
1

Supplementary methods and results

Computational analysis

Calculation of model evidence

1 2 3 4 5 6

7

8 9 10

Task 1 Task 2

Figure S1. Calculating model evidence example

The procedure employed to calculate the model evidence is described in detail in the main text. Here

we provide a concrete illustration. To this end, we revisit the rooms domain and consider scoring the

particular partition shown in Figure S1. Imagine that the data begin with the two task-specific paths

shown in that figure. Recall that in general, the data consist of optimal policies. When transitions are

deterministic, the data may equivalently consist of a sequence of state transitions; the optimal policies

are then implied. In what follows, we take the latter view to simplify the exposition.

Consider Task 1 first. The node appearing first on the path has four primitive actions available (north,

south, east, west) and two options (go to blue region, go to green region). We can begin coding this path

by considering taking the action east from element 1. However, as noted in the main text, our coding

scheme assumes that if an option is available, it will be used. Because the option go to blue region also

applies, it is selected. The transition from element 1 to 2 thus constrains both the task-specific policy

πt1 (setting it to the option go to blue region) and the option-specific policy πo for the go to blue region

option (setting it to the action east). We compute φ1 using Equation 8 from the main text. Because

there are six choices at the top level (four actions and two options), k1 is 6, and because there are four

choices at the option level (just the four actions), k1 is 4. We thus have φ1 = k1k1 = 6 · 4 = 24.
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The transitions from element 2 to 3 and from 3 to 4 are guided by the option selected at element 1

(recall that behavior continues to be controlled by an option until it terminates, which in this case happens

only when the subgoal in the blue region is reached). Consequently, these steps further constrain the

option policy, but not the root level policy (φ2 = k2 = 4, φ3 = k3 = 2). The root level policy must again

be invoked in the transition from element 4 to 5, setting k4 to 6 (the standard four actions are available,

as are the options go to red region and go to purple region). However, because the ensuing sequence does

not exit the blue region, no option can be selected, and the policy is instead set to the primitive action

east. The transition from 5 to 6 is also guided by the root level policy, and φ5 = k5 = 4 (recall that the

initiation set for options includes only the entrance states; there are thus no options available).

Element 7 begins a new task, and once again it is evident that an option is selected. Indeed, it is

the same option that was selected at the outset of Task 1 (the sequence leads to the same exit node 10).

The transition from 7 to 8 thus constrains both the root (setting it to the option go to blue region) and

option (setting it to the action south) policies, and φ7 = k7k7 = 5 · 3 = 15. On the transitions from 8

to 9 and 9 to 10, the same option remains in control. It is important to note, however, that these steps

do not constrain this option’s policy. The reason is that these same steps were taken, under the same

option, in Task 1 (transitions 2-3 and 3-4). Because the option, like all options, can be reused across

tasks, the constraints imposed on the option policy by those earlier steps already assure consistency with

the repeated transitions in Task 2. Since these steps do not impact Π+, φ8 = φ9 = 1.

Calculation of the factors φi would continue from this point, spanning all subsequent tasks contained

in the dataset. The model evidence would then be directly computable, using Eq. 7.

Optimality

We show here that by choosing an action hierarchy that maximizes the model evidence, one maximizes

the agent’s ability to discover adaptive behaviors. We assume that the agent must discover the solution

to each task only once (the first time that task is confronted), after which the solution can be stored and

reused. Task frequency is thus not a determinative factor.

The adaptive behaviors in question span two levels. First there is the challenge of discovering an

optimal root-level policy for each task in the relevant target ensemble. Second, because the resulting set

of root level policies will in general call options, there is the additional challenge of learning optimal policies

for those options themselves. The problem of discovering adaptive behaviors can thus be decomposed



3

into a set of sub-problems, one for each task (the challenge at the task level is to discover the optimal

root-level policy, given options already furnished with optimal policies) plus one for each option. We refer

to the union of these sub-problems as the target set. We aim to show that the hierarchy that maximizes

the model evidence maximizes the expected log probability that the agent, proceeding by trial and error,

will discover the optimal policy for a problem sampled randomly from the target set, prior to the arrival

of any chosen deadline.

We begin with the model evidence itself: Pr(behavior|hierarchy). Note that this can be regarded

as the probability that the agent will generate the target behavior (the behavior described in the target

data) based on simple trial-and-error. Each action in the process is generated by randomly selecting

one value for the relevant policy parameter. Taking on board the hierarchical structure of the available

policies, the model evidence can be thought of as:

Pr(behavior|hierarchy) =
∏
t∈T

pt
∏
o∈O

po, (1)

where pt is the probability of randomly guessing the correct root-level policy for task t, and po is the

probability of randomly guessing the correct option-level policy for option o. Taking the log on both sides

gives,

logPr(behavior|hierarchy) =
∑
t∈T

log pt +
∑
o∈O

log po =
∑

j∈T ∪O
log pj . (2)

Dividing by the size of the target set,

logPr(behavior|hierarchy)

|T ∪ O|
=

∑
j∈T ∪O log pj

|T ∪ O|
, (3)

which, because we assume random sampling from the target set, implies

logPr(behavior|hierarchy) ∝ E[log pj∈T ∪O]. (4)

Thus, maximizing the model evidence also maximizes the expected log probability of correctly guessing the

contents of a root or option level policy drawn at random from the target set. This will obviously remain

true if multiple independent guesses are permitted. It is also easy to show, by extension, that maximizing
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the model evidence minimizes the geometric mean number of trial-and-error attempts necessary for the

agent to discover the optimal policy for a task or option randomly drawn from the target set. Relating

the present theoretical approach to more sophisticated procedures, such as temporal-difference learning

or Monte Carlo tree search, is an objective for ongoing work.

