
Text S1: Belief Propagation in HTM Networks

In this document we discuss the derivation of Bayesian belief propagation for HTM networks. Bayesian

belief propagation was pioneered by Judea Pearl as an inference mechanism for Bayesian networks [1].

Like Bayesian networks, HTMs can be thought of as encoding relationships between random variables.

Belief propagation is an approximate inference method for HTM networks.

Notation

We closely follow the notation used by Pearl [1]. The equations are described from the viewpoint of a node

in the HTM network (see figure 1). We use −e to denote bottom-up evidence and +e to denote top-down

evidence, from the node’s view point. The bottom-up evidence at time t is denoted using −et and the

sequence of bottom-up evidence from time 0 to t is denoted using −et
0. Similar temporal indexing is used

for the c variable representing the coincidence patterns in the node. The random variable representing

the set of coincidence patterns in the node is C and the random variable representing the set of Markov

chains in the node is G. The Markov chain transition probabilities are denoted using P (Ct|Ct−1, G).

We use c(t) to represent all the possible coincidence patterns that can be active at time t and ci(t) to

represent the event of coincidence pattern ci occurring at time t. The top-down input message to the

node at time t is denoted using πt and the bottom-up output message from the node is denoted using λt.

The top-down output messages of the node at time t are indicated using πchild node index
t where the child

node index refers to the destination child node. Similarly, the bottom-up input messages to the node are

indicated using λchild node index
t where the child node index refers to the source child node.

Dynamic programming equations

In this section, we use dynamic programming [2] methods to derive the equations for sequential inference

under some simplifying assumptions. Figure 2 shows the timing of the messages, as seen by node k. We
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Figure 1. Block diagram of belief propagation computations in an HTM node.
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Figure 2. Timing of the input and output messages to Node k. The message passing between the node and its

children occur at intervals of 1 time step, where as the message passing between the node and its parents occur

at intervals of τk time steps.
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assume that the bottom-up messages to the node arrive synchronized to time-steps t = 0, t = 1 etc. The

messages from the parent node arrives at intervals that are multiples of τk, where τk is the time constant

of this node. Similarly, it is assumed that bottom-up messages are passed at an interval of τk, although

they are calculated for every time step t = 0, t = 1, · · · .
Assume that a top-down message arrived at time t = 0, synchronous with bottom-up messages from

the children. We derive the update equations for calculating the internal states and outputs of the node

from t = 0 to t = τk, as more bottom-up messages arrive. First, we derive the update equations for the

belief state of the node.

Belt(ci) = P (ci(t)|−et
0,

+ e0)

= (1/P (−et
0|+et

0))
∑

gr∈Gk

∑
ct−1
0

P (−et
0|ct0, gr,

+ e0)P (ct0, gr|+e0)

∝
∑

gr∈Gk

βt(ci, gr) (1)

where the dynamic programming variable βt is defined as

βt(ci, gr) =
∑
ct−1
0

P (−et
0|ct0, gr,

+ e0)P (ct0, gr|+e0) (2)

Then, the update equation becomes

βt(ci, gr) = P (−et|ci(t))
∑

cj(t−1)∈Ck

P (ci(t)|cj(t− 1), gr)βt−1(cj , gr) (3)

In the above equation, P (−et|ci(t)) denotes the likelihood of coincidence patterns based on evidence

from below. This is calculated by multiplying the bottom-up output messages from child nodes according

to:

P (−et|ci(t)) ∝
M∏

j=1

λ
mj

t (rmj

i ) (4)

where coincidence-pattern ci is the co-occurrence of rm1
i ’th Markov chain from child 1, rm2

i ’th Markov

chain from child 2, · · · , and rmM
i ’th Markov chain from child M . This computation reflects the assumption

that given the coincidence pattern the evidence from its components can be combined independently.
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For the β update (equation 3) , the initial state is

β0(ci, gr) = P (−e0|ci(t = 0))P (ci(t = 0), gr(t = 0)|+e0)

= P (−e0|ci(t = 0))P (ci|gr)P (gr|+e0)

= P (−e0|ci(t = 0))P (ci|gr)π0(gr) (5)

The initial state incorporates π0(gr) = P (gr|+e0) – the message received from the parent at time t = 0.

In the above equation, P (ci|gr) is a learned conditional probability table that indicates the membership

of each coincidence in the Markov chains of the node.

The top-down output messages that are sent to the child nodes indicate the node’s degree of certainty

in child nodes’ Markov chains. (In non-loopy belief propagation, these messages are divided by the

bottom-up messages from the children to avoid double counting. ) This is done by converting the belief

in coincidence patterns to the degree of certainty in Markov chains of child nodes based on the components

of each coincidence pattern. The message to child mi is calculated as

πmi(gr) ∝
∑

i

I(ci)Bel(ci) (6)

where

I(ci) =

 1, if gmi
r is a component of ci

0, otherwise
(7)

and gmi
r is the rth Markov chain in child node mi.
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The message for bottom-up transmission, λt(gr) = P (−et
0|gr(t)), is calculated as follows:

P (−et
0|gr(t)) =

∑
ct
0

P (−et
0, c

t
0|gr)

=
∑
ct
0

P (−et
0|ct0)P (ct0|gr)

=
∑
ct
0

P (−et−1
0 |ct−1

0 )P (−et|ct)P (ct−1
0 , ct|gr)

=
∑
ct
0

P (−et|ct)P (ct|ct−1, gr)P (−et−1
0 |ct−1

0 )P (ct−1
0 |gr)

=
∑

ci∈Ck

P (−et|ci(t))
∑

cj∈Ck

P (ci(t)|cj(t− 1), gr)
∑
ct−2
0

P (−et−1
0 |ct−1

0 )P (ct−1
0 |gr)

=
∑

ci∈Ck

P (−et|ci(t))
∑

cj∈Ck

P (ci(t)|cj(t− 1), gr)αt−1(ci, gr)

(8)

Where α is the dynamic programming variable whose update equation is given by

αt(ci, gr) = P (−et|ci(t))
∑

cj(t−1)∈Ck

P (ci(t)|cj(t− 1), gr)αt−1(cj , gr)

(9)

The bottom-up output message is calculated as

λt(gr) = P (−et
0|gr(t)) ∝

∑
ci(t)∈Ck

αt(ci, gr) (10)
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