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Video Analysis

Preprocessing of raw motility videos: Starting from raw motility videos, n consecutive frames are
merged (brightness average of grey scale images). This lowers the number of frames to analyze, improves
the signal to noise ratio by reducing brightness fluctuations, and reduces the influence of Brownian motion
type noise (Fig. S1 A-C). In this study, every 10 frames were averaged into one, giving an effective time
resolution of ∆t = 0.333 s. In each averaged frame, the brightness values are shifted by a scalar value so
as to give the same brightness median across all frames to counter-act photobleaching and other lighting
fluctuations. The brightness range of each video is rescaled to [0, 1], so that the brightest pixel has the
value 1, the darkest pixel 0.

Extraction of image objects: Each video frame is thresholded into a binary image, whose connected
components are extracted (four neighbour connectivity). Objects of the size of one pixel are removed
from further analysis right away.

Filament tracking: Filaments are tracked from one frame to the next based on a dissimilarity
matrix M̂. For two consecutive frames (n− 1 and n), the dissimilarity matrix is an Nn−1 ×Nn matrix,
where Nn is the number of filaments in frame n. The matrix elements are

Mk,l = (Ak
n−1 −Al

n)
2 + (ĉkn−1 − ĉln)

2, (1)

that is, the dissimilarity matrix M̂ = (Mk,l) is determined from the area Ak
n−1 (number of pixels times

area per pixel) and weighted centroid ĉkn−1 (center of mass of grey scale pixel values) of the k-th filament
in the old (n−1) frame, and Al

n and ĉkn of the l-th filament in the new (n) frame. All ĉ are two-dimensional
vectors, and potentiation by 2 indicates the scalar product formed by the dot product of a vector with
itself (i.e. the sum of squared elements).

The properties of a filament in a specific single frame n are stored under a Metaindex m. Given that
in each frame n a Metaindex m uniquely references a single filament, the Metaindices can be used for
filament tracking – a filament holding the same Metaindex m in two frames is understood as the same
filament tracked over several frames.

The task of tracking, formulated in the above way, is to use M̂ to assign Metaindices in a new frame
n based on those from an old frame n− 1. First, the row minimum is found for all rows of M̂. All values
except these row minima are set to zero, e.g.





1 3 4
2 5 6
3 2 4



 →





1 0 0
2 0 0
0 2 0



 . (2)
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In this matrix, the three different possibilities by which a Metaindex can be assigned to a filament in the
next frame are shown: (1) In the first and the second rows, the minimum is at the first position. This
indicates that two Metaindices from the current frame point to the same filament in the next frame. In
this case the filament in the next frame (in our example with index 1) is assigned a new Metaindex. (2)
In the third row, the minimum is at the second position, so the Metaindex of the filament with index 3
in the current frame is forwarded to the filament with index 2 in the next frame. (3) The filament with
index 3 in the next frame is not assigned a Metaindex from Metaindex forwarding, therefore it is assigned
a new Metaindex. Whenever a filament in the next frame is not assigned a Metaindex, a new Metaindex
is introduced. It is simply +1 greater than the greatest Metaindex existent at that point, which ensures
uniqueness of Metaindices.

Two more checks are executed during Metaindex forwarding: A length change check and a separation
check. For the length change we compare the size between two filaments that are about to be assigned
the same Metaindex in two consecutive frames. We check if 1) the ratio of the lengths of the n and n+1
filament is greater than a defined parameter Crel or smaller than 1/Crel, or 2) the lengths of the n−1 and
the n filament differ by more than a defined parameter Cabs. If so, we conclude that an unreasonably big
length change occurred and assign a new Metaindex for the n filament. A separation check ensures that
two filaments which were chosen to be assigned the same Metaindex in consecutive frames will actually
form a connected trace. If they share at least one common pixel, the trace is connected, and the check is
passed. If the filaments in consecutive frames do not share any pixels, they are assumed to be different
filaments and a new Metaindex is introduced for the filament in the second frame. Similar approaches to
following filaments were used in earlier works [1–4]

Frame-to-frame velocity: The frame-to-frame velocity (Vf2f ) between two consecutive frames is
the centroid displacement divided by the time resolution ∆t. Vf2f is used where time courses of filament
motion are desired (Fig. 1 B). However, for longer filaments an increasing underestimation of sliding
velocity occurs due to the centroid cutting corners when the filament turns [5].

