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Abstract

Protein-protein interactions depend on a host of environmental factors. Local pH conditions influence the interactions
through the protonation states of the ionizable residues that can change upon binding. In this work, we present a pH-
sensitive docking approach, pHDock, that can sample side-chain protonation states of five ionizable residues (Asp, Glu, His,
Tyr, Lys) on-the-fly during the docking simulation. pHDock produces successful local docking funnels in approximately half
(79/161) the protein complexes, including 19 cases where standard RosettaDock fails. pHDock also performs better than the
two control cases comprising docking at pH 7.0 or using fixed, predetermined protonation states. On average, the top-
ranked pHDock structures have lower interface RMSDs and recover more native interface residue-residue contacts and
hydrogen bonds compared to RosettaDock. Addition of backbone flexibility using a computationally-generated
conformational ensemble further improves native contact and hydrogen bond recovery in the top-ranked structures.
Although pHDock is designed to improve docking, it also successfully predicts a large pH-dependent binding affinity
change in the Fc–FcRn complex, suggesting that it can be exploited to improve affinity predictions. The approaches in the
study contribute to the goal of structural simulations of whole-cell protein-protein interactions including all the
environmental factors, and they can be further expanded for pH-sensitive protein design.
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Introduction

Through tightly controlled cellular pH, posttranslational mod-

ification by protons regulates biological function [1]. Cellular pH

can vary from highly-acidic in the lysosomes (,pH 5) to basic in

the peroxisomes (,pH 8) [2], profoundly influencing biomolecu-

lar folding and assembly processes [3,4]. pH effects are especially

critical in protein-protein binding, and binding-induced proton-

ation state changes contribute to the association energy of most

protein-protein complexes [5,6]. However, computational protein-

protein docking algorithms often ignore the pH effects. In this

paper, we develop a pH-sensitive protein-protein docking algo-

rithm and demonstrate that it can improve prediction accuracy

and recover pH-dependent binding effects.

Computational docking algorithms are playing an increasingly

influential role in driving large-scale protein-protein interactions

(PPI) surveys [7,8] and genome-wide interactome studies [9], but

they need to accommodate sensitivity to local environment pH for

improved reliability. Although pH effects on protein-small

molecule complex calculations are well studied (e.g., refs. [10–

15]), efforts to incorporate pH effects in computational protein-

protein complex calculations have just begun. For example,

Spassov et al. [16] recently demonstrated a pH-sensitive binding

prediction method with an aim to prolong the half-life of

therapeutic antibodies. HADDOCK [17] determines the missing

protonation state of the histidine residues in the input protein

complex using the WHATIF server [18] before the start of the

docking simulation. However, in real systems protonation states

are affected not only by the solution pH but also the change in the

local environment of the ionizable surface residues due to the

receptor-ligand interactions during binding. pKa calculation

studies (e.g. [19]) stress the importance of simultaneously

evaluating both favorable residue side-chain conformations and

their preferred ionization states. Similarly, in docking algorithms,

residue pKa values vary depending on the conformations of the

ligand relative to the receptor. Hence dynamic evaluation of the

protonation states during docking using pKa calculation algorithms

on-the-fly is more true to the physical process of binding and may

improve prediction accuracy.

Current computational pKa calculation algorithms have been

collectively assessed by the scientific community recently to

improve their accuracy [20]. One of the primary aims of the

pKa calculation methods is to identify and improve the deficiencies

of the energy function, particularly the electrostatics [21]. Despite

the deficiencies, pKa calculations by many algorithms are within a

root-mean-square deviation (RMSD) of 1 pH unit from the
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experimental pKa values (except in extreme cases with very large

pKa shifts [22–24]). Hence unless the solution pH is very close to

the shifted pKa values of the ionizable residues, current algorithms

can in principle reasonably estimate the relevant pH-sensitive

protonation state during docking. Since computational protein-

protein docking algorithms typically generate hundreds to several

thousand target conformations, effective use of the protonation

state data requires pKa calculations to be fast, accurate and

compatible with the docking methodology. Unfortunately, the

most rigorous physics-based pKa calculation methods prohibitively

require several minutes to hours to calculate a single pKa value,

and the faster empirical methods are not currently compatible with

the docking frameworks.

We previously created Rosetta-pH [25], a fast and efficient pKa

calculation algorithm with a focus on the use of the protonation

state data in protein structure prediction and design. After we

added a pH-sensitive score term to the standard (pH-independent)

Rosetta score function and calibrated the electrostatic and

solvation score terms, Rosetta-pH achieved a RMSD of 0.83 pH

units from the experimental pKa values. Since we built Rosetta-pH

using the object-oriented Rosetta biomolecular modeling suite [26]

which forms the basis for the protein-protein docking algorithm

RosettaDock [27,28], we were able to fuse the methods to create,

to our knowledge, the first pH-sensitive protein-protein docking

algorithm.

In the remainder of this article, we describe our fast pH-

sensitive docking algorithm (pHDock) that can sample side-chain

protonation states of five ionizable residue types (Asp, Glu, His,

Tyr, Lys) on-the-fly during the docking simulation. After

combining the Rosetta-pH and RosettaDock frameworks, we

recalibrate the pHDock score function to accommodate the new

pH-sensitive score term. We use local docking studies to test

pHDock’s performance on a dataset of protein-protein complexes

[29] and compare it to RosettaDock. We also study the effects of

incorporating backbone flexibility in pHDock using a backbone

conformational ensemble for docking a subset of the complexes.

