Supporting Information

S7 TEXT. PSEUDOCODE FOR THE STABLE MOTIF CONTROL ALGORITHM AND THE STABLE MOTIF BLOCKING ALGORITHM

For the pseudocodes we assume that one starts with a target attractor \mathcal{A} , the logical functions $F = (f_1, f_2, \ldots, f_N)$ for the logical network model of interest, and the stable motif succession diagram for the logical network model of interest (see Fig. 2). A stable motif succession diagram can be represented as a directed graph $G_{diag} = (V_{diag}, E_{diag})$ together with a dictionary L. The nodes $V_{diag} = (v_{diag,1}, v_{diag,2}, \ldots, v_{diag,n})$ denote either stable motifs \mathcal{M}_i (if the node has at least one outgoing edge) or attractors \mathcal{A}_i (if the node has no outgoing edges). The dictionary L stores the type of object (stable motif or attractor) each node in V_{diag} denotes. Each edge in E_{diag} connects a stable motif with the stable motifs or attractors that can be obtained from the reduced network associated to it; if network reduction leads to a simplified network with at least one stable motif, then the edges points from the stable motif being considered to the stable motifs of the simplified network, otherwise, the edges point towards an attractor. It should be noted that stable motifs/attractors may be assigned to more than one node in V_{diag} . For example, in Fig. 2 there are three nodes that denote the motif $\{A = 0\}$, and two nodes that denote the attractor \mathcal{A}_2 .

A. Pseudocode for the stable motif control algorithm

Step 1: Identify the sequences of stable motifs that lead to \mathcal{A} . These can be obtained from the stable motif succession diagram (see Fig. 2) by choosing the attractor of interest in the right-most part and selecting all of the attractor's predecessors in the succession diagram. The stable motif diagram is represented by the directed graph $G_{diag} = (V_{diag}, E_{diag})$ together with the list L.

Algorithm 1: GETSEQUENCES(G, L, A)

```
comment: Sequences, SequencesLeft, and NewSequences are sets.
                  \mathcal{S} is a sequence (ordered list).
Sequences \leftarrow empty set
SequencesLeft \leftarrow empty set
for each v \in \text{sink} nodes of G
            comment: L(v) gives the motif or attractor denoted by v.
            if L(v) equals \mathcal{A}
  do
                         \begin{cases} \mathcal{S} \leftarrow \text{empty sequence} \\ \text{add } v \text{ to the beginning of } \mathcal{S} \end{cases}
              \mathbf{then}
                           add \mathcal{S} to SequencesLeft
repeat
     NewSequences \leftarrow empty set
    for each S \in SequencesLeft
                 v \leftarrow \text{first item of } \mathcal{S}
                if v has input nodes
                                for each v' \in \text{input nodes of } v
                                          \begin{cases} \mathcal{S}' \leftarrow \operatorname{copy} \mathcal{S} \\ \text{add } v' \text{ to the beginning of } \mathcal{S}' \\ \text{add } \mathcal{S}' \text{ to } NewSequences \end{cases}
       do
                   then
                   else add \mathcal{S} to Sequences
                 remove S from SequencesLeft
    for each \mathcal{S}' \in NewSequences
     do add \mathcal{S}' to SequencesLeft
until NewSequences is empty
return (Sequences)
```

Step 2: Shorten each sequence $S \in Sequences$ by identifying the minimum number of motifs in S required for reaching A and removing the remaining motifs from the sequence. This minimum number of motifs can be identified from the stable motif succession diagram (Fig. 2); they are the motifs after which all consequent motif choices lead to the same attractor A.

Algorithm 2: SHORTENSEQUENCES1(G, L, A, Sequences)

```
comment: ShortenedSequences1 is a set.
                 \mathcal{S}' is a sequence (ordered list).
                 pathFound is a Boolean variable
ShortenedSequences1 \leftarrow empty set
for each S \in Sequences
          \mathcal{S}' \leftarrow \operatorname{copy} \mathcal{S}
           for each v \in S in reverse order
                      pathFound \leftarrow false
                      for v' \in \text{sink} nodes of G
                                 comment: L(v') gives the motif or attractor denoted by v'.
                                  if L(v') is not \mathcal{A}
                                              \begin{cases} \mathbf{if} \text{ there exists a directed path from } v \text{ to } v' \\ \mathbf{then} \begin{cases} pathFound \leftarrow \mathbf{true} \\ exit \mathbf{for} \text{ loop} \end{cases} \end{cases}
                         do
             do
  do
                                    \mathbf{then}
                      if pathFound
                         then exit for loop
                         else remove v from \mathcal{S}'
           if ShortenedSequences1 does not contain \mathcal{S}'
           then add \mathcal{S}' to ShortenedSequences1
return (ShortenedSequences1)
```

