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Introduction

This document contains instructions on how to employ the functions contained within the SANTA package.
SANTA builds upon Ripley’s K-function, a well-established approach in spatial statistics that measures
the clustering of points on a plane, by applying it to networks. Using this approach, the Knet and Knode
functions are defined. Knet detects the clustering of hits on a network in order to measure the strength of
association between the network and a phenotype. Knode ranks genes according their distance from the hits,
providing a natural way of prioritising vertices for follow-up analyses.

SANTA addresses two complementary goals: it can (i) functionally annotate experimentally derived networks
using curated gene sets, and (ii) annotate experimentally derived gene sets using curated networks.

The SANTA package also contains functions that can be used to measure the distance between vertex
pairs (GraphDiffusion and GraphMFPT) and a function that can be used to visualise the Knet function
(plot.Knet). The ‘igraph} package is used to handle the networks.

This vignette, along with the data provided in the SANTA package, are designed to allow the user to
reproduce the results shown in the paper Cornish, A. and Markowetz, F. (2014) SANTA: quantifying the
functional content of molecular networks. (Under review.) To reduce the time required to run the vignette,
many of the case studies are set up to run with a reduced number of trials, permutations or gene sets. It
is noted where and how the case studies differ from the paper analyses. The methods used by the SANTA
package are further explained in the paper.

Overview of SANTA

The guilt-by-association priciple The guilt-by-association (GBA) principle states that genes that
interact are more likely to share biological function. For example, two genes seen to interact in a synthetic
genetic array (SGA) are more likely to encode products involved in the same pathway or complex than two
genes not seen to interact. Knet uses this principle to measure the strength of association between a network
and a phenotype. By measuring the clustering of the gene set across biological networks it becomes possible
to identify the network that best explains the mechanisms and processes that underlie the set. This principle
is also used by Knode to prioritise genes for follow up studies. If a set of genes has been identified as being
associated with a particular cellular function, then the GBA principle states that genes seen interacting with
this set are also likely to be involved in the function.

The Knet function The Knet function measures the strength of association between a network and a
phenotype by quantifying the clustering of high-weight vertices on the network. High-weight vertices represent
those genes that are part of a gene set or are most strongly linked with the phenotype. The GBA principle
implies that the stronger the clustering, the better the network is at explaining the mechanisms that produce
and maintain the phenotype.

The function is based upon Ripley’s K-statistic, a tool from spatial statistics that measures the clustering of
points on a plane. Ripley’s K-statistic works by counting the number of points contained within circles of
radius s positioned around each point. The value of s is increased and the area under the resulting curve
(AUK) is measured. If points cluster, then they will be engulfed within the circles quicker, the function will
increase faster and the AUK will be larger. By swapping the Euclidean distance across the plane with a
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measure of distance across the network, this statistic can be adapted for networks. We call this function the
Knet function.

Unlike Ripley’s K-statistic, the Knet function can measure the clustering of a set of vertices or a continuous
distribution of vertex weights. If biological networks are being used, then a high weight would indicate that a
gene is strongly linked with the phenotype being studied. In some scenarios, weights may not be available
for all vertices. Vertices with missing weights can be included within the network. However, they should be
given a weight of ‘NA} to ensure that their distribution does not affect the significance analysis.

The significance of clustering is quantified by permuting the vertex weights across the networks. Vertices
with missing weights are excluded. The area under the Knet function for the observed set is then compared
to the area under the Knet function for the permuted sets and a z-test is used to compute a p-value. The
p-values produced represents the probability that a clustering of vertex weights at least as strong as that
observed occurs given that the vertex weights are distributed randomly across the network.

The Knet function is:

Knet(s) = 2
(p̄n)2

∑
i

pi

∑
j

(pj − p̄) I(dg(i, j) ≤ s)

where pi is the phenotype observed at vertex i, I(dg(i, j) ≤ s) is an identity function that equals 1 if the
distance between vertex i and j is less than s and 0 otherwise, and p̄ = 1

n

∑n
i=1 pi.

The Knode function Taking the inner sum of the Knet equation makes it possible to rank vertices by their
distance from high-weight vertices. We call this function the Knode function. This function provides a natural
way to prioritise genes for follow up studies.