Finally, we explore a case study to investigate the efficacy of

pHDock in the prediction of large pH-dependent binding affinity

change in a protein complex [30].

Results

pHDock algorithm
We developed pHDock, a multi-scale Monte Carlo (MC)

algorithm based on the RosettaDock framework [27,28] with

modifications to allow dynamic sampling of the residue proton-

ation states during simulation. Residue protonation states at the

environment pH are constantly updated during multiple side-

chain packing steps throughout the protocol by explicitly sampling

both protonated and deprotonated versions of the side chains from

a discrete rotamer library [31].

The pHDock algorithm is illustrated in Fig. 1. In the first pre-

packing step, the protein complex side chains are idealized, and

the residue ionization states are equilibrated with the solution pH

using Rosetta-pH [25]. Then, following the standard RosettaDock

low-resolution stage, the residue side chains are represented by

coarse-grained centroid atoms. This stage comprises i) a random

initial perturbation of the partners, and ii) rigid-body ligand moves

relative to the receptor which are accepted/rejected based on the

Metropolis criteria. In the high-resolution stage, the side-chain

centroid pseudo-atoms are replaced by the side-chain atoms from

the initial unbound conformation. The high-resolution stage

involves i) repacking the residue side chains with simultaneous

evaluation of the most favorable residue protonation states at the

environmental pH, and ii) minimization of the side-chain torsion

angles and rigid-body orientation of the ligand relative to the

receptor with an accompanying Metropolis criteria check. One

thousand candidate structures, or models, are generated for each

target and then ranked according to their interface scores, and the

top-ranked model is picked as the final prediction.

To test the performance of the algorithm, we use both standard

RosettaDock (henceforth referred to as simply ‘RosettaDock’) and

pHDock to generate local docked models starting from a dataset of

unbound structures from the curated Docking Benchmark 4.0

[29]. For pHDock, we assume the crystallization pH of the

corresponding bound complex as the solution pH. In the following

sections, we first illustrate the docking performance analysis of the

new algorithm using a sample protein complex. Next, we compare

the performance of pHDock to RosettaDock over the complete

benchmark dataset using several metrics and inspect a few

predictions in greater detail. We later focus on the effects of

backbone flexibility on the docking accuracy. Finally we use a case

study to demonstrate pHDock’s performance in the prediction of

pH effects on binding affinities.

Sample docking analysis: Xylanase–TAXI-IA binding at
non-standard pH

Performance of structural docking algorithms can be analyzed

by studying the distribution plots of the free energies or score

function vs. the deviation from the starting native bound complex.

The native complex is assumed to be at the free energy minimum,

hence structural models generated using the docking algorithm

with receptor-ligand orientation close to the native structure are

expected to have lower energies compared to the structures farther

away. To create a set of models sampling both near-native and

non-native conformations, starting positions of the ligand relative

to the receptor are perturbed by up to 3 Å translation and 8u
rotation around the axis joining the centers of the two partners.

Fig. 2 shows sample plots for the Triticum aestivum xylanase

inhibitor-I (TAXI-I) in complex with Bacillus subtilis xylanase

crystallized at a pH of 4.6 (PDB: 2B42 [32]). The y-axis represents

Author Summary

Protein-protein interactions are fundamental for biological
function and are strongly influenced by their local
environment. Cellular pH is tightly controlled and is one
of the critical environmental factors that regulates protein-
protein interactions. Three-dimensional structures of the
protein complexes can help us understand the mechanism
of the interactions. Since experimental determination of
the structures of protein-protein complexes is expensive
and time-consuming, computational docking algorithms
are helpful to predict the structures. However, none of the
current protein-protein docking algorithms account for the
critical environmental pH effects. So we developed a pH-
sensitive docking algorithm that can dynamically pick the
favorable protonation states of the ionizable amino-acid
residues. Compared to our previous standard docking
algorithm, the new algorithm improves docking accuracy
and generates higher-quality predictions over a large
dataset of protein-protein complexes. We also use a case
study to demonstrate efficacy of the algorithm in
predicting a large pH-dependent binding affinity change
that cannot be captured by the other methods that
neglect pH effects. In principle, the approaches in the
study can be used for rational design of pH-dependent
protein inhibitors or industrial enzymes that are active over
a wide range of pH values.
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the interface score (Isc), an approximation of the binding free

energy, normalized by the difference between the 5th and 95th

percentile scores. The x-axis quantifies deviation from the native

complex using interface RMSD (Irmsd). Each point on the plot

represents a single docking model and is colored based on the

CAPRI structural quality rating [33] (see Methods). The interface

of the top-scoring pHDock-generated structure (Fig. 2B) is just

1.7 Å from the native interface, compared to 4.7 Å for the

RosettaDock-generated structure (Fig. 2A). While RosettaDock

does not generate any structures better than acceptable quality,

pHDock produces a structure with higher native residue-residue

contact recovery qualifying as medium quality.

We quantified the docking performance using a discrimination

score [34] (shown in bottom right in the docking score plot), which

captures the extent to which the low-rmsd models have lower

energies compared to the high-rmsd (incorrect) models. The

discrimination score is calculated by dividing the x-axis using

multiple Irmsd cut-offs and averaging the energy gaps between the

lowest scoring structure on the left and right of each cut-off (see

Methods). A lower discrimination score is an indicator of better

docking performance, with a negative score indicating a successful

docking prediction. The additional side-chain protonation state

sampling helps pHDock produce a successful and more pro-

nounced docking funnel (discrimination score: 21.19) compared

to RosettaDock (discrimination score: 0.16).

