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Abstract

The spatial structure of an evolving population affects the balance of natural selection ver-

sus genetic drift. Some structures amplify selection, increasing the role that fitness differ-

ences play in determining which mutations become fixed. Other structures suppress

selection, reducing the effect of fitness differences and increasing the role of random

chance. This phenomenon can be modeled by representing spatial structure as a graph,

with individuals occupying vertices. Births and deaths occur stochastically, according to a

specified update rule. We study death-Birth updating: An individual is chosen to die and

then its neighbors compete to reproduce into the vacant spot. Previous numerical experi-

ments suggested that amplifiers of selection for this process are either rare or nonexistent.

We introduce a perturbative method for this problem for weak selection regime, meaning

that mutations have small fitness effects. We show that fixation probability under weak

selection can be calculated in terms of the coalescence times of random walks. This result

leads naturally to a new definition of effective population size. Using this and other methods,

we uncover the first known examples of transient amplifiers of selection (graphs that amplify

selection for a particular range of fitness values) for the death-Birth process. We also exhibit

new families of “reducers of fixation”, which decrease the fixation probability of all mutations,

whether beneficial or deleterious.

Author summary

Natural selection is often thought of as “survival of the fittest”, but random chance plays a

significant role in which mutations persist and which are eliminated. The balance of selec-

tion versus randomness is affected by spatial structure—how individuals are arranged

within their habitat. Some structures amplify the effects of selection, so that only the

fittest mutations are likely to persist. Others suppress the effects of selection, making the

survival of genes primarily a matter of random chance. We study this question using a

mathematical model called the “death-Birth process”. Previous studies have found that

spatial structure rarely, if ever, amplifies selection for this process. Here we report that

spatial structure can indeed amplify selection, at least for mutations with small fitness
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effects. We also identify structures that reduce the spread of any new mutation, whether

beneficial or deleterious. Our work introduces new mathematical techniques for assessing

how population structure affects natural selection.

Introduction

Spatial population structure has a variety of effects on natural selection [1–5]. These effects can

be studied mathematically by representing spatial structure as a graph [3]. The vertices repre-

sent individuals, and the edges indicate spatial relationships between them. This modeling

approach, known as evolutionary graph theory, has illuminated the effects of spatial structure

on the rate of genetic change [6], the balance of selection versus neutral drift [3, 7, 8], and the

evolution of cooperation and other social behaviors [4, 5, 9–15].

Here we focus on how spatial structure affects fixation probability—the probability that a

new mutation will spread throughout the population, depending on its effect on fitness. Previ-

ous work [3, 7, 8, 16–27] has shown that some graphs act as amplifiers of selection, increasing

the fixation probability of beneficial mutations, while reducing that of deleterious mutations.

Other graphs act as suppressors of selection, increasing the fixation probability of deleterious

mutations and reducing that of beneficial mutations. Over time, a population that is structured

as an amplifier will more rapidly accrue beneficial mutations, whereas one structured as a sup-

pressor will experience greater effects of random drift.

To be precise, the terms amplifier and suppressor cannot be ascribed solely to a graph itself.

Fixation probabilities also depend on the update rule: the scheme by which births and deaths

are determined. The majority of works on amplifiers and suppressors use Birth-death (Bd)
updating: An individual is selected to reproduce proportionally to fitness, and its offspring

replaces a uniformly-chosen neighbor. A minority of works [18, 23, 28, 29] have considered

death-Birth (dB) updating: A uniformly-chosen individual dies, and a neighbor is chosen pro-

portionally to fitness to reproduce into the vacancy. (Following Hindersin and Traulsen [23],

we use uppercase letters for a demographic step that is affected by fitness, and lowercase letters

for a step that is fitness-independent). Interestingly, the choice of update rule has a marked

effect on fixation probabilities. For example, the Star graph (Fig 1B) is an amplifier of selection

for Bd updating [3, 17] (so long as the initial mutant vertex is chosen uniformly at random

[21]), but a suppressor for dB updating [18].

A recent numerical investigation [23] of thousands of random graphs up to size 14 found

no amplifiers of selection for death-Birth updating. This suggests that amplifiers for dB are

either nonexistent or rare, at least among small graphs. This work also identified a graph (the

cycle; Fig 1C) that, for dB updating, reduces fixation probabilities for all mutations that affect

fitness, whether beneficial or deleterious. The cycle is therefore neither an amplifier nor a

suppressor; it might instead be called a “reducer of fixation”, in that it preserves the resident

wild-type regardless of fitness effects. A follow-up work [30] identified other reducers of

fixation.

Here we investigate fixation probabilities for death-Birth updating on graphs, using a vari-

ety of analytical and numerical methods. We develop a weak-selection approach to this ques-

tion, based on coalescing random walk methods [31, 32] that were previously used to study

evolutionary games on graphs [5, 10, 14]. Weak selection means that the fitness of the mutant

is close to that of the resident; i.e., the mutation is either slightly beneficial or slightly deleteri-

ous. Unlike earlier numerical methods [23, 26, 33], the weak-selection method can be
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performed in polynomial time, allowing for efficient identification of amplifiers and suppres-

sors of weak selection. We apply this method to several graph families and random graph

models. We also compute fixation probabilities for arbitrary mutant fitness (beyond weak

selection) for these graph families.