The Knode function is:

Knode
i (s) = 2

p

∑
j

(pj − p̄) I(dg(i, j) ≤ s)

Measuring the distance between pairs of vertices SANTA contains three methods for measuring the
distance between pairs of vertices. Each method incorperates different aspects of the network.

• Shortest paths. The distance along the shortest path connecting two vertices. In a graph without
weighted edges, the length of the shortest path is equal to the number of edges in the path. In a graph
with weighted edges, the length of the shortest path is equal to the sum of the edge weights in the path.
This is the simplist measure of distance and is used by default by the SANTA package.

• Diffusion kernel-based method. The diffusion kernel-based distance measure can be considered as
the physical process of diffusion though the graph. Therefore, unlike the shortest paths method, the
diffusion kernel-based method incorporates not only the distance along the shortest path connecting
two vertices, but the distances along multiple paths. It therefore incorperates more of the network
structure.

• Mean first-passage time-based (MFPT) method. The MFPT distance measure computes the distance
between vertex i and j (mi,j) by computing the expected amount of time that a random walk emanating
from node i takes to reach node j for the first time. Much like the difusion kernel-based method, the
MFPT method incorperates the number of paths connecting a pair of vertices.

Case studies

i) Knet successfully identifies clustering on simulated networks In this section, we will use simulated
networks to demnostrate that the Knet-function successfully quantifies the clustering of hits on a network.
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In order to demonstrate how the Knet function can be used to measure the clustering of hits on a network,
we will simulate a network, apply clusters of hits of different clustering strengths to the network, and use the
Knet function to quantify the strength of clustering.

We will use the Barabasi-Albert model of preferential attachment to simulate the networks, as it has been
observed that this methods produced networks with attributes similar to many real-world networks. A
network of 500 vertices is both large enough to contain clusters of hits of different strengths and small enough
to quickly run a large number of trials upon. In the Barabasi-Albert model, vertices are added stepwise
and connected to previously-added vertices. This is done under a probability distribution based upon the
degree of each vertex. If power = 1, then the relationship between the probability distribution and vertex
degree is linear. We will use this value, as it creates a network with multiple high-degree hubs, much like
many biological networks. Each new vertex is connected to m previously-added vertices. In order to create a
moderately-dense network, we will set m = 1.

# generate the simulated network
require(SANTA)

## Loading required package: SANTA
## Loading required package: igraph

require(igraph)
set.seed(1) # for reproducibility
g <- barabasi.game(n=500, power=1, m=1, directed=F)

A cluster of hits is simulated by first randomly choosing a seed vertex. All other vertices within the network
are then ranked according to their distance to the from the seed vertex. The distance can be measured using
any of the previosly described distance metrics (shortest paths, diffusion kernel and MFPT). In this example,
we will use the shortest paths metric, as it is the quickest to run. However, running the analysis with the
other methods will produce the same results.

# measure the distance between pairs of vertices in g
dist.method <- "shortest.paths"
D <- DistGraph(g, dist.method=dist.method, verbose=F)

The Knet function computes the distances between each pair of verties in g. However, to reduce the time
required to run the function, these distances can be computed outside the function. The Knet function cannot
be run on the raw continuous distances. Therefore, it is neccessary to place the pairs of vertices into discreet
bins. This is done using the ‘BinGraph} function.

# place the distances into discreet bins
B <- BinGraph(D, verbose=F)

Next, we will generate clusters of hits and measure the clustering strength using the Knet function. The s
vertices positioned closest to the seed vertex form the sample set. From this set, 5 vertices are randomly
selected to form the hit set. The size of the hit set needs to be small compared to the number of vertices in
the network. Increasing the value of s decreases the strength of the clustering. We will test 5 different values
of s in order to simulate different clustering strengths. A value of s equal to the total number of vertices
in the network produces a hit set containing vertices randomly selected from the entire network. For each
value of s, we will conduct 10 trials. In the associated paper, 1000 trials were run. Here we will also use 100
permutations, rather than 1000, in order to reduce the time required.
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cluster.size <- 5
s.to.use <- c(10, 20, 50, 100, 500)
n.trials <- 10
pvalues <- array(0, dim=c(n.trials, length(s.to.use)),

dimnames=list(NULL, as.character(s.to.use)))