Filament length and trace-based sliding velocity: Filaments and traces, both of elongated
shape, are transformed into rectangles of same area (A) and perimeter (P ). The object length then is
the longer x+ of the two rectangle edges [6]

x± =
P

4
±
√

P 2

16
−A. (3)

The trace-based velocity (V ) is calculated from the distance that a filament travelled along its trace
during the time it was observed and tracked for (T ). The trace is constructed by merging the filament’s
binary images from all frames (Fig. 1 B). The filament length (L) is determined by averaging over the
filament length in all frames that the filament was observed in. L is subtracted from the trace length,
resulting in the distance travelled by the filaments tip along its sliding path (Fig. 1 B). This trace length
is divided by T to give V . Unlike the centroid method, V is not affected by systematic errors resulting
from curved motion.

Features of actin motility: The mean sliding velocity is calculated as the mean of trace velocities
V . Trace velocities are used instead of the centroid-based frame-to-frame sliding velocities (Vf2f ) to
prevent velocity under-estimation for long filaments (Fig. 1 B) [5]. The motile fraction (fmot) is the
fraction of Vf2f greater than a threshold velocity Vt (Fig. 1 C). Based on another threshold velocity V t

t ,
the Vf2f are scored as stopped (Vf2f ≤ V t

t ) or motile (Vf2f > V t
t ). Periods spent in the non-motile state

without transition into the motile state are called stop times tstop, conversely periods spent in the motile
state without transition into the non-motile state are called run times trun (Fig. 1 C). In this study,
Vt = 0.125µm/s and V t

t = 0.225µm/s were used.
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Assessment of video analysis

Influence of random displacement: Filament centroids get displaced due to directed filament motion
and random fluctuations, which were approximated as a Brownian-motion type influence on Vf2f . The
mean velocity of directed sliding (ν) is independent of the time resolution ∆t. The velocity from Brownian
motion is proportional to (∆t)−1/2 (Fig. S1 A, B). This implies that excessively lowering ∆t will obscure
Vf2f distribution features which are visible at sufficiently high ∆t (Fig. S1 C). For sufficient ∆t, a motile
and a non-motile population in the Vf2f can be distinguished [7], indicating that a sufficiently large ∆t
was chosen to discern these features of in vitro motility.

Accuracy of L and V values: Computer-generated mock motility videos were used to assess the
analysis’s accuracy. V and L were faithfully detected above the diffraction limit. Below the diffraction
limit, indicated by complex L or V (Eq. 3), V and L become quantitatively unreliable, but filaments
are still qualitatively ordered by L (Fig. S2 A). At a too coarse time resolution, L is overestimated as
filament motion over several consecutive frames “stretches” filament images similar to a motion blur (Fig.
S2 B). L and V values are mostly insensitive to curved sliding of filaments, see Fig. S2 C and Hamelink
et al. [8]. However, less of the filaments successfully pass the rejection criteria (Fig. S2 C).

L below the diffraction limit: In the rectangular transformation to determine filament and trace
lengths (Eq. 3) complex solutions with an imaginary component 6= 0 arise for P/4 >

√
A. This is

the case where filaments that are shorter than the diffraction limit of ≈ 0.2µm appear in the videos as
approximately circular objects (Fig. S2 A-C). Below the diffraction limit filament and trace lengths are
not quantitatively precise. Still, longer filaments can be expected to hold a greater number of fluorophores,
increasing the brightness and in turn the optical area of the filament, resulting in a greater image object.
In consequence, the real parts P/4 could be used to qualitatively sort affected filaments according to L,
even though quantitatively accurate L could not be inferred (Fig. S2 A-C).

Relevance of filament width and digitization threshold: Based on analysis results obtained
with different Black-White thresholds (BW ), V and L averages depend on filament width (W ) (Fig. S3).
However, in a Black-White threshold range between 0.2 and 0.35, V , W , and the number of analyzed
filaments seem mostly unaffected. For a low BW < 0.15, the computation time increases sharply,
indicating that optical noise and brightness fluctuations are analyzed as objects (Fig. S3, inset). L
depends on BW across all BW values. This can be understood when taking into consideration that a
lower BW leads to an increase in the visual area covered by objects, giving a “blobbier” appearance.
In consequence, also the head and tail tips of filaments reach out further, effectively increasing L. For
BW > 0.55 the number of valid filaments drops sharply, indicating that an excessively high BW effectively
removes most filaments.