We find, contrary to the expectation set by previous numerical experiments [23], that

amplifiers, of a sort, do exist for death-Birth updating. Specifically, we exhibit several families

of transient amplifiers, which amplify selection only for a certain range of mutant fitness val-

ues. We also uncover new examples of reducers of fixation.

Our weak-selection method also leads to new theoretical results. First, the form of our

expression for fixation probability suggests a new definition of effective population size, with

intriguing connections to previous definitions [16, 34–40]. Second, we show that for isother-
mal graphs—which have the same edge weight sum at each vertex—the fixation probability

coincides, under weak selection, with that of a well-mixed population. This result is reminis-

cent of the Isothermal Theorem of Lieberman et al. [3], which applies to Bd updating (see also

Refs. [15, 28, 29]). However, whereas the original Isothermal Theorem is valid for any strength

of selection, our new result applies only to weak selection. Third, we exhibit a recipe by which

amplifiers of weak selection can be constructed as perturbations of isothermal graphs. Finally,

we show that fixation probabilities under weak selection can be well-approximated using only

the first two moments of the degree distribution. This approximation helps explain why ampli-

fiers of selection (even transient ones) are rare for dB updating.

Fig 1. Fixation probabilities for constant selection on graphs. (A) The complete graph represents a well-mixed population. (B)

The star graph consists of one hub vertex connected to n leaf vertices. This star is a suppressor of selection for death-Birth updating

[18]. (C) The cycle, a regular graph of degree 2, is a reducer of fixation: the fixation probability of any mutant type of fitness r 6¼ 1 is

smaller than it would be in the well-mixed case [23]. Panels (D)–(F) plot fixation probability versus mutant fitness for the respective

graphs, with the well-mixed case (orange curve) shown for comparison. Dashed lines show the linear approximation to fixation

probability at r = 1. These approximations are accurate for weak selection (r� 1) and can be computed from coalescence times using

Eqs (5)–(9).

https://doi.org/10.1371/journal.pcbi.1007529.g001
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Methods

Model

We study an established model of natural selection on graphs [3, 7, 8, 16–29, 41–43]. Spatial

structure is represented as a connected, weighted, undirected graph G. Joining each pair of ver-

tices i and j is an edge of weight wij� 0, with wij = wji since G is undirected. We exclude the

possibility of self-loops by setting wii = 0 for each vertex i. The size of the graph, which is also

the population size, is denoted N.

Each vertex houses a single haploid individual. Individuals can be of mutant or resident

(wild-) type. Mutants have fitness r> 0, while the fitness of the resident type is set to 1. Advan-

tageous mutants have r> 1, while deleterious mutants have r< 1. The case r = 1 describes neu-

tral drift, for which the mutation has no fitness effect. This model describes constant selection,

in that the fitnesses of the competing types do not vary with the current population state.

Selection proceeds according to the death-Birth (dB) update rule [4, 18, 44]. First, an indi-

vidual is selected uniformly at random for death, creating a vacant vertex. Then, a neighbor of

the vacant vertex is chosen to reproduce, with probability proportional to (fitness) × (edge

weight to the vacant vertex). The new offspring fills the vacancy, inheriting the type of the

parent.

As an initial state, we suppose that a single mutant is introduced, at a vertex chosen uni-

formly at random, in a population otherwise composed of residents. We define the mutation’s

fixation probability as the expected probability that a state of all mutants is reached from this

initial condition. The fixation probability of a mutation of fitness r on a graph G is denoted

ρG(r).
The baseline case of a well-mixed population is represented by the complete graph KN of

size N (Fig 1A). For dB updating on the complete graph KN, a mutant of fitness r has fixation

probability [23, 28]

rKN
ðrÞ ¼

N � 1

N
1 � r� 1

1 � r� ðN� 1Þ
: ð1Þ

We characterize the effects of graph structure on fixation probabilities using the following

definitions:

Definition Let G be a graph of size N. Then G is

• An amplifier of selection if rGðrÞ < rKN
ðrÞ for 0< r< 1 and rGðrÞ > rKN

ðrÞ for r> 1.

• A suppressor of selection if rGðrÞ > rKN
ðrÞ for 0< r< 1 and rGðrÞ < rKN

ðrÞ for r> 1.

• A transient amplifier of selection if there is some r� > 1 such that rGðrÞ < rKN
ðrÞ for 0<

r< 1 and for r> r�, and rGðrÞ > rKN
ðrÞ for 1< r< r�.

• A reducer of fixation if rGðrÞ < rKN
ðrÞ for all r 6¼ 1.

For example, the star graph Sn with n leaves (population size N = n + 1; Fig 1B) is a suppres-

sor of selection for dB updating [18], with fixation probability [45]

rSn
ðrÞ ¼

ðN � 1Þr þ 1

Nðr þ 1Þ

1

N
þ

r
N þ 2r � 2

� �

: ð2Þ

The cycle CN is a reducer of fixation for dB updating [23], with fixation probability [28]

rCN
ðrÞ ¼

2ðr � 1Þ

3r � 1þ r� ðN� 3Þ � 3r� ðN� 2Þ
: ð3Þ
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Other examples of reducers were identified by Hindersin et al. [30], who called them “suppres-

sors of evolution”; we prefer “reducers of fixation” to avoid confusion with suppressors of

selection.