# run the trials for each value of s
for (s in s.to.use) {

for (i in 1:n.trials) {
# generate the hit set
seed.vertex <- sample(vcount(g), 1) # identify seed
sample.set <- order(D[seed.vertex, ])[1:s]
hit.set <- sample(sample.set, cluster.size)

# measure the stength of association
g <- set.vertex.attribute(g, name="hits",

value=as.numeric(1:vcount(g) %in% hit.set))
pvalues[i, as.character(s)] <- Knet(g, nperm=100,

dist.method=dist.method, vertex.attr="hits",
B=B, verbose=F)$pval

}
}

Figure 1 contains the results of the simulation study. The Knet function correctly identifies sets of hits
created using smaller values of s as clustering more significantly.
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ii) Comparing Knet to Compactness Nexy we will demonstrate the effectiveness of the Knet function
by comparing it to a simpler metric.

Glaab et al. define the compactness score as the mean distance between pairs of hits in a network. By
permuting the vertices belonging to the hit set and comparing the observed compactness score to compactness
score of the permuted sets, an empirical p-value can be produced. This is much like Knet. However, unlike
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Knet~, the adapted compactness score cannot be applied to continous distributions of vertex weights and
does not incorperate vertex degree when measuring the significance of association. This is demonstrated in
this toy example.

First, we create the network. The vertices in this network have a range of degrees, allowing us to demonstrate
the differences between Knet and Compactness. We will apply 2 sets of vertex weights, each of which will
contain two interacting hits.

# create the network
n.nodes <- 12
edges <- c(1,2, 1,3, 1,4, 2,3, 2,4, 3,4, 1,5, 5,6,

2,7, 7,8, 4,9, 9,10, 3,11, 11,12)
weights1 <- weights2 <- rep(0, n.nodes)
weights1[c(1,2)] <- 1
weights2[c(5,6)] <- 1

g <- graph.empty(n.nodes, directed=F)
g <- add.edges(g, edges)
g <- set.vertex.attribute(g, "weights1", value=weights1)
g <- set.vertex.attribute(g, "weights2", value=weights2)
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Figure 2 shows the location of each set of hits on the network. The distance between the hits in set 1 and set
2 are the same. However, intuitively we expect that the clustering of the hits in set 2 to be more significant,
as the hits have fewer interacting partners and are therefore less likely to be observed interacting by chance.

We will now apply Knet and Compactness to each set of hits in order to measure the clustering significance.
We will run the function with 100 permutations. Increasing the number of permutations increases the accuracy
of the functions. However, it also increases the run time. 1000 permutations were used to create the results
shown in the paper. The shortest paths distance measure will be used. However, other methods will produce
the same results.

# set 1
Knet(g, nperm=100, vertex.attr="weights1", verbose=F)$pval

## [1] 0.2984

Compactness(g, nperm=100, vertex.attr="weights1", verbose=F)$pval

## [1] 0.1015
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# set 2
Knet(g, nperm=100, vertex.attr="weights2", verbose=F)$pval

## [1] 0.003823

Compactness(g, nperm=100, vertex.attr="weights2", verbose=F)$pval

## [1] 0.07638

The Compactness function does not incorperate vertex degree when measuring the significance of hit clustering.
For this reason, it outputs a similar p-value for each hit set. Knet incorperates the global distribution of
vertices and therefore identifies set 2 as clustering more significanctly than set 1. It is therefore preferable to
use Knet instead of Compactness when the degree of vertices varies across a network.

iii) Using Knet to demonstrate that correlation in GI profile produce functionally more infor-
mative networks In this section we will demonstrate how the Knet function can be used to identify the
most effective way of building an interaction network.

There is evidence that protein function is more closely related to global similarity between genetic interaction
(GI) profile than to individual interactions. In order to test this, we will use the Knet function to quantify
the strength of association between GO terms and two S. cerevisiae networks: a network of raw interactions
and a network created from corrlelations in interaction profile. Both of these will be created using the data
produced by Costanzo et al. If the GO terms associate more strongly with a network, then this is indication
that the network is more functionally informative.

