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Abstract
Landscapes exhibiting multiple secondary structures arise in natural RNA molecules that

modulate gene expression, protein synthesis, and viral. We report herein that high-through-

put chemical experiments can isolate an RNA’s multiple alternative secondary structures as

they are stabilized by systematic mutagenesis (mutate-and-map, M2) and that a computa-

tional algorithm, REEFFIT, enables unbiased reconstruction of these states’ structures and

populations. In an in silico benchmark on non-coding RNAs with complex landscapes, M2-

REEFFIT recovers 95% of RNA helices present with at least 25% population while main-

taining a low false discovery rate (10%) and conservative error estimates. In experimental

benchmarks, M2-REEFFIT recovers the structure landscapes of a 35-nt MedLoop hairpin, a

110-nt 16S rRNA four-way junction with an excited state, a 25-nt bistable hairpin, and a

112-nt three-state adenine riboswitch with its expression platform, molecules whose char-

acterization previously required expert mutational analysis and specialized NMR or chemi-

cal mapping experiments. With this validation, M2-REEFFIT enabled tests of whether

artificial RNA sequences might exhibit complex landscapes in the absence of explicit

design. An artificial flavin mononucleotide riboswitch and a randomly generated RNA

sequence are found to interconvert between three or more states, including structures for

which there was no design, but that could be stabilized through mutations. These results

highlight the likely pervasiveness of rich landscapes with multiple secondary structures in

both natural and artificial RNAs and demonstrate an automated chemical/computational

route for their empirical characterization.

Author Summary

RNA is a versatile macromolecule that underlies core natural processes throughout living
systems and new strategies to re-engineer these systems. In several cases, this versatility is
due to the ability of an RNA molecule to adopt multiple conformations: the full descrip-
tion of the molecule involves a ‘landscape’ of alternative structures that are present at equi-
librium and whose interconversions are critical for function. However, there is little work
on empirically probing these landscapes due to size, resolution, and infrastructure
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constraints of available experimental methods. We show herein that RNA landscapes can
be characterized rapidly through the mutate-and-map (M2) methodology when coupled
with a novel blind-source separation method, REEFFIT. We present extensive computa-
tional and experimental benchmarks supporting the use of M2-REEFFIT to detect alterna-
tive RNA secondary structures accurately without ‘over-predicting’ them. We then
experimentally address a basic question in RNA biophysics—do landscapes involving mul-
tiple secondary structures require explicit selection or can they arise in artificial RNA
sequences without selection? For both an artificial flavin mononucleotide riboswitch and a
randomly generated sequence, M2-REEFFIT and further mutation tests find evidence for
alternative, unexpected states, suggesting that rich landscapes are common and will
become better appreciated with use of the developed technology.

Introduction
RNAs are deeply involved in gene expression, gene regulation, and structural scaffolding and
are forming the basis of novel approaches to control these processes [1–3]. Several of RNA’s
natural and engineered roles rely on its ability to fold into and interconvert between multiple
functional structures. Ribozymes, riboswitches, and protein-complexed RNAs transition
between several states to detect and respond to small molecules and other macromolecules; to
proceed through numerous steps of RNA splicing reactions; to initiate, catalyze, and proof-
read protein translation; to activate logical circuits in cells; and to package, release, and repli-
cate RNA viruses [4–9]. The number of structures and equilibrium fractions that constitute
these ‘dynamic structure landscapes’ are linked to the biological function of the RNA (Fig 1a).
Rationally dissecting and re-engineering these landscapes depends on knowledge of the alter-
native states of an RNA’s structural ensemble [10,11].

Empirical portraits of such landscapes are missing for the vast majority of natural and engi-
neered RNAs and it is unclear whether a rich multi-state landscape is a property specially
selected by evolution or an intrinsic feature of RNA that can arise without explicit design or
selection. Watson-Crick RNA secondary structure landscapes have been computationally pre-
dicted using dynamic programming techniques for decades [12,13] and many RNAs are pre-
dicted to formmultiple structures at equilibrium, with ‘non-native’ helices reaching populations
of 25% or greater [12–14]. In some cases, the alternative structures—and not the dominant
structure—harbor motifs that are recognized by protein or small molecule partners [15–17].
However, difficulties in treating non-canonical interactions render these predictions inaccurate.
Indeed, some studies have suggested that conformational switches are special hallmarks of bio-
logical function rather than an intrinsic feature of generic RNA sequences [18–21].

Unfortunately, the few experimental techniques that can validate or refute multi-state mod-
els are costly and difficult. For example, single molecule methods have been successful at
revealing rarely populated RNA states but have not provided enough information to infer their
structures [22]. Powerful insights have come from advances in nuclear magnetic resonance
(NMR) spectroscopy [23] but require focused technical expertise, expensive infrastructure, and
RNA targets with limited structural heterogeneity. In contrast, RNA chemical mapping, or
footprinting, is a simple class of techniques that can achieve single-nucleotide resolution struc-
tural data for any RNA [24,25]. For RNAs with multiple states, however, these chemical map-
ping data give ensemble averages over all states, leading to a dramatic loss of information
compared to what would be needed to resolve the RNA’s dynamic structure landscape and to
make testable predictions (Fig 1b, see also refs. [20,26]).
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While developing experiments that couple systematic mutagenesis with chemical mapping
(mutate-and-map, or M2), we observed that single mutations can produce dramatic changes in
chemical mapping data throughout an RNA sequence, with several mutations often giving the
same alternative pattern [27,28]. We hypothesized that these perturbed patterns correspond to
the reweighting of the structural ensemble of the RNA so that alternative component states
dominate the chemical mapping data (Fig 1c). We have recently shown that such alternative
structures can be inferred after expert inspection of M2 measurements and extensive compen-
satory rescue studies in an E. coli 16S ribosomal RNA domain [29]. Reasoning that such land-
scape dissection might be fully automated through the use of blind source separation
algorithms, we have now developed an analysis framework called the RNA Ensemble Extrac-
tion From Footprinting Insights Technique (REEFFIT; see Fig 1c).