A companion work [46] proves that there are no (non-transient) amplifiers of selection for

dB updating. Transient amplifiers of selection were previously known for Bd updating [19] but

not for dB updating. For Bd updating, there are some graphs that do not fit any of the above

definitions, but alternate between amplification and suppression (i.e, rGðrÞ > rKN
ðrÞ on a dis-

connected set of r-values) [27]; such examples have not been discovered for dB updating.

Analysis of weak selection

Fixation probabilities on graphs can be difficult to compute. Current numerical methods [22,

23, 26, 33] involve solving a system of Oð2NÞ equations to compute fixation probabilities on a

given graph of size N. For this reason, previous analyses have focused on graphs that are small

[23, 26, 27, 33, 42, 43], highly symmetric [3, 7, 17, 19–21, 24, 25], or are constrained in the

types of connections between vertices [47].

One way to mitigate these difficulties is to focus on weak selection, which is the regime r�
1. Weak selection can be studied as a perturbation of neutral drift (r = 1). This approach has

been fruitfully applied to population genetics [48–50] and evolutionary game theory [4, 5, 10,

11, 14, 44, 51], but so far has not been applied to models of constant selection on graphs.

To implement weak selection for our model, we write the fitness of the mutant as r = 1 + δ,

with δ representing the mutation’s selection coefficient. We consider the first-order Taylor

expansion of the fixation probability, ρG(1 + δ), at δ = 0. For the complete graph, Taylor expan-

sion of Eq (1) yields

rKN
ð1þ dÞ ¼

1

N
þ d

N � 2

2N
þOðd2

Þ: ð4Þ

Coalescing random walks

For an arbitrary weighted, connected graph, we apply a method developed by Allen et al. [5] to

calculate fixation probabilities under weak selection. This method uses coalescing random
walks, which trace the co-ancestry of given individuals backwards in time to their most recent

common ancestor.

Each individual’s ancestry is represented as a random walk on G. These random walks are

defined by the step probabilities pij = wij/wi, where wi = ∑j2G wij is the weighted degree of vertex

i. Importantly, pij is also equal to the conditional probability, under neutral drift (r = 1), that j
reproduces, given that i is replaced. Random walks on G have a stationary distribution, in

which the probability of vertex i is equal to its relative weighted degree, πi = wi/(∑j2G wj).

To represent the co-ancestry of two individuals, we consider a pair of random walkers. At

each time-step, one of the two walkers is chosen (with equal probability) to take a step. The

point at which the two walkers meet (coalesce) represents the most recent common ancestor.

We let τij denote the expected time to coalescence from initial vertices i and j. These coales-

cence times can be determined from the following system of equations [5, 52]:

tij ¼

0 i ¼ j

1þ
1

2

X

k2G
piktjk þ pjktik

� �
i 6¼ j:

8
<

:
ð5Þ
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We also define the remeeting time τi from vertex i as the expected time for two random

walkers from vertex i to rejoin each other. Remeeting times are related to coalescence times by

ti ¼ 1þ
X

j2G

pijtij; ð6Þ

and obey the identity [5]

X

i2G

p2

i ti ¼ 1; ð7Þ

which is an instance of Kac’s return time formula [53].

Results

Fixation probability under weak selection

Applying the properties of coalescence times, we prove in S1 Appendix that the fixation proba-

bility on an arbitrary (weighted, undirected, connected) graph G can be expanded under weak

selection as

rGð1þ dÞ ¼
1

N
þ d

Neff � 2

2N
þOðd2

Þ; ð8Þ

where Neff is the effective population size of G, which we define as

Neff ¼
X

i2G

piti: ð9Þ

This definition of effective population size is distinct from, but closely related to, previous defi-

nitions [16, 34–40], as we review in the Discussion.

Comparing the first-order terms in Eqs (8) and (4) provides a criterion for the effects of

graph structure on fixation probabilities under weak selection:

Definition Let G be a graph of size N. We say G is

• An amplifier of weak selection if Neff > N,

• A suppressor of weak selection if Neff < N.

An amplifier (respectively, suppressor) of weak selection is guaranteed to amplify (respec-

tively, suppress) selection for all r sufficiently close to 1. Formally, if G is an amplifier of weak

selection, there exist a, b with 0� a< 1 < b�1 such that rGðrÞ < rKN
ðrÞ for a< r< 1 and

rGðrÞ > rKN
ðrÞ for 1 < r< b. Likewise, if G is a suppressor of weak selection, there exist a, b

with 0� a< 1 < b�1 such that rGðrÞ > rKN
ðrÞ for a< r< 1 and rGðrÞ < rKN

ðrÞ for 1 < r
< b.

As an example, solving Eq (5) for the star graph Sn, and applying Eqs (6) and (9), we obtain

τH = τL = Neff = 4n/(n + 1). Since the star graph has size N = n + 1, we find that the star is a sup-

pressor of weak selection for all n� 2. Substituting in Eq (8), we obtain

rGð1þ dÞ ¼
1

N
þ d

N � 2

N2
þOðd2

Þ; ð10Þ

which agrees with the Taylor expansion of Eq (2).
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Weak-selection Isothermal Theorem

A particularly interesting result arises in the special case of isothermal graphs. An undirected

graph G is isothermal if each vertex has the same weighted degree wi, or equivalently, if πi = 1/

N for each i 2 G. The Isothermal Theorem [3] states that, for Bd updating, an isothermal graph

has the same fixation probabilities as a well-mixed population of the same size, for all values

of r and all starting configurations of mutants. However, the corresponding statement for dB

updating is false [28, 29]. For example, the cycle (Fig 1C) is isothermal, but its fixation proba-

bilities, as given by Eq (3), differ from those of a well-mixed population, given by Eq (1).