Step 3: For each stable motif state $\mathcal{M} = (\sigma_{m_1} = b_{m_1}, \sigma_{m_2} = b_{m_2}, \dots, \sigma_{m_l} = b_{m_l})$ corresponding to node v, find the subsets of stable motif's states $O = \{M_i\}, M_i \subseteq \mathcal{M}$ that, when fixed in the logical model, are enough to force the state of the whole motif into \mathcal{M} . At worst, there will only be one subset, which will equal the whole stable motif state \mathcal{M} . If any of these subsets is fully contained in another subset, remove the larger of the subsets. In each stable motif states obtained, that is, $\mathcal{S} = (\mathcal{M}_1, \dots, \mathcal{M}_L)$.

Algorithm 3: SEQUENCESWITHMOTIFCONTROLSETS(*ShortenedSequences1*, *SequenceDictionary*, *F*, *L*)

comment: $F = (f_1, f_2, \ldots, f_N)$ contains the Boolean functions of the logical model. ShortenedSequences2 is a set. O and Subsequence are sequences (ordered lists). $ShortenedSequences2 \leftarrow empty set$ for each $S \in ShortenedSequences1$ **comment:** *index* is an integer. It stores the index of the first element of S'that will be visited in the **for** loop below. \mathcal{S}' and \mathcal{S}'' are sequences (ordered lists). F' is a sequence (ordered list) of Boolean functions. index $\leftarrow 0$ $\mathcal{S}' \leftarrow$ sequence assigned to \mathcal{S} in SequenceDictionary $\mathcal{S}'' \gets \mathrm{empty} \ \mathrm{sequence}$ $F' \leftarrow \operatorname{copy} F$ for each $v \in S$ **comment:** \mathcal{S}' has more motifs than \mathcal{S} , we need the extra motifs to find the reduced network from which the motif L(v) was obtained. These extra motifs are stored in Subsequence $Subsequence \leftarrow empty sequence$ for $i \leftarrow index$ to length of list $\mathcal{S}' - 1$ $v' \leftarrow \text{get element of } \mathcal{S}' \text{ in position } i$ if v' equals v $\begin{cases} index \leftarrow i+1\\ exit \text{ for } loop \end{cases}$ do then do add v' to the end of Subsequence **comment:** DOWNSTREAMEFFECT(L(v'), F') is described in Algorithm 4. DOWNSTREAMEFFECT (L(v'), F') evaluates the states of motif L(v') into F'. do If any $f \in F'$ becomes a constant Boolean function after the evaluation, it evaluates the resulting Boolean state of the node corresponding to f in every F'. This is done iteratively until no new constant Boolean functions are found, at which point the resulting F' is returned. for each $v' \in Subsequence$ **do** $F' \leftarrow \text{DOWNSTREAMEFFECT}(L(v'), F')$ **comment:** MOTIFCONTROLSET(L(v), F') is described in Algorithm 5 MOTIFCONTROLSET(L(v), F') finds the subsets of stable motif's states of L(v) that, when fixed, are enough to force the state of the whole motif into L(v). $O \leftarrow \text{MOTIFCONTROLSET}(L(v), F')$ add O to end of \mathcal{S}'' $F' \leftarrow \text{DOWNSTREAMEFFECT}(L(v), F')$ add S'' to ShortenedSequences2 **return** (ShortenedSequences2)