First, we will load two pre-processed networks, in the form of igraph objects from the SANTA package. SANTA
requires all networks to be in the form of igraph objects. The data used to create these networks is available
from http://drygin.ccbr.utoronto.ca/~costanzo2009/ and the method used is described in the associated
SANTA paper.

Knet is also able to incorporate different edge distances when quantifying the clustering of high-weight vertices.
Edge distances can represent different biological properties, such as the strength of a physical interaction
between 2 gene products, or in the case of our 2 networks, the strength of the genetic interaction. The smaller
the edge distance, the stronger or more significant the interaction. When creating the network, we converted
the correlation coeficients into edge distances by taking the −log10 of the scores. These distances have been
stored under the edge attribute distance.

# load igraph objects
data(g.costanzo.raw)
data(g.costanzo.cor)
networks <- list(raw=g.costanzo.raw, cor=g.costanzo.cor)
network.names <- names(networks)
network.genes <- V(networks$raw)$name
# genes identical across networks

Associations between genes and GO terms will be obtained from the Gene Ontology (GO) project using the
org.Sc.sgd.db package. In order to reduce the time required to run this analysis, we will use only 5 GO
terms. However, it is easy to run this analysis with many more GO terms, as done in the associated paper.

# obtain the GO term associations from org.Sc.sgd.db package
library(org.Sc.sgd.db)
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## Loading required package: AnnotationDbi
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
##
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
##
## The following object is masked from 'package:stats':
##
## xtabs
##
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, as.vector, cbind,
## colnames, do.call, duplicated, eval, evalq, Filter, Find, get,
## intersect, is.unsorted, lapply, Map, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
## rbind, Reduce, rep.int, rownames, sapply, setdiff, sort,
## table, tapply, union, unique, unlist
##
## Loading required package: Biobase
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Loading required package: GenomeInfoDb
## Loading required package: DBI

xx <- as.list(org.Sc.sgdGO2ALLORFS)
go.terms <- c("GO:0000082", "GO:0003682", "GO:0007265",

"GO:0040008", "GO:0090329")
# apply the GO terms to the networks
for (name in network.names) {

for (go.term in go.terms) {
networks[[name]] <- set.vertex.attribute(

networks[[name]], name=go.term,
value=as.numeric(network.genes %in% xx[[go.term]]))

}
}

We will now apply the Knet function to each GO terms on each network in order to quantify the strength of
association. If a gene is associated with the GO term it will given a weight of 1. If it is not associated, it will
be given a weight of 0. We will now store these scores in the 2 graphs under a vertex attribute called rdds.
Due the time required, the result of this code is commented.
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# results <- list()
# for (name in network.names) {
# results[[name]] <- Knet(networks[[name]], nperm=1000,
# vertex.attr=go.terms, edge.attr="distance", verbose=F)
# results[[name]] <- sapply(results[[name]],
# function(res) res$pval)
# }

This code can be used to plot the results. Each point represents a single GO term. The −log10 of the p-values
has been plotted.

# p.values <- array(unlist(results), dim=c(length(go.terms),
# length(network.names)), dimnames=list(go.terms,
# network.names))
# p.values.ml10 <- -log10(p.values)
# axis.range <- c(0, max(p.values.ml10))
# plot(p.values.ml10[, "raw"], p.values.ml10[, "cor"], asp=1,
# xlim=axis.range, ylim=axis.range, bty="l",
# xlab="-log10 of the p-value in the raw GI network",
# ylab="-log10 of the p-value in the correlation network",
# main="")
# abline(0, 1, col="red")
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Figure 3 compares the strength of association of each GO term with each network. By increasing the
number of GO terms tested, it is possible to demonstrate that using correlation in GI profile rather than raw
interaction produces a functionally more informative network.

iv) Using Knet to investigate the functional rewiring of the yeast interaction network in response
to MMS-treatment In this section we will demonstrate how the Knet-function can be used to investigate
the functional rewiring of a cell by comparing the strength of association of gene sets between 2 networks.

Bandyopadhyay et al. mapped genetic interaction (GI) networks in yeast under normal laboratory conditions
and in yeast exposed to the DNA-damaging agent methyl methanesulfonate (MMS). In order to investigate
the differences between these functional networks, we will use the Knet-function to quantify the strength
of assocation of a set of genes involved in responding to DNA damage. While we cannot learn much from
this example, sets of genes involved in other processes can also be tested in order to identify other processes
involved in the responce to DNA damage.