Here we show that a weak-selection version of the isothermal theorem holds for death-

Birth updating. For an isothermal graph G, Eqs (7) and (9) give

Neff ¼
X

i2G

1

N

� �

ti ¼ N
X

i2G

1

N2

� �

ti ¼ N
X

i2G

p2

i ti ¼ N: ð11Þ

Combining with Eq (8), we arrive at the following result:

Theorem (Weak-Selection Isothermal Theorem for dB Updating). Let G be a weighted,

undirected, connected isothermal graph of size N� 2 with no self-loops. Then for dB updating,

fixation probabilities on G coincide with those on the complete graph KN to first order in the
selection coefficient δ:

rGð1þ dÞ ¼ rKN
ð1þ dÞ þOðd2

Þ: ð12Þ

In other words, if G is isothermal, then the plots of ρG(r) and rKN
ðrÞ are tangent at r = 1.

This implies that, for dB updating, isothermal graphs neither amplify nor suppress weak selec-

tion. For example, the cycle CN (Fig 1C) is isothermal, and therefore the plots of rCN
ðrÞ and

rKN
ðrÞ are tangent at r = 1 (Fig 1F). However, these fixation probabilities do not coincide

beyond r = 1; instead, rCN
ðrÞ < rKN

ðrÞ for all r 6¼ 1 [33], meaning that the cycle is a reducer of

fixation.

Generating amplifiers of weak selection

The Weak-Selection Isothermal Theorem also suggests a method to generate amplifiers of

weak selection via perturbations of an isothermal graph. Since Neff = N for all isothermal

graphs, any perturbation that increases Neff will yield an amplifier of weak selection.

Consider a family of weighted graphs indexed by a parameter �, such that the graph is iso-

thermal when � = 0. In S1 Appendix we derive the relationship

dNeff

d�

�
�
�
�
�¼0

¼ �
X

i2G

ti
dpi

d�

� ��
�
�
�
�¼0

: ð13Þ

Eq (13) suggests that we can construct amplifiers of weak selection by starting with an isother-

mal graph, and perturbing so as to decrease the relative weighted degree of vertices with large

remeeting time and/or increase the relative weighted degree of vertices with small remeeting

time.

Fig 2 provides an example to illustrate this method. Starting with an unweighted 3-regular

graph of size 12, we reduce the weight of a single edge that is adjacent to a vertex of large

remeeting time. This creates a family of amplifiers of weak selection for dB. Notably, the graph

remains an amplifier even when this edge is deleted completely.

Transient amplifiers and reducers for death-Birth updating
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Examples

We now introduce three example families of graphs, which can behave as transient amplifiers,

suppressors, or reducers, depending on the parameter values. We analyze these graphs both

for weak and nonweak selection. Our results are summarized in Table 1. Derivations and

proofs are presented in S1 Appendix. Our analytical results are verified by Monte Carlo simu-

lation in S1 and S2 Figs.

Fan. The Fan, Fn,m, (Fig 3) has one hub and n� 2 blades. Each blade contains m� 2 verti-

ces, for a total of N = nm + 1 vertices. Each blade vertex is joined to the hub by an edge of

weight � > 0, and is joined to each other vertex on the same blade by an edge of weight 1. The

Fan is isothermal when � = (m − 1)/(nm − 1).

Applying our weak-selection method, we find that the Fan has effective population size

Neff ¼ N

þ
ðm � 1 � �ðnm � 1ÞÞðmðm � 1Þðn � 2Þ þ �ðnm2 þ nm � 4mþ 2Þ þ 2�2ðnm � 1ÞÞ

ðm � 1þ 2�Þðmðm � 1Þ þ �ðnmþ 2m � 1Þ þ �2ðnmþ 1ÞÞ
:
ð14Þ

Fig 2. Creating an amplifier of weak selection for death-Birth updating. (A) We begin with a 3-regular graph of size 12 in which all edges have weight 1.

This graph is isothermal, and therefore has Neff = N = 12. We solve for remeeting times according to Eqs (5) and (6), and identify the vertex with the largest

remeeting time (τi� 18.29, shown in magenta). We decrease the edge weight from this vertex to one of its neighbors by an amount �. (B) As this edge

weight decreases, the graph becomes an amplifier of weak selection (Neff > N). For � = 1, the resulting undirected, unweighted graph is still an amplifier of

weak selection, with effective population size Neff� 12.03.

https://doi.org/10.1371/journal.pcbi.1007529.g002

Table 1. Results for example graphs.

Example Case Classification

Separated Hubs �

(�! 0)

n� h Suppressor

n = h + 1 Reducer

n� h + 2 Transient amplifier

Star of Islands

(�! 0)

m� h−1 Suppressor ��

m = h Reducer

m� h + 1 Transient amplifier ��

� The Fan is the h = 1 case of separated hubs.

�� Proven only for weak selection (other cases are proven for arbitrary selection strength).

https://doi.org/10.1371/journal.pcbi.1007529.t001
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From the sign of the second term, we observe that the Fan amplifies weak selection for all

0< � < (m − 1)/(nm − 1) (Fig 3B).