Here, we sought to use M2-REEFFIT to determine whether complex landscapes could arise
in artificial RNAs without explicit natural selection or design. Prior techniques for detecting
alternative structures, including covariation-based methods [19] and the recent RING-MaP

Fig 1. (a) RNAmolecules can have diverse structural landscapes that are linked to their biological functions. Some structural landscapes, such as those for
stable ribosome domains, can have a single, stable structure that is critical for function. Others may have been selected to have an equilibrium of two or three
structures, such as riboswitches, that enables them to fine tune their response to small molecules or macromolecular partners. There may be other RNAs
with a heterogeneous landscape, such as random RNA sequences, that may require this heterogeneity for function. (b) Chemical mapping (footprinting)
experiments for probing RNA structure can be conceptualized as linear combinations of the underlying structures in the RNA’s structural ensemble. The
chemical mapping profiles of an ensemble of two structures, represented here as one-dimensional heat maps, are scaled by their respective Boltzmann
weights,W1 andW2, and added together with experimental noise to form the observed chemical mapping pro?le of an RNA. (c) Mutate-and-map (M2)
experiments are measurements of perturbed versions of an underlying structural landscape. A novel method, REEFFIT uses a blind source separation
framework to automatically reconstruct this landscape by joint estimation of hidden reactivity profiles and fractions for a set of structures.

doi:10.1371/journal.pcbi.1004473.g001
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method [20], have not been benchmarked in cases with well-characterized landscapes and may
be biased towards or against alternative structures. Therefore, we developed three tests for M2-
REEFFIT landscape dissection. First, a benchmark on simulated M2 data for 20 natural non-
coding RNA sequences provided ‘gold standard’ reference results allowing unambiguous
assessment of accuracy. Second, we applied M2-REEFFIT to four experimental test cases
involving biological and artificial RNAs that had been previously characterized in detail by
NMR or chemical mapping. For these cases, M2-REEFFIT recovered the landscapes defined
through prior expert analysis. Third, we developed a validation approach based on stabilizing
and experimentally testing predicted structures by multiple mutations. With these benchmarks
and methodological developments, we used M2-REEFFIT to demonstrate that an imperfectly
designed riboswitch and a randomly generated RNA sequence each form at least three struc-
tures, including states that could not be predicted from computational modeling alone.

Results

Dissecting landscapes de novo with M2-REEFFIT
To leverage the signals of stabilized alternative structures present in M2 measurements, we
developed a new analysis framework, REEFFIT, to simultaneously infer multiple structures
and their population fractions across the mutant RNAs (see Methods). We first applied M2-
REEFFIT to infer structure landscapes for an in silico benchmark of 20 sequences drawn from
the Rfam database of non-coding RNA molecules. We simulated M2 data by randomly choos-
ing up to 200 suboptimal structures in the ensembles of the wild type sequence and of all vari-
ants that mutate a single nucleotide to its complement, as are typically probed in M2

experiments. We then simulated these structures’ respective SHAPE reactivity profiles using
known reactivity distributions. To mimic inaccuracies in available energetic models, we re-
weighted the ensemble randomly by introducing Gaussian noise (mean of 0 kcal/mol and stan-
dard deviation of 1 kcal/mol) to the predicted free energies. The resulting landscapes ranged
from single dominant structures (e.g. cases RF00027 and RF00301) to more complex scenarios
with two or three states (e.g. cases RF01300 and RF00051) to multi-state RNAs with more than
three states present at non-negligible fractions (e.g. cases RF01274 and RF01125; Fig A in S1
Text gives five examples examined in detail in the Supporting Results, Fig B in S1 Text gives
results for the entire benchmark, and the figures in S2 Text contains detailed Figs for all bench-
mark cases).

Over the entire 20-RNA benchmark, REEFFIT was able to consistently detect the presence
of dominant and alternative helices (Supporting Results and Figs A-D in S1 Text). We set a cri-
terion for helix detection that the fitted population should be larger than the population error
estimated from bootstrapping, i.e. the signal-to-noise ratio should be greater than one. With
this criterion, REEFFIT achieved 94.6% sensitivity over helices present with at least 3 base pairs
and at least 25% population, corresponding to a false negative rate (FNR) of 5.4%. The false dis-
covery rate (FDR) was low as well, at 9.7% (see Table 1 and Table A in S1 Text; full precision-
recall curves given in Fig B in S1 Text). Without data, the error rates were substantially worse,
by three-fold and two-fold, respectively (FNR of 18.0% and FDR of 23.3%). Values for base-
pair-level error rates were similar to helix-level error rates (Table B in S1 Text). Error rates for
wild type sequences alone (i.e., excluding single-nucleotide mutants) were higher but also
showed a strong improvement in REEFFIT ensembles compared to ensembles modeled with
no data (FNR of 15.2%, FDR of 15.2% for REEFFIT; FNR of 24.5% and FDR of 25.4% without
data, see Table C in S1 Text). Use of only wild type data and no mutants, as would be carried
out in conventional chemical mapping measurements, gave high error rates similar to land-
scapes modeled without data (FNR of 22.7% and FDR of 25%, see Table D in S1 Text and an
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example in Supporting Results and Fig D in S1 Text), confirming the necessity of M2 data for
accurate landscape dissection. Further systematic checks and use of ViennaRNA [30] initial
models and benchmark evaluation using helix-wise RMSD are given in the Supporting Results
in S1 Text and Tables E, F, and G in S1 Text.

Experimental tests on RNAs previously characterized by M2 and expert
analysis
Success in the above in silico benchmark suggested that REEFFIT would accurately recover
prior analyses of experimental M2 data sets, such as the MedLoop RNA (Fig 2a–2d). This RNA
was previously designed to exhibit a single, stable 10 base pair helix with a 15 nucleotide loop
(MLP-A, Fig 2d) [27]. A few mutations were observed to give a clearly distinct chemical map-
ping pattern and predicted computationally to fold into an alternative structure (MLP-B in Fig
2a; see e.g. G4C in M2 data) but not expected to be strongly populated in the wild type
sequence. Automated REEFFIT modeling of the MedLoop M2 data recovered both the domi-
nant structure MLP-A and the alternative state MLP-B, and bootstrapped uncertainties gave
bounds on the frequency of MLP-B in the wild-type sequence (4±4%, see mutant-wise state
fractions in Fig Fa-Fc in S1 Text). Thus, REEFFIT was able to explain rearrangements of
mutants into an alternative state, but at the same time did not over-predict its presence in the
wild-type sequence (Fig 2c).

Table 1. Performance results for M2-REEFFIT landscape dissection on a 20 RNA benchmark from the RFAM database.