Fig. 2C compares the interfaces of the crystal structure and the

top-ranked pHDock model for the xylanase–TAXI-IA complex.

Experimental studies [32,35] discussed the importance of the

strong salt bridge between the positively charged imidazole side

chain of TAXI-IA His-374 (spheres) with the negatively charged

Asp-37. This ionic interaction is critical for binding, and the pH

optimum of the xylanase (determined by the pKa value of Asp-37)

is reported to directly influence the affinity of the enzyme–

inhibitor complex, with a lower Asp pKa value leading to stronger

binding. The top-scoring pHDock model not only captures this

interaction through precise prediction of the positively charged

His-374 side-chain rotamer but also recovers all the xylanase

active-site-residue side-chain rotamers. RosettaDock, which as-

sumes a neutral His side chain, fails to capture the interaction.

Overall, while the top-scoring RosettaDock model recovers just

13% of the native interface contacts, the pHDock model recovers

49% of all the interface residue-residue contacts.

pHDock improves docking accuracy in a majority of
docking targets

For a large-scale docking performance analysis, we tested

pHDock over a dataset of diverse protein–protein complexes from

the curated Docking Benchmark 4.0 [29]. On average, 25% of the

interface residues in the dataset complexes are ionizable (Asp, Glu,

His, Tyr, Lys) (S1 Figure). Fig. 3 compares the discrimination

scores of the docking funnels generated using pHDock and

RosettaDock. pHDock produces successful docking funnels

(discrimination score #0) in approximately half (79/161) the

structures from the dataset, including 19 cases where RosettaDock

fails to produce a successful prediction. Based on the discrimina-

tion score, pHDock outperforms RosettaDock in approximately

60% of the targets (94/161) (Table S2), and the improvements are

statistically significant (paired t-test, p = 0.039). Additionally, since

models are generated stochastically, we performed bootstrap case

resampling [36] to quantify the variation of the discrimination

scores. The bootstrap mean discrimination scores m(D) (S2 Figure)

again show that pHDock produces successful funnels [m(D) #0] in

half the targets (79/161) including 17 cases where RosettaDock

fails. Hence the results are robust to the stochastic sampling noise.

The average standard deviation of the discrimination scores [s(D):

0.07] is approximately 4% of the total observed m (D) range.

As pHDock has access to nonstandard residue protonation

states unlike RosettaDock, we examined the prevalence of such

protonation states and their effect on docking accuracy. In docking

funnel plots in S9 Figure, structures with nonstandard residue

protonation states are distinguished. pHDock produces models

with nonstandard protonation states for all the target complexes

(S3 Figure), with a majority of the nonstandard protonation states

observed in complexes with docking pH within one pH unit of the

residue intrinsic pKa values (S4 Figure). Overall, pHDock

outperforms RosettaDock in 67% (20/30) of the cases where the

top-ranked pHDock model recovers a nonstandard protonation

state observed in the native bound complex (S5 Figure). pHDock

also performs better than RosettaDock in 64% (7/11) of the

cases where the top-ranked pHDock produces a nonstandard

Fig. 1. pHDock flowchart. Each step in the pHDock workflow is
colored based on the differences compared to RosettaDock: unmod-
ified steps are colored in grey, and steps with minor (light orange) and
major (dark orange) modifications are colored in shades of orange.
doi:10.1371/journal.pcbi.1004018.g001
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protonation state different from the one observed in the native

bound complex illustrating the importance of dynamic proton-

ation states.

Since pHDock is a stochastic docking algorithm that generates

several candidate models, the performance of the algorithm

broadly depends on (i) the quality and diversity of the generated

ensemble of models, or ‘sampling’, and (ii) the ability of the final

score function to discriminate native-like models from non-native-

like models, or ‘scoring’. To test the sampling performance of

pHDock, we examined the lowest-Irmsd models for all the

complexes in the dataset. The Irmsd distribution for pHDock is

similar to RosettaDock (Fig. 4A), and in 92% of the docking

targets, it generates at least one model within 4 Å from the native

interface. Out of 1000 models generated for each target, pHDock

creates on average 1.9, 18.5, and 90.8 high-, medium-, and

acceptable-quality models, respectively. In comparison, Rosetta-

Dock samples 7–12% fewer medium- and high-quality models (S6

Figure). To test the scoring performance of pHDock, we calculated

the Irmsd and fnat distributions of the top-scoring models for each

target (Figs. 4B–C). pHDock generates top-ranked models within

4 Å in 57% of the targets (RosettaDock 51%), and 52% of the time

these models recover more than 30% of the native residue-residue

contacts (RosettaDock 46%).

To further assess the quality of the predicted top-ranked

structures, we examined the receptor-ligand interface hydrogen

bonds (henceforth referred to as simply ‘interface hydrogen

bonds’). Previous surveys found 8–13 interface hydrogen bonds

in each protein–protein complex [37,38]. Using Rosetta’s hydro-

gen bonding definition, the native crystal complexes in our dataset

contain 6.463.5 interface hydrogen bonds on average (Fig. 5A).

