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Hemodynamic Response Model3
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To reduce computational load, the raw regional neural voltages with a temporal resolution of 0.1ms5

generated by the model were down-sampled to 100Hz. We also observed that higher temporal resolutions6

did not alter the dynamics of the simulated BOLD time-series. In order to be able to meaningfully7

compare the simulated signals to the considered fMRI data, the model was run for the same period8

of time the data was recorded in. For instance, the resting state data was acquired over a period of9

five minutes. Thus, 3 000 000 ms were simulated to obtain a comparable signal. Following [1] a linear10

hemodynamic response function was employed:11

(1) ψ(t) = Ψ1e
−t/ϑ1tα1−1 −Ψ2e

−t/ϑ2tα2−1,12

where we used Ψ1 = 0.02,Ψ2 = 2.34e− 8 as amplitudes of the filter, ϑ1,2 = 0.9 as temporal delays, and13

the scaling factors α1 = 7.98, α2 = 13.97. Regional neural voltages V it were thus transformed to BOLD14

signals using the convolution ψ∗V i. Note that the amplitudes Ψi of the BOLD filter ψ were not fit to the15

data to avoid any undue influence on the auto-correlative structure of the model. However, if the scope of16

a study were to accurately reproduce a given BOLD signal, such a fitting procedure should be employed17

to maximize alignment between model and data. Finally, the convoluted signal was sub-sampled to match18

recording parameters of the data.19
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Null-Model Random Network Construction21

The values of most network measures strongly depend on a graph’s size (i.e., the number of nodes), its22

density and its degree distribution [2, Chap. 2]. Therefore, the significance of differences in metrics is23

usually assessed by comparing values to ones calculated for null-hypothesis networks, which are based on24

the original graphs but constructed to exhibit random topologies [3]. In this work, the random graphs25

were based on the NMI matrices shown in Fig. 2 and constructed to preserve the degree-, weight- and26

strength- distributions of the original networks.27
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Graph Metrics28

In the following, we give a brief description of the network metrics used in this paper. A comprehensive29

review of graph measures and their applications for the understanding of normal and diseased brain states30

is given in [2, 3].31

Every graph G consists of a set of nodes (vertices) and edges (links), formally written as G = 〈V,E〉.32

In case of the functional brain networks discussed here, the nodes are brain areas, i.e., points in three-33

dimensional space. Thus, we introduce the set of nodes V =
{
vi ∈ R3 |i = 1, . . . , N

}
, where N denotes34

the number of considered regions. Because functional connectivity networks are undirected, we only35

consider edges without orientation, i.e., the edge connecting nodes vi and vj is the same as the link from36

vi to vj (incoming and outgoing connections are identical). Hence, we write the edge connecting vi and37

vj as unordered pair {vi,vj} or vi ↔ vj and thus we define the set of all edges in the undirected graph38

as E = {vi ↔ vj |1 ≤ i, j ≤ N }. Hence, we consider the graph G = 〈V ,E〉. Let further {aij}Ni,j=1 =:39

A ∈ RN×N denote the graph’s adjacency matrix such that40

(2) aij =


1, if vi ↔ vj ∈ E,

0, otherwise.
41

The considered networks are weighted undirected networks, thus each edge vi ↔ vj is associated with a42

weight wij = wji. Hence we introduce a mapping W : E → R given by43

(3) W (vi ↔ vj) = wi,j , 1 ≤ i, j ≤ N,44

and collect all edge weights in a (real symmetric) N ×N matrix W = {wij}Ni,j=1 (where we set wk` = 045

if there exists no edge between vk and v`). Based on these quantities a number of network metrics can46

be computed.47

Nodal Influence Metrics estimating nodal influence try to quantify a single node’s importance in the48

network. One of the simplest influence measures is the degree of the node vi given by (compare, e.g., [2,49

Chap. 2])50

ki =

N∑
j=1

aij , i = 1, . . . , N,51
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where aij denote the entries of the adjacency matrix A defined in (2). The weighted version of the degree52

is the nodal strength [3]53

si =

N∑
j=1

wij , i = 1, . . . , N,54

with wij denoting edge weights.55

Network Integration Integration measures are designed to estimate a network’s predilection for56

system-wide interaction. Most of these metrics are based on the concept of paths. A path pi↔j from57

node vi to vj in the graph G is a sequence of nodes pi↔j = {vi = vi1 ,vi2 , . . . ,vin = vj} such that58

vik ↔ vik+1
∈ E for k = 1, . . . , n. The shortest (weighted) path p̄i↔j between vi and vj is the path with59

minimal total edge weight, also called (weighted) shortest path length60

dij =
∑

{vik
,vik+1

}∈ p̄i↔j

W
(
vik ↔ vik+1

)
,61

where we used the mapping W defined in (3). The efficiency ei of a node vi estimates the extent of62

possible interaction in a neighborhood around vi in terms of the inverse shortest path length [4]63

ei =
1

N − 1

∑
j=1
j 6=i

1

dij
, i = 1, . . . , N.64

Network Segregation A segregated network is organized into local communities. One of the most65

widely used measures to quantify segregation of a graph is the clustering coefficient [5]. The clustering66

coefficient ci of a node vi is based on the geometric mean of link weights in triangles around vi67

ci =
2

ki(ki − 1)

N∑
j,k=1

(wijwjkwki)
1/3

, i = 1, . . . , N,68

where ki denotes the nodal degree.69
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