
Supporting Information

S7 TEXT. PSEUDOCODE FOR THE STABLE MOTIF CONTROL ALGORITHM AND THE STABLE
MOTIF BLOCKING ALGORITHM

For the pseudocodes we assume that one starts with a target attractor A, the logical functions F = (f1, f2, . . . , fN )
for the logical network model of interest, and the stable motif succession diagram for the logical network model of
interest (see Fig. 2). A stable motif succession diagram can be represented as a directed graph Gdiag = (Vdiag, Ediag)
together with a dictionary L. The nodes Vdiag = (vdiag,1, vdiag,2, . . . , vdiag,n) denote either stable motifs Mi (if the
node has at least one outgoing edge) or attractors Ai (if the node has no outgoing edges). The dictionary L stores
the type of object (stable motif or attractor) each node in Vdiag denotes. Each edge in Ediag connects a stable
motif with the stable motifs or attractors that can be obtained from the reduced network associated to it; if network
reduction leads to a simplified network with at least one stable motif, then the edges points from the stable motif
being considered to the stable motifs of the simplified network, otherwise, the edges point towards an attractor. It
should be noted that stable motifs/attractors may be assigned to more than one node in Vdiag. For example, in Fig.
2 there are three nodes that denote the motif {A = 0}, and two nodes that denote the attractor A2.

A. Pseudocode for the stable motif control algorithm

Step 1 : Identify the sequences of stable motifs that lead to A. These can be obtained from the stable motif
succession diagram (see Fig. 2) by choosing the attractor of interest in the right-most part and selecting all of the
attractor’s predecessors in the succession diagram. The stable motif diagram is represented by the directed graph
Gdiag = (Vdiag, Ediag) together with the list L.

Algorithm 1: GetSequences(G,L,A)

comment: Sequences, SequencesLeft, and NewSequences are sets.
S is a sequence (ordered list).

Sequences← empty set
SequencesLeft← empty set
for each v ∈ sink nodes of G

do


comment: L(v) gives the motif or attractor denoted by v.

if L(v) equals A

then

S ← empty sequence
add v to the beginning of S
add S to SequencesLeft

repeat

NewSequences← empty set
for each S ∈ SequencesLeft

do



v ← first item of S
if v has input nodes

then


for each v′ ∈ input nodes of v

do

S
′ ← copy S

add v′ to the beginning of S ′
add S ′ to NewSequences

else add S to Sequences
remove S from SequencesLeft

for each S ′ ∈ NewSequences
do add S ′ to SequencesLeft

until NewSequences is empty
return (Sequences)



2

Step 2 : Shorten each sequence S ∈ Sequences by identifying the minimum number of motifs in S required for
reaching A and removing the remaining motifs from the sequence. This minimum number of motifs can be identified
from the stable motif succession diagram (Fig. 2); they are the motifs after which all consequent motif choices lead
to the same attractor A.

Algorithm 2: ShortenSequences1(G,L,A, Sequences)

comment: ShortenedSequences1 is a set.
S ′ is a sequence (ordered list).
pathFound is a Boolean variable

ShortenedSequences1← empty set
for each S ∈ Sequences

do



S ′ ← copy S
for each v ∈ S in reverse order

do



pathFound← false
for v′ ∈ sink nodes of G

do


comment: L(v′) gives the motif or attractor denoted by v′.

if L(v′) is not A

then


if there exists a directed path from v to v′

then

{
pathFound← true
exit for loop

if pathFound
then exit for loop
else remove v from S ′

if ShortenedSequences1 does not contain S ′
then add S ′ to ShortenedSequences1

return (ShortenedSequences1)



3

Step 3 : For each stable motif stateM = (σm1
= bm1

, σm2
= bm2

, . . . , σml
= bml

) corresponding to node v, find the
subsets of stable motif’s states O = {Mi} ,Mi ⊆ M that, when fixed in the logical model, are enough to force the
state of the whole motif intoM. At worst, there will only be one subset, which will equal the whole stable motif state
M. If any of these subsets is fully contained in another subset, remove the larger of the subsets. In each stable motif
sequence S = (M1, . . . ,ML), substitute every stable motif Mj with the subsets of the stable motif states obtained,
that is, S = (O1, . . . , OL).