We will now load the two interactions networks. These networks were created using correlations in GI profile,
as described in the previous section. This is because, as previously demonstrated, using correlations in GI
profile as edges results in a functionally more-informative network.
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# load igraph objects
data(g.bandyopadhyay.treated)
data(g.bandyopadhyay.untreated)
networks <- list(

treated=g.bandyopadhyay.treated,
untreated=g.bandyopadhyay.untreated

)
network.names <- names(networks)

We will the Gene Ontology (GO) project to identify those genes involved in responding to DNA damage.
By changing the code below, it is possible to measure the strength of association of gene sets involved in
different functions. In the associated paper, we measured the strength of association of 194 GO terms with
each network.

# obtain GO term associations
library(org.Sc.sgd.db)
xx <- as.list(org.Sc.sgdGO2ALLORFS)
# change to use alternative GO terms
associated.genes <- xx[["GO:0006974"]]
associations <- sapply(networks, function(g)

as.numeric(V(g)$name %in% associated.genes),
simplify=F)

networks <- sapply(network.names, function(name)
set.vertex.attribute(networks[[name]], "rdds",
value=associations[[name]]), simplify=F)

We will now apply the Knet function to the GO term on each network in order to measure the strength of
association. The greater the number of permutations run, the greater the accuracy of the p-value.

We will also run Knet using the shortest paths method to compute the distance between vertex pairs. However,
as shown in the associated paper, the diffusion and mfpt distance measures produce the same results. This
can be demonstrated by replacing the dist.method argument below with one of the alternative distance
measures. By running this analysis with additional GO terms, the robustness of the Knet across different
distance measures can be seen.

# results <- sapply(networks, function(g) Knet(g, nperm=1000,
# dist.method="shortest.paths", vertex.attr="rdds",
# edge.attr="distance"), simplify=F)
# p.values <- sapply(results, function(res) res$pval)
# p.values

Since the GO term tested was response to DNA damage stimulus, it is not surprising that the gene set
associated more significantly with the treated network (as shown by the lower p-value). The yeast exposed
to the DNA-damaging agent have activated or upregulated pathways involved in responding to the agent,
thereby increasing the strength of the genetic interaction between DNA-damage response-related genes.

We will now visualise the observed and permuted Knet curves and AUKs for the GO term on the DNA-damaged
and undamaged networks.

# plot(results$treated)
# plot(results$untreated)
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The observed Knet-function curve (red line) and the permuted Knet-function curve quantiles (yellow area) for
the response to DNA Damage Stimulus gene set on the DNA-damaged (Top Left) and undamaged (Bottom
Left) GI networks. The position of the observe curves relative to the permuted quantiles indicates that the
gene set associates strongly with both networks. (Right) The observed Knet-function AUK (red line) and the
permuted Knet-function AUKs (grey histogram) on the DNA-damaged (Top Right) and undamaged (Bottom
Right) GI networks. The differences between the observed and permuted AUKs indicates that the genes set
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associates strongly with both networks, but most strongly with the DNA-damaged network.

v) Using Knet to investigate the functional rewiring of the yeast interaction network in response
to UV damage In this section, we will conduct similar analysis to the previous section. However, in this
section, we will use a network created from GIs mapped in S. cerevisiae exposed to a high dosage of UV and
GIs mapped from untreated S. cerevisiae. Due to the reduced number of interactions mapped in this study,
it is not possible to build networks from correlations in GI. Therefore, the networks are built from the raw
interactions.

# laod igraph object
data(g.srivas.high)
data(g.srivas.untreated)
networks <- list(

high=g.srivas.high,
untreated=g.srivas.untreated

)
network.names <- names(networks)

We will again test only a single GO term (GO:0000725, recombinational repair). In the associated paper, a
greater number of GO terms are tested.