In comparison, the top pHDock models are involved in 5.162.5

interface hydrogen bonds, while the top RosettaDock models form

only 3.462.1 interface hydrogen bonds. As pHDock primarily

focuses on ionizable residues, we also calculated the number of

interface hydrogen bonds containing such residues as donors or

acceptors. The native complexes contain 3.562.6 ionizable

Fig. 2. Docking predictions for xylanase – TAXI-IA complex. Docking plots generated by (A) RosettaDock, and (B) pHDock at pH 4.6. Grey,
orange, and red points represent incorrect, acceptable-, and medium- quality predictions, respectively. Discrimination scores are shown in the
bottom right corner of the plots. (C) Interface of the top-scoring pHDock prediction (medium accuracy) superimposed on the crystal complex (grey)
(2B42 [32]). Predicted orientation of the TAXI-IA inhibitor and xylanase, cyan and green, respectively; critical His-374 residue from TAXI-IA, spheres;
xylanase active site and other critical binding site residues, sticks.
doi:10.1371/journal.pcbi.1004018.g002

Fig. 3. Summary of pHDock performance. Correlation plot
comparing discrimination scores of pHDock and RosettaDock docking
predictions for each target in the complete benchmark dataset.
Complexes docked at acidic pH (pH#7.0) and basic pH (pH.7.0) are
represented as circles and squares, respectively. The discrimination
score cutoffs for a successful prediction (D,0) are marked using broken
lines. Corner numbers indicate the total predictions in each plot section
(edges defined by the broken lines and the solid line at 45u).
doi:10.1371/journal.pcbi.1004018.g003
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Fig. 4. Distribution curves of interface RMSDs (Irmsd) and fraction of recovered native contacts (fnat) for the docking models. (A)
Irmsd distribution curve of the lowest-Irmsd models generated using pHDock (orange) and RosettaDock (grey). (B, C) Irmsd and fnat distribution curve
for the top-ranked models according to interface scores (Isc) for each protein complex. The distribution curves are generated after independent
sorting of the pHDock and RosettaDock models based on (A, B) increasing Irmsd values and (C) decreasing fnat.
doi:10.1371/journal.pcbi.1004018.g004

Fig. 5. Distributions of native and model interface hydrogen bonds. Kernel density estimate curves for the number of (A) interface hydrogen
bonds and (B) interface hydrogen bonds involving ionizable residues in the top-scoring models generated using pHDock (orange) and RosettaDock
(grey), and the native crystal complexes (black) across the complete Docking Benchmark dataset. Frequency histograms of the fraction of (C)
recovered interface hydrogen bonds and (D) recovered interface hydrogen bonds involving ionizable residues in the top-scoring models.
doi:10.1371/journal.pcbi.1004018.g005
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interface hydrogen bonds (Fig. 5B). Encouragingly, the top

pHDock models are found to form an identical 3.562.4 ionizable

interface hydrogen bonds, while the top RosettaDock models form

only 2.161.6 hydrogen bonds.

The analysis of the total number of interface hydrogen bonds

shows significant pHDock improvements in generating models

with a larger receptor-ligand hydrogen bond network. However,

such an analysis does not reveal the accuracy of the generated

interface hydrogen bonds. So we also examined the fraction of

the native interface hydrogen bonds recovered in the top-ranked

models. pHDock recovers more than one-fifth of the native

interface hydrogen bonds in only 33% of the targets from the

dataset, while RosettaDock performs worse, recovering the same

fraction in just 22% of the targets (Fig. 5C). The results are

similar for the fraction of recovered ionizable interface

hydrogen bonds. pHDock recovers more than one-fifth of the

ionizable interface hydrogen bonds in 32% of the targets, while

the performance of RosettaDock drops further to just 19% of

the total targets in the dataset (Fig. 5D). In summary, while

pHDock generates more interface hydrogen bonds, only a

minor faction of these hydrogen bonds match those seen in the

native complex.

Finally, to test the effects of hydrogen bonding accuracy on

docking results, we examined a few sample cases in greater

detail. The tumor susceptibility gene 101 protein–ubiquitin

complex (1S1Q; pH 4.6 [39]) has four native interface hydrogen

bonds. The top pHDock model recovers three of them and

forms a total five interface hydrogen bonds, while the top

RosettaDock model exhibits three interface hydrogen bonds but

none of them are native. The docking plots for both pHDock

and RosettaDock (discrimination score 20.19 vs. 20.01) show

success based on discrimination scores, but the docking funnel is

clearly more pronounced in pHDock (Fig. 6A). Although the

near-native sampling in both pHDock and RosettaDock is

comparable, the additional recovered native hydrogen bonds

help pHDock in the final scoring, and the top model interface is

only 1.4 Å away from the native interface. The improved

performance is likely due to a protonated interface histidine

(His-66) in ubiquitin. In a second case, the PPARgamma+
RXRalpha–GW409544+co-activator peptide complex (1K74;

pH 7.5 [40]) has five interface hydrogen bonds. The top

pHDock model exhibits eight interface hydrogen bonds, three

of them being native, while none of the ten hydrogen bonds

found in the top RosettaDock model are native (Fig. 6B). In this

case, pHDock (discrimination score 20.35) outperforms Roset-

taDock (discrimination score 20.12) in both sampling and

scoring (Fig. 6B). The top-scoring pHDock model is a high-

quality prediction just 0.93 Å from the native interface. In this

case, the interface residues are all in their standard protonation

states; we infer that the improvement must be due to kinetic

effects during the Monte Carlo docking search. The larger

number of interface hydrogen bonds in pHDock models do not

always translate to improvements in docking predictions. For

example, the CDK2 kinase–cell cycle-regulatory protein

CksHs1 complex (1BUH; pH 7.5 [41]) has four native hydrogen

bonds. Again, the interface residues in the top-ranked pHDock

model are predicted to be in their standard protonation states.