No dataa M2-REEFFITa

Rfam ID No. Helicesa TP FP TP FP

RF00031 SECIS 3.02 2.48 1.47 2.88 0.09

RF00051 mir-17 5.35 4.98 0.18 5.31 0.42

RF00014 DsrA 4.44 3.88 0.56 4.32 0.93

RF01092 GP_knot2 3.40 2.60 1.47 3.26 0.56

RF00066 U7 3.31 1.77 2.31 2.71 1.26

RF01300 snoU49 3.56 2.88 1.46 3.49 0.76

RF01139 sR2 2.61 2.29 2.34 2.50 1.34

RF01274 sR45 2.34 1.96 1.02 2.13 0.82

RF01297 sR40 3.42 2.26 2.95 3.29 2.21

RF00555 L13_leader 2.96 2.91 0.51 2.93 0.28

RF00775 mir-432 4.98 4.35 1.35 4.78 1.78

RF00173 Hairpin 2.64 2.28 0.96 2.47 0.79

RF00108 SNORD116 2.03 1.32 1.95 1.86 1.51

RF00570 SNORD64 3.69 2.80 0.66 3.39 0.59

RF01301 snoR4a 2.67 2.20 2.35 2.56 1.28

RF01125 sR4 2.63 2.05 0.36 2.47 0.20

RF00436 UnaL2 1.79 1.79 0.21 1.79 0.18

RF01151 snoU82P 1.90 1.24 1.30 1.76 1.06

RF00027 let-7 3.45 3.27 1.69 3.30 1.88

RF00042 CopA 6.22 5.93 0.32 6.19 0.30

FDR 23.3% 9.7%

FNR 18% 5.4%

aValues are averaged across all variants probed (wild type RNA and single mutants).

doi:10.1371/journal.pcbi.1004473.t001
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Fig 2. Landscape dissection of four diverse RNA systems from experimental mutate-and-map (M2) data. (a) M2 measurements for the MedLoop
artificial sequence (given to REEFFIT as input); (b) REEFFIT bootstrapped fits; (c) base pair probability matrices of the structures in the wild type landscape
(upper triangle: base pair probability values using no data, lower triangle: REEFFIT calculated base pair probabilities); and (d) structure medioids found de
novo by REEFFIT. M2-REEFFIT analysis are also presented for (e-h) a four-way junction domain of the 16S rRNA, (i-l) an artificial bistable hairpin.

doi:10.1371/journal.pcbi.1004473.g002
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As a more difficult test, we applied the algorithm to the 126–235 region of the E. coli 16S
ribosomal RNA. In protein-bound ribosome crystals, this domain forms a four-way junction
with helices P1a-c, P2a-b, P2�, P3, and P4a-b, but its solution state has been controversial [29]
(Fig 2e–2h). Conventional SHAPE-guided analysis suggested loss of P2a and P4, and formation
of alternative helices alt-P1d and alt-P4 [31] (Fig 2h, green structure). However, M2 and com-
pensatory rescue experiments gave no evidence for the SHAPE-based model but instead recov-
ered the dominant solution structure to be the holo-ribosome conformation, except for a
register shift in P4a (called shift-P4a); the crystallographic P4 register was also detected as a 20
±10% ‘excited state’ [29]. In agreement with this detailed analysis, automated REEFFIT analysis
of the 126–235 RNAM2 data also returned helices P1a-c, P2�, P2b, and P3 with high popula-
tion fractions (>80%, Fig 2g). Importantly, REEFFIT recovered an admixture of P4 (21±16%)
and shift-P4 (60±23%) in a 3:1 ratio, in agreement with prior analysis (Fig 2g, magnification);
RNAstructure calculations or use of wild type SHAPE data alone assigned negligible probabil-
ity or highly uncertain population fractions to these helices, respectively (Fig 2g). The popula-
tion of alternative helices alt-P1d and alt-P4 were found to have low populations and high
errors (see Supporting Results in S1 Text). Further, a refined REEFFIT analysis including data
for compensatory rescue double mutants recovered, with conservative error estimates, prior
expert analysis (see Supporting Results and Fig E in S1 Text), illustrating the automation of
modeling of even a complex RNA structure landscape.

Experimental tests on RNAs with NMR-characterized landscapes
Encouraged by REEFFIT’s performance in previous test cases for chemical mapping, we sought
tests involving fully independent experimental characterization by NMR. We first investigated
a bistable RNA sequence whose landscape was dissected by Höbartner and colleagues by
decomposing its NH. . .N 1H NMR spectrum into a weighted sum of two states forming differ-
ent hairpins (here called BST-A and BST-B) [32]. As expected, M2 measurements gave clear
evidence for two distinct chemical mapping profiles, reflecting the bistable nature of this RNA
(Fig 2i–2l). One profile, consistent with BST-A appeared in variants with mutations in the 5´
end of the sequence, such as U4A. Another profile, consistent with BST-B, was revealed by
mutations in the 3´ end such as C23G, which would destabilize the BST-A hairpin (Fig 2i).
Both structures were recovered by REEFFIT analysis, with population weights of 73 ± 11% and
26 ± 9%, for BST-A and BST-B respectively, in agreement with the previously reported frac-
tions measured by NMR (70 ± 5% and 30 ± 5%, respectively) and correcting the erroneous
weights predicted with no data (99% and<1%, respectively).

We then challenged M2-REEFFIT with a more complex test case: a Vibrio vulnificus adeno-
sine deaminase (add) mRNA riboswitch (Fig 3a–3d) that, in response to the ligand adenine,
exposes start site segments (Shine-Dalgarno sequence and/or AUG start codon) to promote
mRNA translation. In a detailed NMR study, spectra in ligand-free conditions fit well to a
model with two states, apoA (~30%, with helices P1, P2, P3, P4, and P5) and apoB (~70%, with
P1B, P2B, P3, an extended P4 called P4B, and P5). Addition of adenine ligand resulted in spec-
tra dominated by a state holo with P1, P2, P3, and P5 and perturbed chemical shifts consistent
with adenine binding to the aptamer [17]. While three states gave the simplest model for the
prior data, more complex multi-state models were consistent as well and would be generally
predicted from RNA secondary structure calculations [12,13]. We focused on whether M2-
REEFFIT could recover the base pairs of P1, P2, P1B, P2B, P3, P4, P4B, and P5, which were
unambiguously determined through NOE spectroscopy and model construct comparisons.
Even in the absence of adenine, our M2 measurements of the RNA suggested the presence of at
least two distinct structures that protect or expose the mRNA start site (AUG at nts 120–122)
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Fig 3. Landscape dissection of a segment of the V. Vulnificus add adenine riboswitch in 0 and 5mM
adenine. (a) M2 measurements in 0 and 5 mM adenine; (b) REEFFIT bootstrapped fits; (c) base pair
probability matrices of the structures in the wild type landscape (upper triangles: base pair probability values
using no data, lower triangles: REEFFIT calculated base pair probabilities); (d) structure mediods of the
structural ensemble found by REEFFIT. In (a-b), The Shine-Dalgarno (SD) ribosome-binding sequence was
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and, in an anticorrelated manner, expose or protect segments in the aptamer region (e.g., nts
53–60 and 66–72), respectively (M2 data in Fig 3a). In addition to observing these different
states upon mutation, addition of 5 mM adenine induced clear changes in the M2 data, includ-
ing protections in the aptamer and consistent exposure of the AUG start codon in most
mutants (M2 data in Fig 3a, bottom;). While consistent with this region’s unpaired status with-
out and with ligand in prior NMR studies, our studies indicatea more dramatic switch in this
region for more complete add riboswitch constructs and will be reported elsewhere.