# obtain GO term associations
library(org.Sc.sgd.db)
xx <- as.list(org.Sc.sgdGO2ALLORFS)
associated.genes <- xx[["GO:0000725"]]
associations <- sapply(networks, function(g)

as.numeric(V(g)$name %in% associated.genes),
simplify=F)

networks <- sapply(network.names, function(name)
set.vertex.attribute(networks[[name]], "dsbr",
value=associations[[name]]), simplify=F)

The Knet function will again be used to compare the strength of association of the GO term with the 2
networks. This code is commented to reduce the time required to run the vignette.

# p.values <- sapply(networks, function(g)
# Knet(g, nperm=1000, dist.method="shortest.paths",
# vertex.attr="dsbr", edge.attr="distance")$pval)
# p.values

As expected, the GO term associates more strongly with the UV treated network. This is likely due to the
functional rewiring that occurs within the yeast when exposed to DNA-damaging UV radiation.

vi) Using Knet to identify the network most informative about cancer cell lines In this section,
we will apply a continuous distribution of vertex weights, describing the strength of evidence that a gene is
involved in the maintanence of cancer cell lines, to two networks in order to identify the network that best
explains the mechanisms that underlie cell line maintanence.

Biological networks can be built using a wide range of data sources, including co-expression data, data on
physical interactions or genetic interaction data. Networks can also be created by combining data sources.
The HumanNet network was created by combining 21 data sources. The IntAct network is created using
curated data on physical interactions.
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In the next section we will apply pre-processed RNAi data from cancer cell lines to both networks as vertex
weights. The GENE-E program has been used to convert the essentiality scores for each shRNA into gene-wise
p-values. This p-values are contained within the loaded dataset. We will also convert these p-values into
vertex weights that can be applied to the networks. By taking the −log10 of the p-values, we ensure that the
most essential genes are given the highest vertex weights.

# import and convert RNAi data
data(rnai.cheung)
rnai.cheung <- -log10(rnai.cheung)
rnai.cheung[!is.finite(rnai.cheung)] <- max(rnai.cheung[is.finite(rnai.cheung)])
rnai.cheung[rnai.cheung < 0] <- 0

Next, we will load the interaction data for the two network and create an igraph object for each. No edge
weights are given for the IntAct network. Each of the interactions in the HumanNet network is associated
with a log likelihood score (LLS), describing the probablity the functional interaction occuring given the
data used. In order to reduce the density of the network, interactions with an LLS < 2 have been removed.
Distances for the remaining edges have been produced by dividing the weights by the maximum weight and
taking the −log10 of this score. We have removed all genes not part of the largest cluster from each network.

# import and create IntAct network
data(edgelist.intact)
g.intact <- graph.edgelist(as.matrix(edgelist.intact),

directed=FALSE)

# import data and create HumanNet network
data(edgelist.humannet)
g.humannet <- graph.edgelist(as.matrix(edgelist.humannet)[,1:2],

directed=FALSE)
g.humannet <- set.edge.attribute(g.humannet, "distance",

value=edgelist.humannet$distance)
networks <- list(intact=g.intact, humannet=g.humannet)

Next, we will apply the vertex weights to the networks. Not all networks genes have vertex weights available.

network.names <- names(networks)
network.genes <- sapply(networks, get.vertex.attribute,

name="name", simplify=F)
rnai.cheung.genes <- rownames(rnai.cheung)
cancers <- colnames(rnai.cheung)

for (cancer in cancers) {
for (name in network.names) {

vertex.weights <-rep(NA, vcount(networks[[name]]))
names(vertex.weights) <- network.genes[[name]]
common.genes <- rnai.cheung.genes[rnai.cheung.genes

%in% network.genes[[name]]]
vertex.weights[common.genes] <- rnai.cheung[common.genes, cancer]
networks[[name]] <- set.vertex.attribute(networks[[name]],

cancer, value=vertex.weights)
}

}

We will now apply the Knet-function to these scores. Due to the time required to compute the distance
matrices, this code has been commented out. However, it can be easily run if wished.
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#knet.res <- sapply(networks, Knet, nperm=100,
# dist.method="shortest.paths", vertex.attr=cancers,
# edge.attr="distance", simplify=F)
#p.values <- sapply(knet.res, function(i) sapply(i,
# function(j) j$pval))

The RNAi data from the colon and ovarian cancer cell lines associate strongly with both networks. However,
they associate associate more strongly with the HumanNet network, indicating that the HumanNet network
better explains the cellular mechanisms involved in maintaining these cell lines.

vii) Comparison of Knode and BioNet using simulated data In the next section, we will compare
the Knode-function to BioNet. BioNet overlays molecular networks with node information in identifies
high-scoring subnetwork. The Knode function identifies nodes close to large numbers of high-scoring nodes
and can therefore also be used to identify high-scoring subnetworks. However, as the Knode-function considers
each node individually, it can be used to identify high-scoring nodes across multiple clusters.

