitatory pathway
∆e B1 threshold for excitatory noise
e power law exponent (used in Figure 3 and in the ψ-model Eq. D3b)
δ D1 temporal delay for fitting of the η-function
A D1 amplitude for fitting the η-function, ψ, and n-ψ
o D1 additive constant (“offset”) for fitting the η-function, ψ, and n-ψ

s26



References

1. Keil MS. Emergence of Multiplication in a Biophysical Model of a Wide-Field Visual
Neuron for Computing Object Approaches: Dynamics, Peaks, & Fits. In: Shawe-
Taylor J, Zemel RS, Bartlett P, Pereira FCN, Weinberger KQ, editors. Advances in
Neural Information Processing Systems 24; 2011. p. 469–477. Available from: http:
//books.nips.cc.

2. Miller KD, Troyer TW. Neural noise can explain expansive, power-law nonlinearities
in neuronal response functions. Journal of Neurophysiology. 2002;87:653–659.

3. Hansel D, van Vreeswijk C. How Noise Contributes to Contrast Invariance of Orienta-
tion Tuning in Cat Visual Cortex. The Journal of Neuroscience. 2002;22(12):5118–5128.

4. Jones PW, Gabbiani F. Impact of neural noise on a sensory-motor pathway signaling
impending collision. Journal of Neurophysiology. 2012;107:1067–1079.

5. Gabbiani F, Krapp HG, Laurent G. Computation of object approach by a wide-field,
motion-sensitive neuron. Journal of Neuroscience. 1999;19(3):1122–1141.

6. Nakagawa H, Hongjian K. Collision-Sensitive Neurons in the Optic Tectum of the
Bullfrog, Rana catesbeiana. Journal of Neurophysiology. 2010;104(5):2487–2499.

7. Peron S, Gabbiani F. Spike frequency adaptation mediates looming stimulus selectivity.
Nature Neuroscience. 2009;12(3):318–326.

8. Guest BB, Gray JR. Responses of a Looming-Sensitive Neuron to Compound and
Paired Object Approaches. Journal of Neurophysiology. 2006;95:1428–1441.

9. Gabbiani F, Krapp HG, Koch C, Laurent G. Multiplicative computation in a visual
neuron sensitive to looming. Nature. 2002;420:320–324.

10. Gabbiani F, Mo C, Laurent G. Invariance of angular threshold computation in a wide-
field looming-sensitive neuron. Journal of Neuroscience. 2001;21(1):314–329.

11. Hatsopoulos N, Gabbiani F, Laurent G. Elementary computation of object approach
by a wide-field visual neuron. Science. 1995;270:1000–1003.

12. Rind FC, Simmons PJ. Signaling of Object Approach by the DCMD Neuron of the
Locust. Journal of Neurophysiology. 1997;77:1029–1033.
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