Taking �! 0, we obtain Neff = nm + n − 1. Although fixation is impossible when � is

exactly zero (because the population is disconnected in this case), the �! 0 limit is still well-

defined in the sense that Neff can be made arbitrarily close to nm + n − 1 by choosing � suffi-

ciently small. In this limit, the Fan amplifies weak selection (Neff > N) for n� 3 blades, but

neither amplifies nor suppresses weak selection (Neff = N) for n = 2. The strongest amplifier

Fig 3. The Fan. (A) The Fan, Fn,m, consists of one hub and n� 2 “blades”, with m� 2 vertices per blade. Edge weights are as shown.

The case n = m = 3 is pictured. (B) The ratio of effective versus actual population size, plotted against the hub-to-blade edge weight �,

for m = 2 vertices per blade. For n = 2 blades, the Fan is an amplifier of weak selection for 0< � < 1/3, but becomes a reducer in the �

! 0 limit. For n� 3, the Fan is a transient amplifier for sufficiently small �, including the �! 0 limit. (C) Fixation probability for

F4,2 (blue curve), plotted against mutant fitness r, in the �! 0 limit, according to Eq (15). The orange curve shows the corresponding

well-mixed population result, Eq (1), for comparison. Dotted lines show the corresponding weak-selection results (i.e. the linear

approximation at r = 1), according to Eqs (4), (8), and (14). (D) In the n!1 limit, fixation probability is given by Eq (15), and the

Fan is an amplifier for 1 < r < ð1þ
ffiffiffi
5
p
Þ=2.

https://doi.org/10.1371/journal.pcbi.1007529.g003
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of weak selection (largest Neff/N) occurs for m = 2 and first �! 0 and then n!1; in this

case, Neff/N! 3/2.

Moving beyond weak selection, we calculate the fixation probability for a mutation of arbi-

trary fitness r> 0, in the �! 0 limit:

rFn;m
ðrÞ ¼

nðm � 1Þð1 � r� 1Þð1 � r� ðmþ1ÞÞ

ðmnþ 1Þð1 � r� ðm� 1ÞÞð1 � r� nðmþ1ÞÞ
: ð15Þ

In S2 Fig, we show excellent agreement between Eq (15) and Monte Carlo simulations for

� = 10−3. We prove in S1 Appendix that, in the �! 0 limit, the Fan is a reducer of fixation for

n = 2 and a transient amplifier of selection for all n� 3.

Separated Hubs. Our next examples generalize the Fan graph in two different ways. First,

we suppose that there are multiple hub vertices, which are not connected to each other. The

resulting graph, which we call the Separated Hubs graph, SHn,m,h (Fig 4), has h� 1 hub verti-

ces, n� 2 blades, and m� 2 vertices per blade for a total population size of N = nm + h. Verti-

ces on the same blade are connected by edges of weight 1, and each blade vertex is connected

to each hub by an edge of weight �. No other edges are present. The Fan is the h = 1 case of Sep-

arated Hubs.

The weak-selection results for arbitrary � are rather cumbersome, but in the �! 0 limit

they simplify to

Neff ¼ nmþ n � 1: ð16Þ

Interestingly, in this limit, the effective population size is independent of the number h of

hubs. Comparing Eq (16) to N = nm + h, we observe that the Separated Hubs graph (in the

�! 0 limit) is a suppressor of weak selection for n� h and an amplifier of weak selection for n
� h + 2. As for the Fan, the strongest amplifier of weak selection occurs for m = 2 and first �!

0 and then n!1, leading to Neff/N! 3/2. The strongest suppressor of weak selection (small-

est Neff/N) occurs for first �! 0 and then h!1, leading to Neff/N! 0.

Beyond weak selection, we compute the fixation probability for arbitrary r> 0 in the limit �

! 0:

rSHn;m;h
ðrÞ ¼

nðm � 1Þð1 � r� 1Þð1 � r� ðmþ1ÞÞ

ðmnþ hÞð1 � r� ðm� 1ÞÞð1 � r� nðmþ1ÞÞ
: ð17Þ

In the limit of many blades, we obtain

lim
n!1

rSHn;m;h
ðrÞ ¼

0 0 � r � 1

m � 1

m
ð1 � r� 1Þð1 � r� ðmþ1ÞÞ

1 � r� ðm� 1Þ
r > 1:

8
<

:
ð18Þ

We prove in S1 Appendix that the Separated Hubs graph, in the �! 0 limit, is a suppressor

for n� h, a transient amplifier for n� h + 2, and a reducer for n = h + 1.

Star of Islands. Our final example, the Star of Islands, SIn,m,h (Fig 5), is obtained by joining

the hubs in the Separated Hubs graph. It consists of h� 2 hub vertices and n� 2 islands, with

m� 2 vertices per island, so that the total population size is again N = nm + h. Within the hub

and within each island, vertices are connected to one another with weight 1. Additionally, each

hub vertex is connected to each island vertex with weight � > 0.

For weak selection, in the �! 0 limit, we calculate

Neff ¼ N þ
ðm � hÞmnhðhðh � 1Þ þmðm � 1Þðn � 2ÞÞ

ðhðh � 1Þ þmðm � 1ÞÞðhðh � 1Þ þmðm � 1ÞnÞ
: ð19Þ
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The second term on the right-hand side has the sign of m − h. It follows that the Star of

Islands is an amplifier of weak selection when m> h, and a suppressor of weak selection

when m< h.