REEFFIT analysis gave excellent fits to these add riboswitch M2 data (Fig 3b), automatically
detecting the presence of P1 (14±10%), P2 (37±15%), P3 (86±18%), P4 without extension (69
±10%), the extension P4B at lower population (36±6%), and P5 (94±18%) in the absence of
adenine, in agreement with the apoA and apoB model from NMR (Fig 3c–3d); and recovering
a holo state with P1, P2, P3, P4, and P5 dominating in 5 mM adenine (see Supporting Methods
in S1 Text for treatment of ligand-bound structures). In ligand-free conditions, the REEFFIT
analysis also gave several alternative helices in the P1/P2 region, including P1B and P2B (20
±7%), consistent with the NMR-detected features in the apoB structure. The M2 data were crit-
ical in making these detections; RNAstructure calculations and use of wild type SHAPE data
alone assigned negligible (<5%) probability to P1, P1B, P2B, and the possibility of P4B short-
ening to P4 (Fig 3c–3d). Coarse clustering of REEFFIT structures returned four states in which
the NMR-modeled apoA was recovered as the cluster medioid of one state, ADD-A, and apoB
was recovered as a medioid in another, ADD-B, albeit with an additional helix, P4B (Fig 3c).
Structures with alternative helices to P1, P2, P1B, and P2B in the 5´ region clustered into states
ADD-C and ADD-D. The population fractions of these helices, as well as a set of P6 and P7
helices not detected in NMR experiments, were low; these features were appropriately flagged
as uncertain from bootstrapping analysis (e.g., 21±15% for the most populated helix of this
kind, P6). Overall, the M2-REEFFIT results successfully recovered NMR-detected helices for
this adenine riboswitch sequence, including heterogeneous structure in the 5´ region, dynamics
in the P4 region, and rearrangements on adenine addition.

Assessing if artificial sequences exhibit complex RNA landscapes
After validation of M2-REEFFIT on diverse computational and experimental test cases, we
used the method to estimate whether complex landscapes might arise in artificial RNA
sequences without explicit design or selection. First, we analyzed the folding landscape of an
imperfect RNA switch, ‘Tebowned’, that was designed to convert between two states upon fla-
vin mononucleotide (FMN) binding (Figs 4 and 5) in early rounds of a riboswitch design puz-
zle in the Eterna massive open laboratory [33]. While the chemical mapping pattern of this
RNA changed upon binding FMN, the measurements for the unbound state did not match the
desired unbound structure, particularly near nucleotide A30 (red arrows in Fig 4a); this region
should have been paired but instead was measured to be reactive. A priori, we could not distin-
guish whether this discrepancy was due to an incorrect balance of the two target bound and
unbound structures or if there were other unexpected structures involved. To elucidate the dis-
crepancy, we acquired M2 data for the Tebowned RNA. We first used REEFFIT to fit the M2

data using only the two desired structures, but this fit did not capture several features, such as
the exposure at A30 (Fig G in S1 Text). In contrast, a global ensemble fit adequately captured

observed to be SHAPE-reactive even in the absence of adenine; while consistent with this region's unpaired
status without and with ligand in prior NMR studies, our studies indicate a more dramatic switch in this region
for more complete add riboswitch constructs and will be reported elsewhere. See Supporting Tables H-I in S1
Text for RNA sequences and fit summaries.

doi:10.1371/journal.pcbi.1004473.g003
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Fig 4. Landscape dissection of a designed FMN riboswitch with a structural discrepancy, the
Tebowned RNA. (a) M2 data, (b) REEFFIT fit, and (c) inference of the Tebowned structural landscape, which
is predicted by REEFFIT to fold into (d) three prevalent structures TBWN-A, TBWN-B, and TBWN-C.
Presence of TBWN-C is marked with red arrows in (a) and (c).

doi:10.1371/journal.pcbi.1004473.g004
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these features (Fig 4a–4b, and Fig Gb in S1 Text). REEFFIT automatically clustered the mod-
eled ensemble into three states: TBWN-A (56 ±16%) and TBWN-B (27 ± 12%), matching the
desired switch structures, and a third structure TBWN-C present at 17 ± 11% fraction (red
arrows in Fig 4a and Fig Ha-Hc in S1 Text). The unexpected state TBWN-C exhibits an apical
loop around nucleotide A30, explaining the observed discrepancies in this region for the wild
type RNA, and harbors a purine-rich symmetric loop that may be significantly stabilized

Fig 5. Comparison between reactivities predicted by REEFFIT and mutants designed to stabilize the (a) TBWN-A, (b) TBWN-B, (c) TBWN-C structures are
given below each state (arrows in the structures mark mutations); each plot shows the measured reactivates for each pair of mutants (orange and green) and
predicted REEFFIT reactivates for the corresponding state (blue with error bars). (d) Determining FMN dissociation constants for stabilizing mutants of the
TBWN-A, TBWN-B, and TBWN-C structures of the Tebowned FMN switch using the LIFFT HiTRACE toolkit (showing data for residue 15, see Supporting Fig
I in S1 Text) are shown below the mutants.

doi:10.1371/journal.pcbi.1004473.g005
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compared to the energy assumed in current nearest-neighbor models [34]. Other helices were
discovered to be populated at non-negligible fractions in the analysis, but were deemed uncer-
tain (signal-to-noise ratios less than 1) from bootstrapping analysis.

The REEFFIT-inferred populations of TBWN-B and TBWN-C were low (<30%). There-
fore, to further test the presence of at least three states, we sought to compare their modeled
REEFFIT reactivity profiles to actually measured reactivities for these states. To achieve this
comparison, we designed mutants that specifically stabilized helices in each of the TBWN-A,
TBWN-B, and TBWN-C structures (Fig 5a–5c). For each state, the reactivities of these state-
isolating mutants agreed with each other within experimental error and were approximated
well by REEFFIT’s predicted profile, providing independent confirmation of the modeled
ensemble, including the unanticipated third state TBWN-C. Additional evidence for the accu-
racy of REEFFIT’s predictions was revealed by each of the stabilizing mutants’ FMN binding
affinities: the TBWN-B and TBWN-A/TBWN-C mutants enhanced and worsened ligand
binding, respectively, as expected (Fig 5d, and Supporting Results and Fig I in S1 Text). We
emphasize that the TBWN-C state would have been difficult to propose and then validate with-
out automated REEFFIT analysis, given its negligible predicted population in secondary struc-
ture prediction calculations without M2 data (Fig 4c).