Neither top pHDock nor RosettaDock models recover any of

the native interface hydrogen bonds although they form nine

and one interface hydrogen bonds, respectively. As shown in the

docking plots in Fig. 6C, pHDock scoring favors a false-positive

docking prediction with a large number of interface hydrogen

bonds more than 12 Å from the native interface.

Backbone flexibility further improves native contacts and
hydrogen bond recovery

Inclusion of backbone flexibility in protein-protein docking is

critical to capture the conformational changes during the binding

event [42]. Within RosettaDock, backbone flexibility mimicking

both conformer selection (CS) and induced fit (IF) binding models

increases native contact recovery, although the computational

costs are higher and there is a risk of false positive predictions [43].

Thus we tested whether the addition of backbone flexibility further

improved native contact recovery in pHDock. We chose a subset

of 14 complexes common among the published study and the

curated Docking Benchmark 4.0 used for pHDock (Table S3). We

then used the RosettaRelax [44,45] protocol to generate an

ensemble of unbound backbones. RosettaRelax, an MC algo-

rithm, employs a cycle of small backbone dihedral (Q, y)

perturbations, residue side-chain packing and score function

minimization along the gradient in the torsion space to generate

a backbone ensemble typically within 1 Å Ca RMSD of the

starting structure. We generated 500 models starting from the

ligand unbound coordinates for each of the complexes and picked

the ten top-scoring models for docking.

S10 Figure compares the docking funnels generated using

RosettaDock, pHDock and ensemble pHDock. The ligand

backbone flexibility helps ensemble pHDock generate better

docking funnels (based on discrimination score) in 11 targets

compared to pHDock. The Irmsd values of the lowest-Irmsd

models generated using ensemble pHDock are not significantly

better compared to pHDock. However, there is a noticeable

improvement in the quality of the receptor-ligand interfaces in the

top-ranked models. The top-ranked models generated using

ensemble pHDock outperform pHDock in native contact recovery

with comparable or better fnat values in 12 targets. Encouragingly,

the top-ranked models also recover comparable or more native

interface hydrogen bonds in all the targets compared to pHDock

and RosettaDock (Table S3). To summarize, the additional

backbone flexibility further improves the docking funnel quality in

a majority of the targets and generates top-ranked models that

recover more native contacts and hydrogen bonds.

pHDock is better at solution pH than pH 7 or using fixed,
predetermined protonation states

pHDock simulates the complexes at solution pH and relies on

dynamic residue protonation state sampling. To assess the

individual contribution of these two components, we performed

control docking experiments using a subset of complexes (same 14

complexes used for ensemble pHDock). First, to test the robustness

of the docking predictions to changes in the solution pH, we used

pHDock at physiological pH (pH 7.0). Second, to test the benefits

of employing dynamic residue protonation states, we docked the

complexes with fixed residue protonation states obtained from the

lowest energy rotamer state of the starting partners at the solution

pH (fix-pHDock).

Of the cases where both RosettaDock and pHDock either fail

(four targets) or succeed (eight targets), the fix-pHDock and

pHDock at pH 7.0 runs perform similarly (see docking funnel

plots, S11 Figure), showing, as might be expected, an insensitivity

to pH effects. There are two cases in this test set where

RosettaDock fails and pHDock produces a successful docking

funnel. In the a-chymotrypsin–eglin C complex (1ACB; pH 6.5

[46]), pHDock produces a discrimination score of 20.24 at

pH 6.5, and RosettaDock a discrimination score of 0.01. pHDock

at pH 7.0 produces a weaker funnel (discrimination score: 20.1)

while fix-pHDock fails (discrimination score: 0.09) due to a false

Protein-Protein Docking with Dynamic Residue Protonation States
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positive model 7 Å Irmsd away from the native complex.

Similarly, in the Fab D44.1–lysozyme complex (1MLC; pH 6.0

[47]), pHDock generates a discrimination score of 20.11 while

RosettaDock, pHDock at pH 7.0, and fix-pHDock all fail

(discrimination scores 0.13, 0.07, 0.33, respectively). Thus, in

these two cases where RosettaDock fails, both pHDock at pH 7.0

and fix-pHDock fail to completely capture pHDock’s success.

These cases suggest that accurate knowledge of the solution pH

and the dynamic protonation states are vital for maximum

pHDock accuracy.

pHDock captures the large pH-dependent binding
affinity change in the Fc–FcRn complex

In the discussion so far, we analyzed pHDock’s performance at

the solution pH and compared it to RosettaDock (no pH

dependence) over a large dataset of protein complexes. However,

such an analysis does not test pHDock’s performance in predicting

effects of subtle environmental pH changes on a single protein-

protein complex. In previous work, we and other groups have used

RosettaDock interface scores in correlating binding affinities

[48,49] and in predicting relative affinities [50]. The neonatal Fc

receptor (FcRn) binds maternal immunoglobulin G (IgG) from

ingested milk in the gut at acidic pH (pH#6.5) and releases it in

the bloodstream of the newborn at basic pH (pH 7.4) [51]. This

process is facilitated through a drastic drop in the binding affinity

by more than two orders of magnitude as the pH changes from

6.0–6.5 to 7.0–7.5 [51,52]. The Fc–FcRn system has been

previously used for a pH-dependent binding calculation [16],

but to our knowledge, there are no existing pH-sensitive docking

studies.