We show in S1 Appendix that the strongest amplifier of weak selection occurs for h = 2,

m = 4, and first �! 0 and then n!1. In this case Neff/N! 9/7. The strongest suppressor

occurs for first �! 0, then n!1, and then h!1, leading to Neff/N! 0.

For arbitrary r> 0, in the �! 0 limit, we obtain rSIn;m;h
ðrÞ ¼ num=denom with

num ¼ rmð1 � r� 1Þð1 � r� ðhþmÞÞ

ðhrhð1 � r� ðh� 1ÞÞðmnðm � 1Þrm þ hðh � 1ÞÞ

þmrmð1 � r� ðm� 1ÞÞðmnðm � 1Þ þ hðh � 1ÞrhÞÞ;

ð20Þ

Fig 4. Separated Hubs. (A) The Separated Hubs graph consists of h� 1 hubs and n� 2 blades, with m� 2 vertices per blade. Edge

weights are as shown. (B)–(D) Blue curves show fixation probability, Eq (17), plotted against mutant fitness r, in the �! 0 limit. Blue

dotted lines show the weak selection result, Eqs (8) and (16). The orange curve and dotted line show the corresponding well-mixed

population results, Eqs (1) and (4), for comparison. The Separated Hubs graph is (B) a suppressor for n� h, (C) a reducer for n = h
+ 1, and (D) a transient amplifier for n� h + 2.

https://doi.org/10.1371/journal.pcbi.1007529.g004
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denom ¼ ðmnþ hÞðhð1 � r� ðh� 1ÞÞ

þmrmð1 � r� ðm� 1ÞÞÞðmrmð1 � r� ðm� 1ÞÞð1 � xnÞ

þ hð1 � r� ðh� 1ÞÞðrhþm � xnÞÞ;

ð21Þ

and

x ¼
mr� mðrm� 1 � 1Þ þ hðrh� 1 � 1Þ

mrhðrm� 1 � 1Þ þ hðrh� 1 � 1Þ
: ð22Þ

Fig 5. Star of Islands. (A) The Star of Islands graph consists of a hub island of size h� 2, and n� 2 other islands of size m� 2. Edge

weights are as shown. (B)–(D) Blue curves show fixation probability, Eqs (20)–(22), plotted against mutant fitness r, in the �! 0 limit. Blue

dotted lines show the weak selection result, Eqs (8) and (19). The orange curve and dotted line show the corresponding well-mixed

population results, Eqs (1) and (4), for comparison. The Star of Islands graph is (B) a suppressor for m� h − 1, (C) a reducer for m = h, and

(D) a transient amplifier for m� h + 1.

https://doi.org/10.1371/journal.pcbi.1007529.g005
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In the limit of many islands, we obtain

lim
n!1

rSIn;m;h
ðrÞ ¼

0 0 � r � 1

ðm � 1Þð1 � r� 1Þð1 � r� ðhþmÞÞ
hr� mð1 � r� ðh� 1ÞÞ þmð1 � r� ðm� 1ÞÞ

r > 1:

8
<

:
ð23Þ

We prove in S1 Appendix that the Star of Islands is a reducer for m = h.

Approximating fixation probability

We have defined the effective population size Neff in terms of the expected remeeting times of

random walks. While this definition allows Neff—and, via Eq (8), fixation probabilities under

weak selection—to be computed in polynomial time, it gives little intuition for how Neff relates

to more familiar graph statistics.

To build such intuition, we use a mean-field approximation from Fotouhi et al. [54]. We

suppose that each remeeting time τi is approximately equal to a single value, τ. Then from Eq

(7) we have

1 ¼
X

i2G

p2

i ti � t
X

i2G

p2

i ¼
t
P

i2G w
2
i

ð
P

i2G wiÞ
2
¼
tm2

Nm2
1

:

Above, m1 ¼
1

N

P
i2Gwi and m2 ¼

1

N

P
i2Gw

2
i are the first and second moments, respectively, of

the weighted degree distribution. Solving for τ and substituting in the definition of Neff gives

the approximation

Neff � Nm2

1
=m2: ð24Þ

Substituting in Eq (8) gives an approximation for fixation probability under weak selection in

terms of μ1 and μ2. Interestingly, the right-hand side of Eq (24) was taken as the definition of

effective population size by Antal et al. [16], who studied the same model but arrived at this

expression by different methods and assumptions.

The approximation in Eq (24) is reasonably accurate when compared to exact numerical

calculation of Neff/N for Erdös-Renyi and Barabási-Albert graphs (Fig 6). In particular, the

approximation explains the general trend that larger, sparser, and more heterogeneous graphs

act as stronger suppressors (have smaller Neff/N ratio). We note, however, that since m2 � m
2
1

for any degree distribution, the approximated Neff in Eq (24) is at most equal to the actual pop-

ulation size N, with equality only for isothermal graphs. Therefore, amplifiers of weak selection

cannot be detected using this approximation.

Discussion

Weak-selection methodology

We have brought the method of weak selection, previously developed to analyze games on

graphs [4, 5, 9–12, 14, 44], to bear on the question of amplifiers and suppressors. While our

focus is on death-Birth updating, the method also applies to Birth-death updating, using a

modified version of the coalescing random walk [5, 52]. Our weak-selection method has the

advantage of being computable in polynomial time (in the size of the graph), in contrast to

other numerical methods [23, 26, 27, 33], which take exponential time. Our expression for

fixation probabilities in terms of coalescence times, Eq (8), also enables the proof of general

results such as the Weak-Selection Isothermal Theorem for dB. A drawback of the weak-selec-

tion approach is that it does not distinguish between transient and non-transient amplifiers,

Transient amplifiers and reducers for death-Birth updating
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nor can it detect complex behavior such as multiple switchings between amplification and sup-

pression [27].