comment: DOWNSTREAMEFFECT(\mathcal{M}, F') evaluates the states of motif \mathcal{M} into F' . If any $f \in F'$ becomes a constant Boolean function after the evaluation, it evaluates the resulting Boolean state of the node corresponding to f in every F' . This is done iteratively until no new constant Boolean functions are found, at which point the resulting F' is returned. M' and M'' are sets containing nodes in the logical model together with a Boolean variable with their state.
F'' is a sequence (ordered lists) of Boolean functions.
$M' \leftarrow \text{empty set}; M'' \leftarrow \text{copy } M; F'' \leftarrow \text{copy } F'$
repeat
for each $f \in F''$
(if f is not a constant Boolean function
$f \leftarrow f$ with the states in M' evaluated on it
if f is a constant Boolean function
$ \begin{cases} \mathbf{do} \\ \mathbf$
then $\begin{cases} \sigma \leftarrow \text{node in the logical model whose function is } f \text{ and} \\ \text{the value of } f \text{ as its state.} \end{cases}$
$M' \leftarrow \operatorname{conv} M''$
$ \begin{array}{c} M' \leftarrow \operatorname{copy} M'' \\ M'' \leftarrow \operatorname{empty set} \end{array} $
until M' is empty
return (F'')

```
Algorithm 5: MOTIFCONTROLSET(\mathcal{M}, F')
```

comment: MOTIFCONTROLSET (\mathcal{M}, F') finds the subsets of stable motif's states of \mathcal{M} that, when fixed, are enough to force the state of the whole motif into \mathcal{M} . F' and F'' are sequences (ordered lists) of Boolean functions. F' are the logical functions of the nodes in the model whose states are specified in \mathcal{M} . O is a sequence (ordered list). isMotifControlSet and $validSubset$ are Boolean variables.
$O \leftarrow \text{empty sequence}$ for $subsetSize \leftarrow 1$ to length of list $\mathcal{M} - 1$
(for each $M \in \text{subsets } ize \leftarrow 1$ to length of list $\mathcal{M} = 1$
$(validSubset \leftarrow true$
for each $M' \in O$
(if M' is a subset of M
$\mathbf{do} \left\{ \begin{array}{c} \mathbf{do} \\ \mathbf{do} \end{array} \right\} $ (validSubset \leftarrow false
$\mathbf{do} \begin{cases} \mathbf{if} \ M' \ \text{is a subset of} \ M \\ \mathbf{then} \\ \begin{cases} validSubset \leftarrow \ \mathbf{false} \\ \text{exit} \ \mathbf{for} \ \text{loop} \end{cases}$
if not validSubset
then exit for loop
do $\begin{cases} do \\ B'' \\ $
$F'' \leftarrow \text{DOWNSTREAMEFFECT}(\mathcal{M}, F')$
$isMotifControlSet \leftarrow $ true
for each $f \in F''$
(if f is not a constant Boolean function
$\mathbf{do} \begin{cases} \mathbf{if} \ f \ \text{is not a constant Boolean function} \\ \mathbf{then} \\ \begin{cases} is MotifControlSet \leftarrow \ \mathbf{false} \\ exit \ \mathbf{for} \ \ \text{loop} \end{cases}$
${f if}\ is MotifControlSet$
$\left(\begin{array}{c} \mathbf{then} \text{ add } M \text{ to } O \right)$
if O is empty
then add \mathcal{M} to O
return (O)

Step 4: For each sequence $S = (O_1, \ldots, O_L)$ create a set of states C by choosing one of the subsets of stable motif states M_{k_j} in each O_j and taking their union, that is, $C = M_{k_1} \cup \cdots \cup M_{k_L}, M_{k_j} \in O_j$. The network control set for attractor A is the set of states $C_A = \{C_i\}$ obtained from all possible combinations of M_{k_j} 's for every sequence S. To avoid any redundancy, we additionally prune C_A of duplicates and remove the states C_i which are supersets of any of the other states C_j (i.e. $C_j \subset C_i$).

Algorithm 6: STABLEMOTIFCONTROLSETS(*ShortenedSequences2*)

```
comment: ControlSets, ControlSet, and M are sets
              O is a sequence (ordered list).
              L and index are integers.
              countArray and countArrayMax are arrays of integers.
ControlSets \leftarrow empty set
for each S \in ShortenedSequences2
         L \leftarrow \text{length of list } \mathcal{S}
         comment: countArray and countArrayMax keep track of the combinations of motifs
                       in \mathcal{S} that we have tried and that we have left.
         countArray \leftarrow array of integers of length L
         countArrayMax \leftarrow array of integers of length L
         for i \leftarrow 0 to L - 1
                 O \leftarrow \text{get element of } \mathcal{S} \text{ in position } i
                 countArrayMax[i] \leftarrow length of list O
           do
                 countArray[i] \leftarrow 0
         repeat
            ControlSet \leftarrow empty set
            for i \leftarrow 0 to L-1
                     O \leftarrow \text{get element of } \mathcal{S} \text{ in position } i
                     M \leftarrow get element of O in position countArray[i] for each \sigma \in M
              do
                      do add \sigma to ControlSet
  do
            add ControlSets to ControlSets
            comment: index gets increased whenever countArray[index] reaches its
                          max value, countArrayMax[index].
            index \leftarrow 0
            repeat
                comment: increasedIndex breaks the repeat loop.
                increasedIndex \leftarrow false
                countArray[index] \leftarrow countArray[index] + 1
                if countArray[index] equals countArrayMax[index]
                           countArray[index] \leftarrow 0
                           index \leftarrow index + 1
                  then
                           increasedIndex \leftarrow \mathbf{true}
                if index equals L
                 then exit repeat loop
            until not increasedIndex
        until index equals L
return (ControlSets)
```