Machine Learning Quality Control

Filament traces can be rendered unfit for analysis by filament crossings, filaments “swirling” around at-
tachment points on the motility surface, lateral displacement [9], or other features that lead to inaccurate
V and L estimation. Initially, such traces were removed manually, leading to acceptance (1) or rejection
(0) of specific traces. Decision tree models were then trained on such manually generated data sets, to
replace time-consuming manual inspection of filament traces. To make trace images more uniform and
thereby easier to categorize, trace images were rotated so that all images’ main axes pointed in vertical
direction. The binary image data; length, width, solidity, perimeter, and area of the trace; and the
number and position of corners found using MatLab’s corner function were extracted as features. These
features were used to train the decision tree models on manually scored data. Using > 100 decision trees
did not lead to a further decrease in the prediction error rate, indicating ≈ 100 as the number of decision
trees necessary to achieve the maximally possible classification performance (Fig. S4 A). Models used
in this work were based on 150 decision trees, ensuring a sufficient number of decision trees. Receiver
Operating Curves for the classification of data from one day based on training on data from another day
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show that a good margin for successful classification exists (Fig. S4 B). Based on cost optimization for
different data set combinations, we chose an acceptance quorum of 0.7 trees accepting a filament trace
(Fig. S4 C). False positives (traces that should have been rejected) were visually inspected and showed
little or no features deviating from an undisturbed, elongated shape (data not shown).

Statistical Analysis

The raw data are motility assay videos recorded for the different conditions (Tab. 1), in the following
the conditions are indexed by C. In each condition, a number (V C) of different videos were recorded,
in the following the videos are indexed by v = 1, . . . , V C . Let v be a sequence of length V C , whose
elements each refer to one video of C. In a general case, a video can occur in v once, more than once,
or also not at all. The meaning of v is to describe a data set made up of the different videos referenced
in v, e.g. v = (1, 2, . . . , V C) represents the original data set in which each video of condition C is
referenced exactly once. Resolution by L is executed using a sliding window approach: an overall L range
(L ∈ [Lmin, Lmax]) is set, then the center of a window of constant width is moved along this range at
equally sized steps. At each step, all filaments from the videos contained in v (multiply referenced videos
are included multiply) within the windows current L range are gathered, the specific motility feature is
calculated for all filaments, and the arithmetic mean of these feature values is stored as the according
element of a result vector (RC

v
). In this study, 50 length windows were applied for each of the four features

(Fig. 2), resulting in an RC
v

with a length of 200 elements. Within this formalism, RC
v=(1,2,...,V C) refers

to the original data set with all videos contained exactly once; this can be likened to a “mean” in a scalar
measurement. However, when the videos referenced by v are assigned by random draws with replacement,
effectively bootstrap resampledRC

v
are created, which serve as empirical distributions around the “mean”.

Statistical assessment in Principal Component space: PCA was applied to reduce feature
dimension and remove correlations between different elements in the RC (v omitted from notation)
values to prevent inflation of statistical significance. First, the bootstrap RC from all C were pooled to
execute the PCA on all bootstrap data at once. The elements of the bootstrapped RC were transformed
into z-scores (centered on 0 by subtraction of the mean and normalized by standard deviation in each
element) and the first 3 PCs were considered in the statistical assessment (Fig. 3 A, B).

After transformation into PC space, the overlap of 95% intervals of the empirical distributions of the
bootstrappedRC was assessed to detect if statistically significant differences with p < 0.05 are present. To
compare two conditions C = I and C = II, the original (not bootstrapped) RI and RII PC coordinates
were determined using the PCA transformation matrix determined based upon the bootstrapped RC ,
giving rI and rII , respectively. A vector d = rII − rI connecting both C = I, II was determined and the
bootstrapped RI and RII were projected onto that vector using a simple scalar (dot or inner) product.
Then, empirical 2.5% and 97.5% percentiles for each C were constructed from these one-dimensional
values (Ward’s bootstrap confidence intervals). Where no overlap between these percentiles existed,
statistical significance was inferred (p < 0.05) (Fig. 3 C, D).