Effective population size

Our analysis motivated a new definition of the effective population size of a graph, Neff = ∑i2G
πiτi. This notion of effective population is particular to dB updating, since it was derived from

weak-selection fixation probabilities under this update rule. Our definition has a number of

interesting connections to other definitions previously proposed for this concept [16, 38–40].

First, as noted above, the effective population size of Antal et al. [16] appears in Eq (24) as

an approximation to ours. Whereas we obtain Neff � Nm2
1
=m2 using coalescent theory and

assuming uniformity of remeeting times, Antal et al. [16] obtain the same expression using

diffusion approximation and assuming degree-uncorrelatedness of the graph. That the same

expression arises from distinct analytical frameworks and assumptions hints at its naturality.

Second, our definition differs by a simple rescaling from the notion of “fixation effective

population size” proposed by Allen, Dieckmann, and Nowak (hereafter, ADN) [39], and elabo-

rated upon by Giaimo et al. [40]:

NADN
eff ¼

N2

N � 1

dr
dr

�
�
�
r¼1

: ð25Þ

Comparing Eqs (25) and (8), we find the relationship

NADN
eff ¼

NðNeff � 2Þ

2ðN � 1Þ
:

Fig 6. Random graphs suppress weak selection. Plot markers show the ratio Neff/N, averaged over 1000 trials, plotted against population size

N. Effective population size, Neff, is calculated by numerically solving Eq (5) for each graph and applying Eqs (6) and (9). All random graphs

generated have Neff < N and are therefore suppressors of weak selection. Curves of the corresponding colors show the approximation

Neff=N � m2
1
=m2 from Eq (24). Overall, we find that larger, sparser, and more heterogeneous graphs have smaller Neff/N; these trends are all

reflected in the approximation from Eq (24). (A) Erdös-Renyi graphs were generated for specific values of the expected degree hki by setting

the link probability to p = hki/(N − 1). The moments μ1 and μ2 were approximated by assuming that the degree of each vertex is independently

distributed as Binom(N − 1, p). This leads to Neff/N� (N − 1)p/[(N − 2)p + 1]. At the minimum population size of N = hki+ 1, the graph is

complete and therefore Neff/N = 1. (B) Barabási-Albert preferential attachment networks [64] were generated for linking numbers 3�m� 6,

starting from a complete graph of size m + 2. The second moment was calculated using the expected degree distribution for finite Barabási-

Albert networks obtained by Fotouhi and Rabbat [65]. At the minimum population size of N = m + 2, the graph is complete and therefore

Neff/N = 1.

https://doi.org/10.1371/journal.pcbi.1007529.g006
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For large populations, NADN
eff � Neff=2. The factor of two appears because the ADN definition

uses the Wright-Fisher (discrete generations) model as a baseline, whereas the baseline for

our Neff is the death-Birth process, for which generations are overlapping. Such factors of two

commonly appear in translating between discrete- and overlapping-generations models [36,

39, 55].

Third, our proposed definition is closely related to the concept of “inbreeding effective pop-

ulation size”, which dates back to Wright [34] and has been elaborated on by many others [35–

38]. The inbreeding effective population size is typically defined, for diploid populations, as

the size of an idealized population that would have the same level of autozygosity (a locus con-

taining two alleles that are identical by descent) [35, 37]. Although autozygosity as such cannot

occur in haploid populations, the remeeting time τi quantifies the closely-related concept of

auto-coalescence—the time for two hypothetical, independent lineages from i to coalesce. For

rare mutation, coalescence time is proportional to the probability of non-identity by descent

[58]; thus auto-coalescence can be taken as a proxy for autozygosity in haploid populations.

Our Neff is equal to the size of a well-mixed population that would experience the same degree

of auto-coalescence, when averaged over individuals weighted by their reproductive values πi.
It is therefore reasonable to interpret our Neff as a haploid analogue of the inbreeding effective

population size.

Transient amplifiers of selection

The most novel of our results is the discovery of the first transient amplifiers of selection for

dB updating. Previous investigations [18, 23, 28] had uncovered only suppressors and reduc-

ers. Of the transient amplifiers we have found, the strongest is the 2-Fan, Fn,2, with many

blades (n!1; Fig 3D). A companion work [46] proves that full (non-transient) amplifiers

cannot exist for death-Birth updating.

Transient amplifiers appear to be quite rare for death-Birth updating. None were present

within an ensemble of thousands of small graphs analyzed by Hindersin and Traulsen [23].

Similarly, no amplifiers of weak selection for dB were found in our ensembles of Erdös-Renyi

and Barabasi-Albert random graphs.

Why should transient amplifiers be so rare? One possible clue comes from the approxima-

tion for effective population size in Eq (24). The approximated Neff is always less than or equal

to the actual population size N, with equality only for isothermal graphs. Thus any amplifier

(transient or not) must be a graph for which the approximation in Eq (24) is inaccurate.

Another possible clue is found by combining Eqs (9) and (7) to obtain

N � Neff

N2
¼

1

N

X

i2G

p2

i ti

 !

�
1

N

X

i2G

pi

 !
1

N

X

i2G

piti

 !