To test the efficacy of pHDock in predicting pH effects on

binding affinities, we used the pHDock algorithm to dock the

murine Fc–FcRn complex (1I1A [30]) at various environmental

pH values. We tested all integral pH values between 3.0 and 11.0,

and used a finer interval of 0.25 pH units for the relevant pH

range of 6.0–8.0 where the striking binding affinity change is

observed. We used the interface scores (I) of the top-scoring

pHDock models to approximate the binding affinity at different

pH values. Fc–FcRn complex shows a binding minimum at

pH 6.25 (IpH6.25: 213.99 Rosetta Energy Units (REU)), and

thereafter the affinity rapidly weakens as the environment pH

increases to 7.50 (IpH7.50: 211.82 REU) (Fig. 7A). Converting the

binding energies to equilibrium constants using the relation

Kd~ e{DG=kBT ,we estimated the ratio of equilibrium constants

at pH values 6.25 and 7.50 as

KpH6:25

KpH7:50

~e
{1

kBT
IpH6:25{IpH7:50

� �
~40,

where KpH6.25 and KpH7.50 are the equilibrium binding constants

at pH 6.25 and 7.50, respectively, and kBT is 0.59 kcal/mol at

298K. The equation yields a 40-fold drop in the binding affinity as

the pH increases from 6.25 to 7.50, which is similar to the 50 to

Fig. 6. Hydrogen bonding recovery correlates with docking performance. Docking plots generated using RosettaDock and pHDock for (A)
tumor susceptibility gene 101 protein–Ubiquitin complex (1S1Q; pH 4.6), (B) PPARgamma+RXRalpha–GW409544+co-activator peptide complex
(1K74; pH 7.5), and (C) CDK2 kinase–cell cycle-regulatory protein CksHs1 complex (1BUH; pH 7.5). Grey, orange, red, and blue points represent
incorrect, acceptable-, medium-, and high-quality models, respectively. Discrimination scores are shown in the bottom right corner of the plots. The
right panel shows structures of the top pHDock (blue) and RosettaDock (green) models superimposed on the native complex (red). The number of
native hydrogen bonds among the total interface hydrogen bonds observed in the bound crystal complex(NXtal

hb-nat), and the top-scoring

pHDock(N
pH
hb-nat)and RosettaDock(NRos

hb-nat)models are also listed.
doi:10.1371/journal.pcbi.1004018.g006
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100-fold drop from experiments [52]. Interestingly, the docking

plots show successful energy funnels for both pH values (Fig. 7B).

However, the energy funnel is more pronounced at pH 6.25

(discrimination score 20.96) than pH 7.50 (discrimination score

20.47), indicating a site-specific binding event at both pH values,

but with markedly different affinities.

Previous studies [30,51] attribute the pH-dependence of Fc–

FcRn binding to the titration of interface histidine residues with

pKa values in the range of binding affinity transition (6.5#pH#

7.0). The Fc–FcRn interface has three salt bridges with the

residues His-310, His-435, and His-436 from Fc interacting with

Glu-117, Glu-132, and Asp-137 from FcRn. The proposed

mechanism involves titration of all the three histidine residues

disrupting the binding as the environment pH increases, but

studies have shown two buried titratable salt bridges are sufficient

to confer pH dependence. Encouragingly, the top-scoring

pHDock-generated models at different pH values successfully

capture the titration event. While His-310 remains protonated in

the models at both pH values, His-435 and His-436 are

protonated at pH 6.25 and deprotonated at pH 7.50 and are

involved in salt bridges with Glu-132 and Asp-137, respectively

(Fig. 7C). Thus, pHDock not only predicts the relative Fc–FcRn

binding affinities at different pH values, but also captures the

expected physical mechanisms responsible for the different

affinities.

Discussion

We have created pHDock, the first pH-sensitive protein-protein

docking algorithm that samples residue protonation states

dynamically during the search. The algorithm integrates the

Rosetta-pH pKa calculation method [25] with the RosettaDock

framework using the object-oriented design of the Rosetta

modeling suite [26]. Local docking studies show that pHDock

outperforms RosettaDock in 60% of the docking targets and also

performs better than control cases involving docking at pH 7.0 or

using fixed, predetermined protonation states. pHDock also shows

encouraging improvements in the quality of the generated

candidate predictions. On average, the top-ranked pHDock

structures have lower interface RMSDs and recover more native

residue-residue contacts and hydrogen bonds. While pHDock is

designed to improve docking predictions by accounting for

environmental pH effects, the successful prediction of a large

pH-dependent binding affinity change in the Fc–FcRn complex

suggests that it can be further exploited to improve affinity

predictions.

pHDock improves docking primarily by enhancing the scoring

in the docking high-resolution stage, as the improved score

function finely tuned for pKa predictions is active only during the

high-resolution steps involving dynamic protonation states.

Although there are few cases where pHDock samples conforma-

tions closer to the native compared to RosettaDock, the similarity

of the interface RMSD distributions of the closest-sampled models

(to the native complex) shows that its sampling quality is largely

unchanged, likely because it retains the RosettaDock low-

resolution stage which is largely responsible for model diversity.

Over the complete dataset, pHDock generates at least one high-

quality model in 25% of the complexes (41 targets), slightly higher

than RosettaDock (34 targets). ReplicaDock [53], which uses a set

of temperature replicas, overcomes the kinetic barriers and

improves sampling in the low-resolution docking stage. Further

work can thus focus on combining the principles of ReplicaDock

with pHDock to improve the model diversity in the low-resolution

centroid phase. Also, availability of even sparse biochemical

information [54] can be used as an alternative to constrain the

conformational search space and circumvent the sampling

concerns in the centroid phase to improve docking accuracy.