Algorithm 3: SequencesWithMotifControlSets(ShortenedSequences1, SequenceDictionary, F, L)

comment: F = (f1, f2, . . . , fN ) contains the Boolean functions of the logical model.
ShortenedSequences2 is a set.
O and Subsequence are sequences (ordered lists).

ShortenedSequences2← empty set
for each S ∈ ShortenedSequences1

do



comment: index is an integer. It stores the index of the first element of S ′
that will be visited in the for loop below.
S ′ and S ′′ are sequences (ordered lists).
F ′ is a sequence (ordered list) of Boolean functions.

index← 0
S ′ ← sequence assigned to S in SequenceDictionary
S ′′ ← empty sequence
F ′ ← copy F
for each v ∈ S

do



comment: S ′ has more motifs than S,
we need the extra motifs to find the reduced network from which the motif
L(v) was obtained. These extra motifs are stored in Subsequence

Subsequence← empty sequence
for i← index to length of list S ′ − 1

do


v′ ← get element of S ′ in position i
if v′ equals v

then

{
index← i+ 1
exit for loop

add v′ to the end of Subsequence
comment: DownstreamEffect(L(v′), F ′) is described in Algorithm 4.

DownstreamEffect(L(v′), F ′) evaluates the states of motif L(v′) into F ′.
If any f ∈ F ′ becomes a constant Boolean function after the evaluation,
it evaluates the resulting Boolean state of the node corresponding to
f in every F ′. This is done iteratively until no new constant Boolean
functions are found, at which point the resulting F ′ is returned.

for each v′ ∈ Subsequence
do F ′ ← DownstreamEffect(L(v′), F ′)

comment: MotifControlSet(L(v), F ′) is described in Algorithm 5
MotifControlSet(L(v), F ′) finds the subsets of stable motif’s states
of L(v) that, when fixed, are enough to force the state of the whole motif
into L(v).

O ←MotifControlSet(L(v), F ′)
add O to end of S ′′
F ′ ← DownstreamEffect(L(v), F ′)

add S′′ to ShortenedSequences2
return (ShortenedSequences2)



4

Algorithm 4: DownstreamEffect(M, F ′)

comment: DownstreamEffect(M, F ′) evaluates the states of motif M into F ′.
If any f ∈ F ′ becomes a constant Boolean function after the evaluation,
it evaluates the resulting Boolean state of the node corresponding to
f in every F ′. This is done iteratively until no new constant Boolean
functions are found, at which point the resulting F ′ is returned.
M ′ and M ′′ are sets containing nodes in the logical model together with a
Boolean variable with their state.
F ′′ is a sequence (ordered lists) of Boolean functions.

M ′ ← empty set;M ′′ ← copy M ;F ′′ ← copy F ′

repeat

for each f ∈ F ′′

do



if f is not a constant Boolean function

then



f ← f with the states in M ′ evaluated on it
if f is a constant Boolean function

then


comment: σ is a node in the logical model together

with a Boolean variable with its state.
σ ← node in the logical model whose function is f and

the value of f as its state.
add σ to M ′′

M ′ ← copy M ′′

M ′′ ← empty set
until M ′ is empty
return (F ′′)

Algorithm 5: MotifControlSet(M, F ′)

comment: MotifControlSet(M, F ′) finds the subsets of stable motif’s states of M that,
when fixed, are enough to force the state of the whole motif into M.
F ′ and F ′′ are sequences (ordered lists) of Boolean functions.
F ′ are the logical functions of the nodes in the model whose states are specified in M.
O is a sequence (ordered list).
isMotifControlSet and validSubset are Boolean variables.