While PCA and bootstrapping are standard methods, their combined application is seen more rarely.
In other studies, for example, bootstrapping is used to estimate variance in the PCA procedure itself
[10, 11], or a data set of several measurements is bootstrapped into mock data sets for each of which an
independent PCA is executed to determine statistics of the PCA scores [12, 13].

Hierarchical clustering: The bootstrapped RC in PC space were pooled across all C, and then
subjected to agglomerative hierarchical clustering to rediscover the conditions (Fig. 3 E-H). The Ward
method and an Euclidean metric were used.

Length-averaged fold change analysis: αA was chosen as a reference condition (C = 0), by which
the other conditions were normalized. All bootstrapped RC are divided element-wise by the values of
the reference condition’s R0 original (not bootstrapped) feature vector sC values. From the normalized
bootstrapped RC , the V , fmot, tstop, and trun are then averaged over L (arithmetic mean), resulting in
scalar fold change values.
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To estimate the rate of type I errors (false positive rate), the rate of rejection of the null hypothesis
in absence of an actual difference was determined. We executed length-averaged fold change analyses
as described above, with the difference of comparing the baseline condition (αA) to itself. Due to the
bootstrapping employed in this procedure, two executions of the procedure correspond to a random
reshuffling of the same data set. This preserves the same original data set, thus creating two data sets
that have no difference between them but do account for the fluctuations being present in the recorded
data. The rejection of the null hypothesis, i.e. the detection of statistically significant differences, applied
when the confidence intervals did not overlap. This would be the case if

CI1,1 − CI2,2 > 0 or CI2,1 − CI1,2 > 0, (4)

where CIi,j are the limits of the confidence intervals. i ∈ {1, 2} refers to the first and second resample,
respectively. j ∈ {1, 2} refers to the smaller and greater limit of the confidence interval, respectively. In
consequence, a significant difference would be detected if

∆CI = max (CI1,1 − CI2,2, CI2,1 − CI1,2) > 0. (5)

Empirical distributions of ∆CI indicate that, given our specific assessment method, number of measure-
ments, and fluctuations in our data, the detection of statistically significant differences in the absence of
actual differences is highly unlikely (Fig. S5).

Mathematical Model and Simulation

We use a mathematical model developed in one of our earlier studies [14]. Here, we give only the essential
assumptions, expressions, and descriptions. We simulate N myosin binding sites (N = L/0.0355µm
[15,16]) which are mechanically coupled via the actin filament as a rigid backbone. The myosin binding
sites are referred to by an index m = 0, . . . , N , and have a chemical state cm ∈ {0, 1, 2} (Pre power stroke
state, Post power stroke state, unbound state) and a mechanical displacement from their unstrained
position xm ∈ R (in units of µm). Based on this, σm describes if a binding site m currently has a myosin
bound to it:

σm =

{

0 if cm = 0,
1 if cm ∈ {1, 2}. (6)

Further, the unstrained position of a myosin bound to binding site m is shifted by mechanical steps
executed by the myosin. The current step length ∆step

m is

∆step
m =

{

0 nm if cm ∈ {0, 1},
4 nm if cm = 2.

(7)

This means that only the main power stroke of 4 nm length affects the equilibrium position, while the
secondary power stroke of 2 nm is followed by an immediate detachment (ATP-saturated buffer) [17].

The kinetics of the individual binding sites consist of a unidirectional reaction cycle (0 → 1 → 2 → 0),
with transition rates ka (attachment, 0 → 1), kp (main power stroke, 1 → 2), and kd (detachment,
2 → 0) [17].

Due to actin acting as a rigid backbone, the xm result from an interaction between all myosins
currently bound to actin (σm = 1). The length travelled by the actin filament (a, in units of µm) also
results from this mechanical interaction. For a binding site going from cm = 0 to cm = 1, an unstrained
position

x0
m ∼ N (a, w) (8)
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is assigned, which is a random variable drawn from a normal distribution around the mean a (attachment
without any strain) with a standard deviation of w.