As a second test case with a previously unknown structural ensemble, we tested whether
randomly generated or scrambled RNA sequences tend to fold into multiple disparate struc-
tures at equilibrium—a long-standing hypothesis fundamental to understanding RNA evolu-
tion, put forth by several in silico studies [35,36] and an experimental study that could not
deconvolve the structures [37]. We carried out M2-REEFFIT for a randomly generated
sequence, called here the M-stable RNA (Fig 6). Based on simulations, the structural ensemble
of the construct was expected to consist mainly of a simple hairpin (P1 in MST-A in Fig 6d, see
top triangle of the Fig 6c) but with at least two other structures becoming more stable than
MST-A upon single mutations. The experimental M2 measurements were complex, with differ-
ent mutants giving disparate protection patterns even in segments that appeared highly reac-
tive (and seemingly unstructured) in the wild type RNA. As a first check on the number of
states, REEFFIT fits assuming only 2 or 3 states missed many features observed in the data,
including extended segments of changed chemical reactivity in several mutants (Fig J in S1
Text). However, the REEFFIT global ensemble fit successfully modeled the M-stable data and
suggested an ensemble with many more weakly populated helices than RNAstructure’s esti-
mate (compare bottom and top halves of Fig 6c). For visualization, we clustered these heteroge-
neous component structures into three states, MST-A, MST-B, and MST-C (see Fig 6d–6f and
Fig Hd-Hf in S1 Text). Analogous to the case of the Tebowned switch, we tested the REEFFIT
prediction of these alternative states by designing mutations to stabilize the medioid structures
of each cluster (Fig 6d–6f). These mutants gave reactivities in agreement with predictions for
MST-A and MST-C, supporting the inference of those structures. For MST-B, the state-stabi-
lizing mutants gave reactivity profiles that did not exactly match each other, suggesting residual
heterogeneity of structure; the profiles were nevertheless closer to the REEFFIT-predicted
MST-B profile than wild type reactivities. These results corroborate the M2-REEFFIT model
that the M-stable random RNA has a complex landscape with at least three structures, and
likely significantly more heterogeneity, detectable upon unbiased nucleotide mutation.

Discussion
The structure landscapes of natural and newly designed RNA molecules underlie their biologi-
cal behaviors, but these landscapes’ complexities are largely uncharacterized [11]. Current
experimental techniques used to probe these ensembles at nucleotide resolution require
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Fig 6. Landscape dissection of a randomRNA sequence, the M-stable RNA. (a) M2 data, (b) REEFFIT fit, and (c) inference of the M-stable structural
landscape, showing one helix, P1, present at almost 50% as well as numerous other helices (P2, P3, and P4) present at non-negligible fractions. (d-f) State
medioids for (d) MST-A, (e) MST-B, and (f) MST-C, and comparison between reactivities predicted by REEFFIT and mutants designed to stabilize each state
medioids.

doi:10.1371/journal.pcbi.1004473.g006
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significant infrastructure investment and expert intuition. We have presented M2-REEFFIT, an
unbiased strategy based on readily acquired chemical mapping measurements that detects
dominant and alternative states of RNA structure landscapes in the ensemble perturbations
induced by single-nucleotide mutations, with conservative estimates based on bootstrapping.

Due to the challenges inherent in estimating a full ensemble of secondary structures rather
than a single best-fit model, we have invested significant effort into benchmarking M2-REEF-
FIT and its uncertainty estimates. We confirmed the accuracy of REEFFIT and its uncertainty
estimates in M2 simulation data with known ‘ground truth’ landscapes and in experimental
data of RNAs whose landscapes were previously studied by chemical mapping or NMR experi-
ments. We then applied REEFFIT to investigate if artificial sequences could present complex
landscapes of alternative structures without specific design in two model systems whose
ensemble behaviors were refractory to prior tools. We first traced a structural discrepancy in
an artificial flavin-mononucleotide-binding switch to a significant population of an unexpected
state. We then tested in silico predictions for the complex structural landscape of random
sequences by obtaining the first experimentally derived landscape model of a randomly gener-
ated sequence, the M-stable RNA. For all cases, we tested REEFFIT’s predictions through inde-
pendent experiments, including comparison to independent experimental methods and effects
of stabilizing mutations and ligand binding.

Beyond the inference of structural landscapes of single sequences, the high-throughput nature
of M2-REEFFIT makes inference of the landscapes of multiple sequences related through their
presumed or engineered function possible. For example, when dissecting structural features of
sequences selected for binding efficiencies to molecular partners through in vitro selection or
when analyzing the role of conserved structural motifs in diverse RNA sequences, a full portrait
of their landscapes may reveal the interplay of several states that is critical for function. As an
example, one of our experimental test cases, the Tebowned FMN switch, illustrates that informa-
tion relevant for function can be extracted from knowing the full landscape of the RNA. In this
case, we have a ‘functional’ readout of a structural motif (the FMN binding motif) that is present
at different fractions in different mutants of the M2 experiment. A full view of the ensemble
yields an extra state, TBWN-C, whose interplay with the state that contains the binding motif,
TBWN-B, is necessary for understanding FMN binding of the riboswitch and its variants.

Currently, uncertainties in the reactivities and energies of RNA motifs lead to RMSD errors
in M2-REEFFIT state population fractions on the order of 10–15%, rendering the detection of
states with lower population fractions difficult; these uncertainties may become poorer for lon-
ger RNA domains. Nevertheless, we expect that rapidly growing databases of rigorously stan-
dardized reactivity data [38,39] and of energetic parameters [40] for diverse RNA motifs will
reduce these uncertainties. Furthermore, M2 experiments performed with other chemical
probes, such as dimethyl sulfate, should provide powerful cross-validation data sets for testing
inferred landscapes. Through the presented and related chemical mapping technologies, we
therefore expect to have more routine visualization of the rich structural landscapes that appear
to be pervasive in both functional RNAs and the generic sequences from which they evolve.