Fig. 7. pH-dependent binding effects in Fc–FcRn complex. (A) Interface score of the top pHDock prediction for the Fc–FcRn complex as a
function of the docking pH. (B) Interface score vs Irmsd plots generated using pHDock at pH 6.25 and pH 7.50. (C) Top pHDock models at pH 6.25
(cyan) and pH 7.50 (green) showing the three critical ionic interactions responsible for the large pH-dependent binding affinity change. Note the
change in the protonation states of His-435 and His-436.
doi:10.1371/journal.pcbi.1004018.g007

Protein-Protein Docking with Dynamic Residue Protonation States

PLOS Computational Biology | www.ploscompbiol.org 8 December 2014 | Volume 10 | Issue 12 | e1004018



Although the top-ranked pHDock models show significant

advancements in recovering native contacts, the hydrogen

bonding performance is mixed. The geometry of interface

hydrogen bonds is less optimal than intra-chain hydrogen bonds,

but they are nevertheless critical for protein-protein binding [37].

The top pHDock models exhibit more hydrogen bonds than

RosettaDock on average. The increase is especially evident in the

case of ionizable residues where the pHDock hydrogen bond

distribution matches the native distribution. However, many of

the pHDock interface hydrogen bonds are non-native, i.e., they

are not observed in the bound crystal complexes. In fact, in two-

thirds of the targets, pHDock fails to recover more than one-fifth

of the native interface hydrogen bonds, a shocking number

revealing the limitations still present in the hydrogen bonding

model.

There are a few possible explanations for the poor hydrogen

bond performance. First, pHDock uses an implicit solvation model

and thus fails to capture the water-mediated interface hydrogen

bonds. Although the water-mediated hydrogen bonds are excluded

from native hydrogen bond calculations, ignoring the water

molecules during docking can result in the compensation of

unsatisfied hydrogen bond donors/acceptors through formation of

non-native hydrogen bonds. Second, pHDock ignores protein

backbone flexibility and uses the unbound coordinates of the

protein partners for docking, hence any resulting backbone

inaccuracies can shift the hydrogen bond network. Accounting

for backbone flexibility using a conformational ensemble for a

small subset of complexes improves hydrogen bond recovery

compared to pHDock, but the top-ranked models still recover just

a quarter of the native interface hydrogen bonds. Further studies

to improve hydrogen bond recovery can focus on calibrating the

score function using the bound coordinates of the complex to

minimize the errors introduced due to the rigid backbone

assumption and the inaccuracies in the receptor-ligand orientation

in the docking models. However, work will be needed to reconcile

the changes with the docking score function that is tuned for

recovering native-like structures.

We tested pHDock’s ability to capture the large pH-

dependent binding affinity change in the Fc–FcRn complex.

Since the binding changes are a result of protonation state shifts

in the interface histidine residues, any docking algorithm

ignoring environment pH will fail to capture the effect.

pHDock predicts a 40-fold drop in the binding affinity due to

the increase in the environment pH, and the top-scoring model

captures the resulting disrupted salt bridges at the Fc–FcRn

complex interface. The accuracy of the affinity prediction

suggests that pHDock can be expanded to power computational

protein design studies such as those that recently began to

exploit the pH-dependence for regulating protein binding

activity [55]. Previously during the CAPRI rounds 20–27

[56], we used pHDock for the blind prediction of the g-type

lysozyme–PliG inhibitor complex [50]. Lysozyme operates in a

low pH environment [57] and hence provided an opportunity

to test pHDock’s performance. Docking the complex at pH 6.2

(crystallization pH of the unbound lysozyme) generated a

medium-quality prediction just 2.0 Å from the interface of the

native complex. The encouraging performance of pHDock

proves that it can be effective in capturing environment-pH

effects on both docking and binding.

Recent efforts have begun to capture structural details of protein

interactions in complete cellular environments [58–60]. There is

tremendous scope for computational docking algorithms to power

such studies, but the methods must be versatile and include the

effects of environmental conditions. Since intracellular pH is

strictly regulated across multiple eukaryotic cellular compartments

and is critical for protein interactions [61], accounting for pH

effects can boost prediction accuracy. The results in this paper

contribute to the community effort to simulate protein-protein

interactions in the complete cell with all environmental factors.

Methods

Benchmark dataset
The Protein-Protein Docking Benchmark 4.0 by Hwang et al.

[29] is a set of 176 non-redundant protein-protein complexes with

both bound and corresponding unbound crystal coordinates from

the Protein Data Bank [62]. The dataset comprises 121 ‘rigid-

body’, 30 ‘medium’, and 25 ‘difficult’ targets based on the

interface backbone conformation variation between bound and

unbound coordinates [63].

We curated the benchmark dataset in multiple stages. First,

we removed water and all non-peptide molecules containing

heteroatoms from the complex structures. Since Rosetta pH

does not currently predict protonation states of non-peptide

molecules, we excluded complexes with such molecules at the

interface. We also eliminated structures in which Rosetta was

unable to resolve the steric clashes in the starting atomic

coordinates due to the conformational changes between bound

and unbound complexes, leaving 161 test complexes for the

study. Second, we truncated both the unbound and bound

structures to the same amino-acid sequences for Rosetta scoring

consistency. Third, we collected the crystallization pH values in

the PDB coordinate file for each bound complex to determine

the docking environment pH. For structures missing pH

information in the PDB files, we used the pH value from the

corresponding original research article if available. For the

remaining structures, we assumed a physiological pH of 7.0

(Table S2).