Algorithm 7: PRUNECONTROLSETS(ControlSets)

comment: <i>PrunedControlSets</i> is a set
$PrunedControlSets \leftarrow copy ControlSets$
for each $ControlSet \in ControlSets$
(for each $ControlSet' \in ControlSets$
(if $ControlSet'$ is not $ControlSet$
$do \left\{ do \right\}$ (if ControlSet' is a subset of ControlSet
then { then { then { remove ControlSet from PrunedControlSets
$do \begin{cases} for each ControlSet' \in ControlSets \\ do \begin{cases} if ControlSet' is not ControlSet \\ then \end{cases} if ControlSet' is a subset of ControlSet \\ then \begin{cases} if ControlSet' is a subset of ControlSet \\ then \end{cases} fremove ControlSet from PrunedControlSets \\ exit for loop \end{cases}$
return (PrunedControlSets)

B. Pseudocode for the stable motif blocking algorithm

Step 1: Identify the sequences of stable motifs that lead to \mathcal{A} . This step is the same as the first step in the stable motif control algorithm (Algorithm 1), and can be obtained from the stable motif succession diagram (Fig. 2).

Step 2: Take each stable motif's state \mathcal{M}_i in the sequences obtained in the previous step (Sequences). Create a new set $\mathbf{M}_{\mathcal{A}}$ with all of these stable motif states, $\mathbf{M}_{\mathcal{A}} = \{\mathcal{M}_i\}$.

Algorithm 8: MOTIFSTATES(Sequences, L)

 $\begin{array}{l} \textbf{comment: } \mathbf{M}_{\mathcal{A}} \text{ and } \mathcal{M} \text{ are sets.} \\ \mathbf{M}_{\mathcal{A}} \leftarrow \text{empty set} \\ \textbf{for each } \mathcal{S} \in Sequences \\ \textbf{do} \begin{cases} \textbf{for each } v \in \mathcal{S} \text{ s.t. } v \text{ is not a sink node} \\ \textbf{do} \begin{cases} \textbf{comment: } \mathcal{M} \text{ stores the states of the motif } L(v). \\ \mathcal{M} \leftarrow L(v) \\ \text{add } \mathcal{M} \text{ to } \mathbf{M}_{\mathcal{A}} \end{cases} \\ \textbf{return } (\mathbf{M}_{\mathcal{A}}) \end{array}$

Step 3: Take each node state $\sigma_j \subset \mathcal{M}_i$ of the stable motif's states \mathcal{M}_i in $\mathbf{M}_{\mathcal{A}}$. Create a new set $\mathcal{B}_{\mathcal{A}}$ with the negation of each node state, $\mathcal{B}_{\mathcal{A}} = \{\overline{\sigma}_j\}$. The node states in $\mathcal{B}_{\mathcal{A}}$ and any combination of them are identified as potential interventions to block attractor \mathcal{A} .

Algorithm 9: STABLEMOTIFBLOCKING (M_A)

 $\begin{array}{l} \textbf{comment:} \ \mathcal{B}_{\mathcal{A}} \text{ is a set.} \\ \mathcal{B}_{\mathcal{A}} \leftarrow \text{ empty set} \\ \textbf{for each } \sigma \in \mathbf{M}_{\mathcal{A}} \\ \textbf{do} \begin{cases} \textbf{comment:} \ \sigma' \text{ is a node in the logical model together with a Boolean variable with its state.} \\ \sigma' \leftarrow \text{reverse node state of } \sigma \\ \text{add } \sigma' \text{ to } \mathcal{B}_{\mathcal{A}} \\ \textbf{return } (\mathcal{B}_{\mathcal{A}}) \end{array}$