Methods

M2 measurements
The MedLoop RNA mutate-and-map data were obtained as part of the experimental pipeline
of the Eterna massively parallel open laboratory [27],[41]. The MedLoop RNA and its mutants
were generated through in vitro transcription of a pool of DNA constructs purchased from
CustomArray. The RNA was probed with 1-methyl-7-nitroisatoic anhydride (1M7) in a fold-
ing buffer (see Table I in S1 Text for detailed folding conditions) using the MAP-seq protocol
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and sequenced. in a MiSeq sequencer. The resulting reads and were analyzed with the MAP-
seeker software [41]. The Bistable hairpin, Tebowned switch, and M-stable RNAs as well as
their respective complementary single-nucleotide mutants were constructed using PCR assem-
bly, in vitro transcription, and probed with 1M7 as described previously [42]. Briefly, an assem-
bly consisting of at most 60-nucleotide primers was designed to synthesize an in vitro
transcription sample by PCR. DNA was purified with AMPure XP beads (Agencourt, Beckman
Coulter) and in vitro transcribed for 3 hours. The resulting RNA was purified with AMPure XP
beads, heated for 3 minutes at 90°C, cooled at room temperature for 15 minutes, and folded in
folding buffer at room temperature for 1 hour (see Table I in S1 Text for detailed folding condi-
tions for each RNA). Because we sought to probe the ensemble of the RNA with minimal inter-
ference from the 3´ unpaired sequence that we use as the primer binding site, we folded the
RNA in the presence of the fluorescent primer attached to the oligo(dT) beads (Ambion) that
we regularly use for purification. Folding in this condition sequesters any additional single
stranded regions that may interfere with our sequence of interest. The RNA was then subjected
to 1M7 mapping (5 mM final concentration), purified with the oligo(dT) beads, and reverse
transcribed for 30 minutes at 42°C. Unmodified RNA controls were also included in the experi-
ment. RNA was then degraded using alkaline hydrolysis and cDNA was purified, eluted in Hi-
Di Formamide spiked with a fragment analysis ladder (ROX 350 standard, Applied Biosys-
tems), and electrophoresed in an ABI 3150 capillary electrophoresis sequencer. The add ade-
nine riboswitch M2 data was obtained similarly but folded under different conditions, in the
NMR buffer of the previous study (50 mM KCl and 25 mM K3PO4, 10 mMMgCl2, pH 6.5)
with or without 5 mM adenine for bound and unbound conditions, [17] For NMR folding con-
ditions, we adjusted the 1M7 incubation time to 15 minutes instead of 3 minutes to account for
the low pH. For the Tebowned FMN titrations, dimethyl sulfate (DMS) was used in lieu of
1M7 since it yields a readily seen signal change across FMN concentrations [33].

Electrophoretic traces were aligned, baseline subtracted, and normalized with the HiTRACE
MATLAB toolkit [43]. 1M7 modification traces were quantified, background subtracted, and
corrected for attenuation using 10X dilutions, the unmodified controls, and the pentaloop hair-
pins added at the ends of the constructs as reference [44]. For the Tebowned RNA, no penta-
loop hairpins were added and we relied instead on the HiTRACE background subtraction
routine overmod _and_background_correct_logL using unmodified controls. The lifft function
from the LIFFT package [45] in HiTRACE was used to calculate the FMN binding dissociation
constants for REEFFIT comparisons. Mutants with low signal were flagged as low quality and
were not taken into account for the analysis.

The RNA Ensemble Extraction From Footprinting Insights Technique
(REEFFIT)
For a given mutate-and-map data set, REEFFIT infers the expected reactivity profile of each
structure, the combination of structure population fractions (also denoted here as structure
weights), and sequence-position-wise noise levels that best fit the data (see Figs 1b and 1c)
using prior information on known chemical reactivity distributions, a weak prior based on an
approximate secondary structure energetic model, and a well-defined likelihood function. To
achieve this fit, we expanded Gaussian factor analysis, a standard blind-source separation tech-
nique, to include position-specific, non-negative, non-Gaussian priors for the expected reactiv-
ities and factor weights that depend on both structure and sequence position. Local
perturbations due to mutations, including the release of base pairing partners induced by the
single nucleotide changes, were also included in the statistical model (see section below “Han-
dling local perturbations”). The model including these variables and parameters was fitted by
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REEFFIT using a maximum a posteriori (MAP) approximation. (A Bayesian simulation infer-
ence method sampling over the posterior distribution gave indistinguishable results at signifi-
cantly greater computational expense and is not presented in detail here.). In this section, we
present the basic idea behind the model. Then, in the following sections we introduce the priors
used for each variable and parameter in the model. Finally, we incorporate these priors and
present inferential steps used to fit the model to the data.

In a broad sense, form chemical mapping measurements of n-nucleotide sequences, REEF-
FIT models the data, denoted here as Dobs 2 <m×n, with a set of r secondary structures. The
data are modeled as linear combinations of the structures’ reactivity profiles, denoted here as a
matrix D 2 <r×n, with a weight matrixW 2 <m×r plus Gaussian noise (see Fig 1b). Then, for
each measurement j we have:

Dobs
ji ¼

X
s 2 structures

WjsDsi þ �i

�i � N ð0;CiÞ
ð1Þ

The rows of the weight matrixW correspond to the population fractions of the structures in
each measurement. Therefore, the corresponding weights for each measurement define a prob-
ability distribution and are non-negative and add up to one:X

s 2 structures

Wjs ¼ 1; 8j ¼ 1; . . . ;m

8j; s Wjs � 0

ð2Þ

Setting a prior on the “hidden” structure reactivities
In REEFFIT, D is a set of hidden variables since the isolated reactivity profiles of each structure
are not typically available. We can impose a prior on each of these hidden profiles depending
on their corresponding modeled secondary structure. Because a nucleotide’s chemical reactiv-
ity is reduced upon base pairing, a reasonable prior would force Dsi to be small if i is paired in
structure s and higher if it is unpaired. The needed priors are derived empirically from distribu-
tions of the reactivities of paired and unpaired nucleotides in the RNAMapping Database
(RMDB) of RNAs with known crystallographic structure [39,46]. Let RMDBU and RMDBP be
the empirical RMDB unpaired and paired reactivity distributions respectively and d be some
reactivity, we can then define a prior likelihood for Dsi as:

RMDBsiðdÞ ¼ RMDBUðdÞ if i is unpaired in s

RMDBPðdÞ if i is paired in s
ð3Þ

(

Here, we equate reactivities to values given by SHAPE modifiers; to handle other modifiers,
e.g. dimethyl sulfate, RMDBU and RMDBP can be replaced with the respective estimated distri-
butions using unpaired and paired data of that modifier.

To simplify statistical inference, we approximated the RMDB reactivity distributions for
paired and unpaired residues with exponential distributions, which has been found to be suitable
for distributions of reactivities in unpaired regions [47]. We denote these approximations as:

RMDB�PðdÞ ¼ lPexpð�lPdÞ
RMDB�UðdÞ ¼ lUexpð�lUdÞ

ð4Þ
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Fitting these models to reactivity distributions for paired and unpaired residues in the
RMDB gave scaling parameters of λP = 0.5 and λU = 0.2. We denote RMDB�

si as the resulting
approximation for RMDBsi for structure s in position i, and λsi as the corresponding scaling
parameter, that is:

lsi ¼
lP if i is paired in s

lU if i is unpaired in s
ð5Þ

(

Handling local perturbations
Systematic experimental perturbations used to alter the RNA's structural ensemble may induce
local changes that cannot be captured by the linear combination of the weightsW and the hid-
den reactivities D. This is the case in M2 experiments, where mutations induce local perturba-
tions in the underlying reactivities of each structure. To model these perturbations, we add a
set of random variables that take the values of the change in reactivity of D at perturbed posi-
tions in order to account for the data. That is, we add a ΔCsji variable for all sequence positions
i that are in a set of perturbed sites for structure s in mutant j, perturbed(s,j). These perturbed
sites are defined as positions lying at most one nucleotide away from the site of a mutation in
mutant j or from a base pair that would be disrupted due to a mutation in structure s in mutant
j. To simplify notation, we define C as containing the values of these perturbation variables at
the relevant positions and mutants:

Csji ¼
DCsji if i 2 perturbedðs; jÞ

0 otherwise
ð6Þ

(

We set the prior distributions of ΔCsji to a Gaussian approximation of differences in reactiv-
ities in M2 experiments available in the RMDB:

DCsji � N ð0; 1=lperturbedÞ ð7Þ

Fitting a normal distribution to the RMDB reactivity differences gave λperturbed = 2.