We will simulate a network containing multiple clusters of high-scoring nodes. We will then apply both
the Knode function and BioNet in order to compare performance. In the associated paper, this analysis is
repeated using 2, 3 and 4 clusters with 1000 trials. In the code below, only 1 trial is run by default. The
code is commented due to the time required.

The BioNet tool is available as an R-package.

#library(BioNet)

For previously explained reasons, we will use the Barabasi-Albert model of preferential attachment to create
the network. We will use the SpreadHits function to apply 3 clusters of 10 hits to the network. In the
associated paper, this analysis was also run with 2 and 4 clusters. The SpreadHits function first identifies a
seed node for each cluster, located a minumum distance from each other. We will use a distance cutoff of 12,
to ensure that each of the clusters of hits is located on a different part of the network. The shortest.paths
method will be used to measure distances when spreading hits. However, the same results can be produced
using the diffusion and mfpt distance measures. How strongly the hits cluster depend on the parameters
lambda, which we will set to 10, to ensure that there is strong clustering of the hits.

# # required parameters
# n.nodes <- 1000
# n.hits <- 10
# clusters <- 3
#
# # create network and spread hits across 3 clusters
# g <- barabasi.game(n=n.nodes, power=1, m=1, directed=FALSE)
# g <- SpreadHits(g, h=n.hits, clusters=clusters, distance.cutoff=12,
# lambda=10, dist.method="shortest.paths", verbose=FALSE)

We will now simulate a distribution of p-values and apply them to the network as a vertex attribute. The
p-values of the non-hit vertices will be selected from a uniform distribution, as would be expected if there
was no associated between these genes and the phenotype being studied. The p-values of the hits will be
selected from a truncated normal distribution centered around 0.

# # simulate p-values
# library(msm)
# hits <- which(get.vertex.attribute(g, "hits") == 1)
# p.values <- runif(vcount(g))
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# names(p.values) <- as.character(1:vcount(g))
# p.values[as.character(hits)] <- rtnorm(n.hits * clusters, mean=0,
# sd=10e-6, lower=0, upper=1)

We will now apply BioNet to the network and the simulated p-values, in order to try to identify the enriched
subnetworks. A full explanation of the BioNet tool is given in the BioNet R-package vignette. module
contains each of the vertices identified as being located within an enriched subnetwork.

# # apply BioNet to the network and p-values
# bum <- fitBumModel(p.values, plot=F)
# scores <- scoreNodes(network=g, fb=bum, fdr=0.1)
# module <- runFastHeinz(g, scores)

We will now apply the Knode function to the network. First, we will transform the p-values to vertex weights.
This will be done by taking the −log10 of the p-values, in order to ensure that the vertices with the lowest
p-values have the greatest scores. Knode returns a ranked list of scores for each of the vertices in the network.

# # apply Knode to the network
# g <- set.vertex.attribute(g, name="pheno", value=-log10(p.values))
# knode.results <- Knode(g, dist.method="diffusion",
# vertex.attr="pheno", verbose=FALSE)

In total, 30 hits were applied to the network. We will now compare what number of these 30 hits are
contained within the enriched subnetwork identified by BioNet and within the top 30 vertices ranked by the
Knode-function.

# # number of hits identified by BioNet
# sum(hits %in% as.numeric(V(module)$name))
#
# # number of hits ranked within the top 30 by Knode
# sum(hits %in% as.numeric(names(knode.results)[1:(n.hits * clusters)]))

As explained earlier, whilst BioNet tends to identify hits contained only within a single cluster, the fact
that Knode considers each vertex individually allows it to identify hits contained within multiple clusters.
Figure~?? shows the subnetwork created from only the hits in the network. In the first and second subnetwork,
the hits identified by BioNet and Knode are coloured. Vertices successfully identified by BioNet are coloured
blue in the left network and those successfully identified by Knode~are coloured green on the right network.