O ← empty sequence
for subsetSize← 1 to length of list M− 1

do



for each M ∈ subsets of size subsetSize in M

do



validSubset← true
for each M ′ ∈ O

do


if M ′ is a subset of M

then

{
validSubset← false
exit for loop

if not validSubset
then exit for loop

comment: DownstreamEffect(M, F ′) is described in Algorithm 4.
F ′′ ← DownstreamEffect(M, F ′)
isMotifControlSet← true
for each f ∈ F ′′

do


if f is not a constant Boolean function

then

{
isMotifControlSet← false
exit for loop

if isMotifControlSet
then add M to O

if O is empty
then add M to O

return (O)



5

Step 4 : For each sequence S = (O1, . . . , OL) create a set of states C by choosing one of the subsets of stable motif
states Mkj

in each Oj and taking their union, that is, C = Mk1
∪ · · · ∪MkL

,Mkj
∈ Oj . The network control set for

attractor A is the set of states CA = {Ci} obtained from all possible combinations of Mkj
’s for every sequence S. To

avoid any redundancy, we additionally prune CA of duplicates and remove the states Ci which are supersets of any of
the other states Cj (i.e. Cj ⊂ Ci).

Algorithm 6: StableMotifControlSets(ShortenedSequences2)

comment: ControlSets, ControlSet, and M are sets
O is a sequence (ordered list).
L and index are integers.
countArray and countArrayMax are arrays of integers.

ControlSets← empty set
for each S ∈ ShortenedSequences2

do



L← length of list S
comment: countArray and countArrayMax keep track of the combinations of motifs

in S that we have tried and that we have left.
countArray ← array of integers of length L
countArrayMax← array of integers of length L
for i← 0 to L− 1

do

O ← get element of S in position i
countArrayMax[i]← length of list O
countArray[i]← 0

repeat

ControlSet← empty set
for i← 0 to L− 1

do


O ← get element of S in position i
M ← get element of O in position countArray[i]
for each σ ∈M
do add σ to ControlSet

add ControlSets to ControlSets
comment: index gets increased whenever countArray[index] reaches its

max value, countArrayMax[index].
index← 0
repeat

comment: increasedIndex breaks the repeat loop.

increasedIndex← false
countArray[index]← countArray[index] + 1
if countArray[index] equals countArrayMax[index]

then

countArray[index]← 0
index← index+ 1
increasedIndex← true

if index equals L
then exit repeat loop

until not increasedIndex
until index equals L

return (ControlSets)



6

Algorithm 7: PruneControlSets(ControlSets)

comment: PrunedControlSets is a set

PrunedControlSets← copy ControlSets
for each ControlSet ∈ ControlSets

do


for each ControlSet′ ∈ ControlSets

do


if ControlSet′ is not ControlSet

then


if ControlSet′ is a subset of ControlSet

then

{
remove ControlSet from PrunedControlSets
exit for loop

return (PrunedControlSets)

B. Pseudocode for the stable motif blocking algorithm

Step 1 : Identify the sequences of stable motifs that lead to A. This step is the same as the first step in the stable
motif control algorithm (Algorithm 1), and can be obtained from the stable motif succession diagram (Fig. 2).

Step 2 : Take each stable motif’s state Mi in the sequences obtained in the previous step (Sequences). Cre-
ate a new set MA with all of these stable motif states, MA = {Mi}.

Algorithm 8: MotifStates(Sequences, L)

comment:MA and M are sets.

MA ← empty set
for each S ∈ Sequences

do


for each v ∈ S s.t. v is not a sink node

do


comment:M stores the states of the motif L(v).

M← L(v)
add M to MA

return (MA)

Step 3 : Take each node state σj ⊂ Mi of the stable motif’s states Mi in MA. Create a new set BA with the
negation of each node state, BA = {σj}. The node states in BA and any combination of them are identified as
potential interventions to block attractor A.

Algorithm 9: StableMotifBlocking(MA)

comment: BA is a set.

BA ← empty set
for each σ ∈MA

do


comment: σ′ is a node in the logical model together with a Boolean variable with its state.

σ′ ← reverse node state of σ
add σ′ to BA

return (BA)


	Supporting Information
	S7 Text. Pseudocode for the stable motif control algorithm and the stable motif blocking algorithm
	Pseudocode for the stable motif control algorithm
	Pseudocode for the stable motif blocking algorithm