As asserted in the main text, maximizing the model evidence is also optimal in a second sense: It

minimizes description length. Specifically, it minimizes the number of information-theoretic bits necessary

to describe optimal behavior, given an ensemble of target tasks. “Description” here means specifying the

policy for each task and each option, indicating which particular action should be taken in each state.

From the definition of φi in the preceding section, it follows that the number of bits required by element

i of the data is log2 φi. The number of bits needed to describe the entirety of the data is therefore

− log2

(∏
i

φ−1i

)
, (5)

where i ranges over data elements. The expression in parentheses here is the model evidence (see Eq. 7).

Thus, maximizing the model evidence minimizes the number of bits necessary to specify a policy for the

agent that is consistent with the data.

Although our focus has been on problems with deterministic reversible transitions, a similar set of

arguments apply to the stochastic case. As described previously, the data consist of optimal task policies.

With deterministic transitions, the policies have to be defined only for states along the shortest paths,

as the agent cannot be knocked off-course. In the general case, the optimal policy has to be defined for

all states that have a greater than zero percent probability of being visited. The arguments above then

naturally follow. Maximizing the model evidence aids the discovery of optimal policies on average across

tasks, and minimizes the number of bits necessary to store these policies.

Supplementary experimental results

Experiment 1

During the training phase, participants cycled through the full set of locations an average of 18.3 times.

Of the forty participants, 23 (58%) identified one of the two bottleneck locations as their first bus-stop

choice, far above the number that would be predicted to occur by chance, χ2(1, N = 40) = 35.16,

p < 0.001. Additional analyses indicated that bus-stop choices did not differ significantly with training
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duration (40 vs. 55 minutes). Of the 15 participants who selected the two bottleneck locations as their

first two bus-stop choices, 11 selected an adjacent node – that is, one of the nodes with the highest graph

centrality among those available – as their third choice. Two of the remaining participants violated the

task instructions in order to once again select a bottleneck location. Participants who made no errors

on the final two cycles were classified as highly successful learners. Twenty-three participants met this

criterion. Among highly successful learners, 18 (78%) selected a bottleneck location as their first bus-stop

choice, again well above chance, χ2(1, N = 23) = 48.79, p < 0.001. Within the group of highly successful

learners, eighteen participants rendered the underlying graph perfectly at the end of the experiment, and

of these, 17 (94%) chose a bottleneck bus-stop first χ2(1, N = 17) = 58.37, p < 0.001.

Experiment 2

Among single-location trials, we used a Monte Carlo procedure to test for a tendency to select the

bottleneck location. Vertex-to-location mappings were repeatedly (N = 100, 000) randomly permuted

within each trial across the entire sample, and for each permutation the number of bottleneck choices was

recorded. This resulted in a null distribution of choice frequencies. The result reported in the main text

reflects a fixed-effects analysis. In order to test for consistency across the subject population, the same

Monte Carlo procedure was used to construct a null distribution for each participant, and a right-sided

p-value was derived from this distribution, using the actual number of trials on which the participant

selected the bottleneck location. The resulting set of p-values was compared against 0.5 using a Wilcoxon

signed rank test. This procedure confirmed a strong tendency, across participants, to select the bottleneck

location (p < 0.003).

The same analysis strategy was applied for any-order trials, in order to test for a tendency to select

the bottleneck location first. Once again, the result reported in the main text reflects a fixed-effects

analysis. However, a random-effects analysis based one the same Monte Carlo approach as described for

single-location trials indicated a consistent effect across participants (p < 0.02).

Experiment 3

A GLM analysis was conducted on log RT data from correct responses, testing for main effects of probe

type (bottleneck vs. non-bottleneck) and response (affirm vs. reject). Four further factors were included,

in order to assure that any main effect of probe type did not reflect a confound between probe type and
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stimulus familiarity. These factors each coded for the cumulative number of occurrences, up to the current

trial, of a particular stimulus type. Using the term multiplicity for this number of occurrences, the factors

were, (1) multiplicity of the current probe, (2) multiplicity of the current start location, (3) multiplicity

of the current goal location, (4) multiplicity of the current combination of start, goal and probe. A factor

was also included for trial number, and subject was included as a random effect. As reported in the

main text, this GLM analysis revealed a main effect of probe type (F (1, 1474) = 6.838, p < 0.01). A

main effect of trial was also observed (F (1, 1474) = 21.723, p << 0.001). No other main effect reached

statistical significance (p > 0.05). To check whether the main effect of probe type might reflect a speed-

accuracy tradeoff, we compared response accuracy for bottleneck probes against non-bottleneck probes.

Mean accuracy was virtually identical for the two conditions (0.967 versus 0.970), a t-test indicated no

significant difference (p = 0.58).

Experiment 4

Subjects completed an average of 79.24 trials (range 35-148). The trials of interest were those where two

shortest-path solutions existed, one of which traversed a single region boundary and the other of which

traversed two boundaries (see Figure 2F in the main text). A total of 22 different problems fitting this

description occurred during the experiment, all involving shortest-path solutions of either six or seven

steps. Twenty-five participants received at least one relevant task assignment. Within this group, the

range of such trials per subject ranged from one to seven (median 1.96), with a total sample of 47 trials.

Each trial was classified based on whether the path chosen traversed one or two region boundaries.

Thirty-four trials (72%) involved a two-boundary solution. A fixed-effects, one-tailed sign test rejected

the null hypothesis that one- and two-boundary solutions were equally frequent (p = 0.0015). In order to

test for a consistent effect across participants, each participant was classified according to whether he or

she more frequently selected a two-boundary solution on trials of interest. Seventeen participants fell into

this category, while seven showed the opposite asymmetry (one participant chose one- and two-boundary

solutions equally frequently). A one-tailed sign test was consistent with a bias toward single-boundary

solutions (p = 0.032).