# # create subnetworks
# g.bionet <- g.knode <- induced.subgraph(g, hits)
# color.bionet <- color.knode <- rep("grey", vcount(g.bionet))
# color.bionet[hits %in% as.numeric(V(module)$name)] <- "blue"
# color.knode[hits %in% as.numeric(names(knode.results)[1:(n.hits * clusters)])] <- "green"
# g.bionet <- set.vertex.attribute(g.bionet, "color", value=color.bionet)
# g.knode <- set.vertex.attribute(g.knode, "color", value=color.knode)
#
# # plot subnetworks
# par(mfrow=c(1,2))
# plot(g.bionet)
# plot(g.knode)
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viii) Comparison of Knode and BioNet using real data The previous section compared Knode and
BioNet using simulated data; in this section we will make the comparison using real data. The analysis of
this data was originally conducted in the BioNet R-package vignette and discussed in paper by Beisser et al.
This makes the comparison of the two methods easier.

In this analysis, we will use expression data from two subtypes of diffuse large B-cell lymphomas (DLBCL,
the ABC and GCB subtypes), p-values derived from survival analysis and a network derived from the HPRD
database. We will use this data to identify interaction modules involved in DLBCL. This code is commented
due to the time required.

# # load required package
# library(SANTA)
# library(BioNet)
# library(DLBCL)
# data(exprLym)
# data(dataLym)
# data(interactome)

In order to use both the expression and survival data, it is neccessary to combine this into a single p-value.
First, differential analysis is used to identify genes that are significantly differentially expression between
the two tumour types (results contained within the DLBCL package). We will then use order statistics to
combine the differential expression p-values with the survival p-values.

# # extract entrez IDs
# library(stringr)
#
# # aggregate p-values
# pvals <- cbind(dataLym$t.pval, dataLym$s.pval)
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# pval <- aggrPvals(pvals, order=2, plot=F)
# names(pval) <- dataLym$label

There are a number of genes contained within the HPRD network for which we do not have expression or
survival data. We will therefore remove these genes.

The SANTA package requires networks to be igraph objects. Therefore, we will convert the network from a
graphNEL object.

# # derive Lymphochip-specific network
# network <- subNetwork(featureNames(exprLym), interactome)
# network <- largestComp(network) # use only the largest component
# network <- igraph.from.graphNEL(network, name=T, weight=T)
# network <- simplify(network)

We will now use BioNet to identify an enriched subnetwork within the network.

# # run BioNet on the Lymphochip-specific network and aggregate p-values
# fb <- fitBumModel(pval, plot=F)
# scores <- scoreNodes(network, fb, fdr=0.001)
# module <- runFastHeinz(network, scores)
# extract.entrez <- function(x) str_extract(str_extract(x,
# "[(][0-9]+"), "[0-9]+")
# bionet.genes <- extract.entrez(V(module)$name)

As previously discussed, the Knode function requires p-values to be converted into vertex weights. We will
therefore take the −log10 of the aggregated p-values and apply these to the network before running the Knode
function.

# # convert p-values to vertex weights
# vertex.weights <- -log10(pval)[get.vertex.attribute(network,
# "name")]
# network <- set.vertex.attribute(network, name="pheno",
# value=vertex.weights)
#
# # run Knode on the Lymphochip-specific network and
# # converted aggregate p-values
# knode.results <- Knode(network, dist.method="diffusion",
# vertex.attr="pheno", verbose=F)
# knode.genes <- extract.entrez(names(knode.results)[1:vcount(module)])

Due to the different methods employed by BioNet and Knode, different enriched subnetworks are identified.
Beisser et al. note that when they apply BioNet to this data, they identify a significant enrichment within the
module of genes involved in the regulation of apoptotic process (GO:0042981). Upon application of Knode,
modules enriched in the regulation of apoptosis are identified (p < 1 ∗ 10−7).

# data(go.entrez)
# sum(go.entrez %in% bionet.genes)
# sum(go.entrez %in% knode.genes)
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