:

The right-hand side can be interpreted as the covariance of πi with πiτi, as i runs over vertices

of G. It follows that G is an amplifier of weak selection if and only if πi and πiτi are negatively

correlated on G. This requires a very strong negative relationship between weighted degree

and remeeting time, which seems unlikely to arise in the usual random graph models. A third

clue comes from a companion work [46], which proves a bound on the strength of transient

amplifiers for dB. Since transient amplifiers are limited in their possible strength, it is reason-

able to suppose they are also limited in number. Each of these clues, however, falls very short

of a formal proof.
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Reducers of fixation

Evolutionarily speaking, reducers of fixation maintain the status quo. They protect the resident

type from replacement by any mutation, whether beneficial or deleterious. Reducers may have

applications in bio-engineering, in situations where it is desirable to inhibit the accumulation

of all fitness-affecting mutations. Indeed, it has been argued that the cycle-like structure of epi-

thelial stem cells in mammals [57, 58] may have been evolutionarily designed to limit somatic

mutations [30]. The cycle was the first known reducer [23]; others were identified by Hinder-

sin et al. [30]. To these examples we have added two more: the Separated Hubs graph with n =

h + 1 and the Star of Islands with m = h.

Isothermal graphs appear to be obvious candidates for reducers of fixation. This is because,

if G is a reducer of fixation, then ρG(r) and rKN
ðrÞmust coincide to first order in r at r = 1, and

this latter property holds for all isothermal graphs according to the Weak-Selection Isothermal

Theorem for dB. Indeed, all previously-known examples of reducers [23, 30] were isothermal.

However, neither the Separated Hubs graph for n = h + 1 nor the Star of Islands for m = h are

isothermal; thus reducers need not be isothermal. The converse question—whether all isother-

mal graphs are reducers—remains open. To resolve this question, one would have to either

discover or rule out other behaviors for isothermal graphs G, such as rGðrÞ > rKN
ðrÞ for all r

sufficiently close but not equal to 1. Another open question is whether reducers of fixation

exist for Bd updating.

Limitations

Although we have uncovered an interesting range of behaviors for dB updating on graphs,

there are limitations to our approaches. All of our analytical results involve the limit of either

weak selection or certain edge weights going to zero. Some of our results combine these limits,

meaning that they apply only in rather extreme scenarios, and the results may depend on the

limit ordering [59].

We also do not consider the issue of fixation time [33, 41–43, 60–63]. Previous work [42,

43, 60, 61] has uncovered a tradeoff between fixation probability and time: Graphs that amplify

selection tend to have larger fixation times than the complete graph, which impedes their abil-

ity to accelerate adaptation. A number of our examples involve limits as certain edge weights

go to zero. Fixation times diverge to infinity for these examples; therefore they do not hasten

the accumulation of beneficial mutations. The search for graphs that (transiently) amplify

selection without greatly increasing fixation times is left to future work.

Conclusion

The identification of amplifiers and suppressors of selection has become a robust field of

inquiry [3, 7, 8, 16–29, 40, 42]. Most investigations of this question follow the lead of the initial

work [3] in focusing on Birth-death updating. This is an interesting contrast to the study of

games on graphs [4, 5, 9–15], which typically considers death-Birth updating—likely because

Birth-death updating tends not to support cooperative behaviors [4, 15].

Since the choice of update rule has such marked consequences, a full understanding of

evolutionary dynamics in structured populations requires studying a variety of update rules.

Indeed, the update rule should properly be considered an aspect of the population structure,

equal in importance to the graph itself [11, 15, 28, 29, 52]. If the theory of amplifiers and

suppressors is to find application (for example, to microbial populations [8]), it is critical to

determine which update rules are plausible for specific organisms. Our work shows that dB
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updating exhibits at least some of the interesting phenomena that have been observed for Bd

updating, and suggests there is more to be discovered.

Supporting information

S1 Appendix. Mathematical derivations and proofs. This supplement contains a derivation

of our weak selection method, Eqs (5)–(9), as well as analysis of our three example graph fami-

lies.

(PDF)

S1 Fig. Monte Carlo simulations for weak selection. Fixation probability approximated from

104 Monte Carlo trials, for � = 0.1, plotted against mutant fitness, r (blue dots). Black lines

show the linear approximation to fixation probability as calculated from our weak-selection

results; i.e., ρ� 1/N + [(Neff − 2)/(2N)](r − 1) as in Eq (8). As expected, this approximation is

accurate for r� 1. (A) The Fan graph, F4,2, with Neff given by Eq (14). (B) The Separated Hubs,

graph SH3,2,2, with Neff given by Eqs. (40)–(42) of S1 Appendix. (C) The Star of Islands graph

SI2,3,3, with Neff� 8.89 as calculated in Mathematica from Eqs (5), (6), and (9).

(EPS)

S2 Fig. Monte Carlo simulations for nonweak selection with small �. Fixation probability

approximated from 104 Monte Carlo trials, for � = 10−3, plotted against mutant fitness, r (blue

dots). Our analytical results for fixation probability in the �! 0 limit (black curves) show

excellent agreement with the simulation results. (A) The Fan F4,2, with �! 0 limit given by Eq

(15). (B) The Separated Hubs graph SH3,2,2, with �! 0 limit given by Eq (17), and (C) The

Star of Islands graph SI2,3,3, with �! 0 limit given by Eqs (20)–(22).

(EPS)
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