Setting a prior for a regularized fit of the structure weights
Since REEFFIT potentially fits hundreds or even thousands of structures (see section below,
“Building the structural ensemble and reducing model complexity”), we set a sparsity prior on
the weight matrixW. Standard Laplacian (l1) sparsity cannot be imposed because the per-mea-
surement weights are probability distributions and are constrained to sum to unity for each
variant. We therefore imposed a “smooth sparsity” regularizer λR using a Gaussian distribution
(l2), where weights found to be unimportant for the model are reduced to low, but typically
non-zero, values.

Wjs � N ð0; 1=lRÞ ð8Þ

To further avoid over-fitting weights, we encode a penalty that disallows dramatic devia-
tions of computationally-predicted ΔΔG values for each structure s between the wild type
sequence and each mutant to values calculated from the RNAstructure package. For mutant j,
let ΔGjs be the energy for structure s calculated by the efn2 program in the RNAstructure pack-
age [48], kB the Boltzmann constant, and T the temperature at which the experiments were
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performed. We denote the RNAstructure weights at (j,s) as:

W0;js ¼
exp � DGjs

kBT

� �X
s0
exp

DGjs0
kBT

� � ð9Þ

We then impose a Gaussian prior on wild type weights that drives their wild-type/mutant
weight differences to be close to the RNAstructure values through a parameter λΔ. Let wild
type weights for each structure s are denoted asWWT

s then:

jWWT
s �Wjsj � N ðjWWT

0;s �W0;jsj; 1=lDÞ ð10Þ

Values for λΔ and λR were obtained using a cross-validation strategy (see section below,
“Building the structural ensemble and reducing model complexity”). These priors do not
impose the probability distribution constraints of eq (2) on the measurement weights; instead,
the probability distribution constraints are enforced during the optimization of the posterior
function (see below).

The REEFFIT statistical model
After defining the variables for modeling the data and their respective priors, we can write the
complete REEFFITmodel. Let j = 1,. . .,m, index over measurements. Then we write the model as:

Dobs
ji ¼

X
s 2 structures

WjsðDsi þ CsjiÞ þ �i

�i � N ð0;CiÞ
Dsi � RMDB�si; DCsji � N ð0; 1=lperturbedÞ

Wjs � N ð0; 1=lRÞ; jWWT
s �Wjsj � N ðjWWT

0;s �W0;jsj; 1=lDÞX
s 2 structures

Wjs ¼ 1

8j; s Wjs � 0

ð11Þ

Here, the hidden variables D and their perturbations ΔCsji are encoded in C, while the
parameters to estimate areW and the variancesCi. It is important to note that here, as in simi-
lar factor analysis models, all noise covariance matrices are assumed to be diagonal; that is, the
measurements are independent of each other [49,50]. This assumption holds in the case of
multiple chemical mapping measurements, since each measurement is carried out in different
capillaries in capillary electrophoresis [51] or is based on Poisson distributed counts derived
from separate single molecules in deep sequencing [41,52].

We used a hard expectation maximization (EM) algorithm to obtain MAP estimates for the
values of the hidden variables and the model parameters. In hard EM optimization, the values
for the hidden variables obtained in the E-step are maximum a posteriori estimates rather than
expectations used in soft EM [50]. In standard factor analysis a soft EM is typically used: the E-
step can be obtained in closed form by calculating the sufficient statistics for the likelihood
function, which happen to be the first two moments of the posterior distribution of D: E[D|
Dobs] and E[DDT|Dobs] [49,50,53]. However, the non-Gaussian form of our priors for each Dsi,
precludes a closed form for these statistics and we instead used a hard EM strategy. This strat-
egy yielded results that were comparable with a much more computationally expensive soft
EM procedure that used Markov Chain Monte Carlo (MCMC) to approximate E[D|Dobs] and
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E[DDT|Dobs] in the E-step. For the M-step, we incorporated probability distribution constraints
onW by casting the posterior maximization as a quadratic problem and solving it numerically.

Maximum a posteriori estimation of the REEFFIT model
Given the REEFFIT factor analysis model (11) we want to calculate MAP estimates forW and
eachCi given the hidden variables D. The posterior function can be written as:

pðW;C;D;CjDobsÞ / Likelihood � Prior of D� Prior of C � Prior of W

¼
Y

i 2 positions
j 2 measurements

1

ð2pCiÞ 1
2

exp � 1

2Ci

Dobs
ji �

X
s2structures

WsjðDsi þ CsjiÞ
 !2 !

Y
s2structures

lsiexpð�lsiDsiÞ
Y

i2perturbedðs;jÞ

1

2p=lperturbed

� �
1
2

exp � 1

2
lperturbedCsji

2

� �

Y
s2structures

1

2p=lR

� �
1
2

exp � 1

2
lRWjs

2

� �

Y
s2structures

1

2p=lD

� �
1
2

exp � 1

2
lDðjWWT

s �Wjsj � jWWT
0;s �W0;jsjÞ2

� �

ð12Þ

Corresponding to a log-posterior (obviating the normalizing factor):

logpðW;C;D;CjDobsÞ ¼ � nm
2

logð2pÞ þ
X

i 2 positions
j 2 measurements

� logðCiÞ
2

� 1

2Ci

Dobs
ji �

X
s2structures

WjsðDsi þ CsjiÞ
 !2

þ
X

s2structures
logðlsiÞ � lsiDsi þ

X
i2perturbedðs;jÞ

� 1

2
log 2p=lperturbed

� �
� 1

2
lperturbedCsji

2

þ
X

s2structures
� 1

2
log 2p=lR

� �
� 1

2
lRWjs

2

þ
X

s2structures
� 1

2
log 2p=lD

� �
� 1

2
lDðjWWT

s �Wjsj � jWWT
0;s �W0;jsjÞ2

ð13Þ

For the E-step, we estimate optimal hidden variable values for D and C. For each position i,
finding the hidden variable for each structure s, Dsi that maximizes log p by differentiating and
setting to zero, gives the following linear equations:

X
j 2 measurements

s0 2 structures

WjsWjs0ðDs0i þ Cs0jiÞ ¼
X

j2measurements

WjsD
obs
ji þ lsiCi;

8s 2 structures

ð14Þ
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For measurement j, if position i lies in perturbed(s,j), solving for Csji in the same manner
gives the equation:

X
s02structures

WjsWjs0ðDs0i þ Cs0jiÞ �CilperturbedCsji ¼ WjsD
obs
ji

8s 2 structures

8j 2 measurements

ð15Þ

For each position i, compiling the Eqs (14) and (15) for all structures and measurements
results in a linear system. Solving these n systems (one per sequence position), we obtain opti-
mal values for D, C, which we name D�, C�.