The force exerted by myosin on an individual binding site m is

fm = −σmxm = −σmK(a− x0
m −∆step

m ). (9)

K is a spring constant, we assume linear elasticity. After each kinetic transition, we assume that an
instantaneous force equilibrium between all attached myosins is attained,

N
∑

m=1

fm = 0 ⇒ a =
[

∑

σm(x0
m +∆step

m )
]

/

natt, natt =
∑

σm. (10)

a is left unchanged if natt = 0.
Transition rate calculation: The current chemical state cm as well as the work that has to be

exerted for the next kinetic transition (∆Wm) determine the rate at which a binding site m will undergo
the next transition, rm:

rm =







ka if cm = 0,

k0pe
−

2

K
cf∆W 1→2

m if cm = 1,

k0de
−

2

K
cf∆W 2→0

m if cm = 2.

(11)

2cf/K is a coefficient quantifying how strongly mechanical work exerted during a mechanical transition
affects the rate of this mechanical transition. When a, x0

m and cm are known, the overall mechanical
work stored in the actin-myosin system can be calculated:

W =

N
∑

m=1

σm
K

2

(

a− x0
m −∆step

m

)2
. (12)

m denotes the general summation over all myosin binding sites, irrespective of the current value of m.
We now assume that a is continuously changed to the system’s mechanical equilibrium position

throughout the execution of a mechanical step. It follows that

∆Wm = W after
m −W before

m (13)

can be calculated from the work before (W before
m ) and after (W after

m ) a mechanical step of size d occurring
at binding site m,

∆Wm =
K

2

{

∑

m

[

(

d

natt

)2

+ (a− x0
m −∆step

m )
2d

natt

]

+ d2 −
(

a+
d

natt
−∆step

m

)

2d+ x0
m2d

}

. (14)

The simulation is initialized with a = 0, xm = 0, and randomly assigned cm. Filament motion is
simulated by iteration of the following steps.

1. Instantaneous force equilibration by adjustment of a.

2. Current transition rates rm are calculated based on the system’s current state.

3. The next transition time and the binding site undergoing a transition is stochastically drawn based
on a Gillespie scheme [18]. The according binding site is advanced by one step in the reaction cycle.
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This sequence is repeated until either a maximal number of kinetic transitions per binding site (nsteps) or
a maximal simulation time (tmax) is reached. The iteration results in a sequence of travelled lengths a,
and elapsed times t. In the actual video analysis from the motility assay, these exact time courses are not
accessible, instead only the difference in travelled length at time intervals ∆t (time between consecutive
frames in our videos) can be assessed. Accordingly, Vf2f were extracted from the stochastic simulation
using an imposed time resolution of ∆t.

Actin sliding was simulated for N = 5, 6, . . . , 90. At each N , actin sliding was simulated till 100 s
of simulation time or 100, 000 · N chemical transitions were reached. Features of actin motility were
extracted for each N , followed by a running window analysis (Start: N = 10, end: N = 90, window
width of 20). Considering a binding site distance of ≈ 0.035 µm [15, 16], this approximates the L range
we analyzed in our experiments.

Correction for non-specific binding to motility surface: When this model was simulated, above
N ≈ 25, trun and tstop could not be measured due to Vf2f not falling below the threshold for determining
trun and tstop. Occasional non-specific stopping events occur for longer filaments [14]. We introduce these
stopping events by inserting Poisson-distributed Vf2f = 0 µm/s values into the Vf2f time trace:

∆T = −T log r, (15)

where ∆T is the time between two consecutive stop events, r a random number drawn from a uniform
distribution r ∈ [0, 1]. T is the mean time between two consecutive stop events,

T =

{ ∞ if N ≤ 30,
20 s

N−30 + 2 s if N > 30,
(16)

which has been adjusted to limit trun as observed in our experiments (Fig. 2 D).
Parameter adjustment: The baseline model parameters (Fig. 7) were taken from the literature

and then adjusted to fit the L resolved V and fmot (ka [19, 20], kp [17], kd [17], an additional factor of
5.5 was used to account for higher temperature in our experiment [14]), or estimated from L resolved
V and fmot, starting from values determined in our earlier study of skeletal muscle myosin [14] (cf , w).
The altered parameters mimicking the αA-Tmαβ, γA-Tmβ, and αA-Tmβ conditions were estimated
based on Fig. S6 and comparison with L resolved features and scalar fold changes in the conditions with
statistically significant differences in the experiment (Fig. 2 and 3, respectively).
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