For the M-step, we calculateW by maximizing log p in each measurement enforcing the
probability distribution constraints in Eq (2). We can cast this maximization as a set of qua-
dratic programs. Let Dobs

j be the data andWj be the set of weights for measurement j, then, to

estimate the optimal weights for j, we solve:

argmax
Wj

logpðWj; C;D�;C�jDobs
j Þ

subject to
Xt

s2structures
Wjs ¼ 1 andWjs � 0

ð16Þ

We solve the resulting quadratic programs using the CVXOPT python library [54] and
denote the resulting weight matrix estimate asW�. Re-estimation of the variancesCi in the M-
step is also given by optimizing log p, but overCi:

C�
i ¼

1

m

X
j2measurements

ðDobs
ji �

X
s2structures

W�
jsðD�

sj þ C�
sjiÞÞ2 ð17Þ

The E and M step optimization procedures are then repeated until the maximum difference
of the induced base-pair probability matrices of the previous and current iteration is less than
1%. In our benchmarks, we have observed that usually 10 to 20 EM iterations are required for
convergence. We note that our log posterior function is not convex and therefore our EM pro-
cedure does not necessarily converge to a global optimum and is sensitive to initial conditions.
Nevertheless, testing different initial conditions with RNAstructure and ViennaRNA gave
important improvements and similar results in our in silico benchmark (see Supporting Results
in S1 Text above).

To initialize the variablesCi, we choose the empirical variance of position i across all chemical
mapping measurements, consistent with the variance calculation performed when using M2 z-
scores as pseudo-energy bonuses for secondary structure prediction [28]. For initial estimates of
W, we use RNAstructure to calculate the energies of each structure in each mutant as in Eq (9).

To calculate uncertainties forW that are robust to outliers and high-reactivity values, we re-
fit the model in bootstrapped datasets by sampling columns (i.e. sequence-positions) with
replacement of Dobs per bootstrap iteration. The final estimate ofW is then the average weight
matrix of all of the replicates; in all fits shown we report uncertainties as bootstrap standard
deviations. Throughout this work, we used 100 bootstrap iterations. In the absence of boot-
strapping, REEFFIT can also provide error estimates based on the Fisher information matrix
approach, but those values are generally underestimates of the uncertainties.
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Building the structural ensemble and reducing model complexity
In most realistic scenarios for de novo RNA landscape modeling, it is not known a priori what
set of structures would best model the data. To select an initial set of structures, we obtain a set
of suboptimal structures for each sequence in the multi-dimensional chemical mapping experi-
ment: for M2 experiments, the suboptimal structures of all variants involved have to be taken
into account. We obtain at most 200 suboptimal structures of each mutant’s structural ensem-
ble using the AllSub program, with default parameters (5% maximum energy difference from
the MFE structure) from the RNAstructure program suite (version 5.5) [48].

The fits presented herein use all of the structures sampled in this manner. To reduce model
complexity, we collapsed position-wise hidden reactivity variables that corresponded to differ-
ent structures but formed part of the same structural motif. For example, if for position i we
have 100 hidden reactivity variables that either correspond to a particular helix or an interior
loop in the same part of the sequence, then we collapse the hidden variables into two variables,
a helix and an interior loop variable, rather than 100 hidden reactivity variables. This variable
collapse encodes the assumption that identical structural motifs will exhibit similar chemical
reactivities independent of the structural context.

Specifically, let sm be a structural motif (the structural motifs that we take into account are:
helices, bulges, x-way junctions, interior loops, dangles, single-stranded regions between heli-
ces, and hairpin loops) and letmotif(i, sm) be the structures that have the smmotif at position
i. Then, we constrain the values for all variables in the set {Dsi|8s 2motif(i,sm)}to be the same,
collapsing the |motif(i,sm)| variables into only one variable. Because the number of structures
sampled typically exceeds the number of measurements (in most cases analyzed here we
obtained ensembles of over 200 structures), this model simplification is essential to prevent
over-fitting. In cases where the same sub-motif may have different reactivities in different
structures (e.g. upon ligand-binding), this information can be used to expand the number of fit
parameters for that motif, as we carried out for the add or Tebowned riboswitches (see below).

To select the regularization parameters λΔ and λR we used a cross-validation approach.
Since chemical mapping data are structured (i.e. we cannot assume that reactivities in all posi-
tions come from the same population given the structural context of each nucleotide), we have
to adapt the cross-validation technique accordingly. We employed a strategy frequently used in
structured data contexts such as spline smoothing, where the i-th subsample in a k-fold cross-
validation is the sequence {i,i+k,i+2k,. . .}[55]. This strategy samples the structured data uni-
formly across the nucleotide sequence, maintaining the assumptions necessary for cross-valida-
tion. In each fold of the cross validation, we obtain structure weights using the data from the
training samples. With these weight estimates, we then obtain best predictions of the positions
in the test sets with these weights. The cross-validation error is then the mean square error of
the predicted and the observed test data [56]. We calculated an optimal value for λΔ and λR
using our in silico, ab initio benchmark of 20 Rfam members, minimizing the 10-fold cross-val-
idation error across all the benchmark. The optimal values, λΔ = 5 and λR = 0.26 were then
used for all fits presented herein.

Data set and software availability
The REEFFIT programs and their source code are available at http://rmdb.stanford.edu/tools/
docs/reeffit/, along with software documentation and tutorials. M2 capillary electrophoresis
data for the Bistable, add riboswitch, M-stable, and Tebowned RNAs have been deposited in
the RMDB (RMDB IDs BSTHPN_1M7_0000.rdat, ADDSCHW_1M7_0000,
ADDSCHW_1M7_0001, MSTBL_1M7_0000, TBWND_1M7_0000, and
TBWND_1M7_0001). M2-seq data for the MedLoop are part of the EteRNA cloud lab, rounds
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72 (RMDB ID ETERNA_R72_0000, project name “MedLoop”). RDAT files for the simulated
datasets can be downloaded from http://purl.stanford.edu/zr287dq2666
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(PDF)
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