Rosetta-pH
Rosetta-pH [25] is a Metropolis Monte Carlo algorithm in

which the protonation state of the lowest energy conformation is

evaluated using the Rosetta-pH score function at intervals of pH to

estimate pKa values. The Rosetta-pH score function is based on

the standard Rosetta score function with additional terms

including:

i) Protonation potential based on the probability of protonation

of individual amino acid residues at a given pH. The

probability of protonation (fprot) of an amino acid is

fprot~
1

10pH{IpKaz1
,

and the protonation potential (EpH) is

EpH~
{kBT ln fprot if protonated

{kBT ln (1{fprot) if deprotonated,

�

where pH is defined by the environment, and IpKa is the

unperturbed intrinsic pKa value of the model compound in

solution (4.0 for Asp, 4.4 for Glu, 6.3 for His, 10.0 for Tyr and

10.4 for Lys). kBT is assigned a value of 0.59 kcal/mol,

corresponding to T = 298K. Cys protonation state changes

(intrinsic pKa 8.5) are ignored due to the complications of

coupling between pKa and redox equilibrium [64].
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ii) Coulomb electrostatic potential with a distance-dependent

dielectric (e = 10r) for gradual shielding at increasing

interatomic distances [65], and

iii) Recalibrated solvation reference energies (DGref
i ) for the

non-standard protonation variants in the Lazaridis–Karplus

implicit model for solvation [66] (See [25] for details).

pHDock development
Rosetta pHDock uses the object-oriented design of the Rosetta

biomolecular modeling suite [26] to implement the environment

pH effects in the RosettaDock protocol. The pHDock develop-

ment workflow can be broadly classified into three stages:

i) In the first stage, we incorporated explicit protonation state

sampling from Rosetta-pH [25] into the RosettaDock

algorithm. RosettaDock accounts for residue side chain

flexibility in the prepacking step and the later high-resolution

stage with full-atom side chains. The sampling of the side-

chain x-angles is discrete based on a backbone-dependent

rotamer library [31]. Rosetta pHDock augments the sampling

by allowing variable residue ionization states to be simulta-

neously sampled during every side-chain packing step and

picking the most favorable residue protonation state based on

the residue’s local interactions and the solution pH. For

neutral His, both possible tautomers (with proton on either

Nd1 or Ne2 atoms) are sampled. The conformational

degeneracy in the protonated variants of Asp and Glu (with

H atoms on either of the terminal Od and Oe atoms,

respectively) is also explicitly incorporated by accommodating

both possible protonated versions for the residues during

sampling.

ii) In the second stage, we generated a dataset of structures and

evaluated the contributions of the individual score terms

(including e_pH) to the total interface score. We first

generated 1000 models (for each complex) using the standard

RosettaDock local docking routine [28] on a subset of 60

randomly-selected bound complexes (,1/3 of the total

docking benchmark set). We then repacked each model

(sampling both side chains and protonation states) at the

crystal pH of the bound complex and calculated the interface

contribution of each score term (Ei) as

Ei~E
complex
i {

X
j~partners

E
j,res int\ionð Þ
i

where E
complex
i is the contribution of the score term i in the

repacked complex, and E
j,res int\ionð Þ
i is the score term

contribution in each separate binding partner j after

repacking the ionizable interface residues at the crystal pH

of the bound complex. Repacking the ionizable residues is

required for accurate score term estimation, as separation of

the binding partners exposes the previously-buried interface

residues to the solvent affecting their preferential protonation

state.

iii) In the third stage, we parameterized the pHDock score

function. Reweighting is mandatory since the original

RosettaDock score function had a minimal weight on

electrostatics, and the new electrostatic weight and pH

reference term must be rebalanced against the hydrogen

bonding and solvation contributions. Similar to prior

parameterization of the RosettaDock score function [27],

we sought to maximize the free energy gap between ‘near-

native’ and ‘non-native’ models. Models in the top 5% based

on CAPRI rating [33] (high, medium and acceptable-quality

in that order) with repulsive van der Waals scores lower

than the 80th percentile are classified as near-native

models. Models with the same CAPRI rating are ordered

based on the fnat values (higher fnat is better). We classified

the remaining models as non-native models. We then

derived the score term weights using a generalized linear

regression to maximize the free energy gap between the

near-native and non-native model clusters. The free energy

gap (DE) is

DE~
X

targets

X
score

wiDEi

terms

where wi is the weight for score term Ei and DEi~

Enon-native
i {Enear-native

i . The score terms include an attractive

van der Waals score (Eatr), a repulsive van der Waals score

(Erep), an implicit solvation score (Esol) [66], a hydrogen

bonding score (Ehb) [67], rotamer probability term (Edun)

[31], a statistical residue pair term for ion-ion interactions

(Epair) [68], a Coulomb electrostatic term (Eelec), and a term

for the pH effects (EpH) [25].

Table S1 compares the optimized pHDock weights to the

RosettaDock weights. The new pHDock weights for the dominant

score terms Eatr, Esol, and Ehb show small deviations compared to

RosettaDock (0.377, 0.225, and 0.249 versus 0.338, 0.242, and

0.245). Besides the new addition of pH-sensitive score term EpH

(weight 0.21), the major changes in the score function are in the

score term weights for Epair, Eelec, Edun, and Erep. The Epair term is

completely absent and is balanced by the increased Eelec weight

(0.319 compared to 0.026 in RosettaDock). While the Edun weight

also increases (0.036 to 0.080), the Erep weight drastically drops

from 0.044 to 0.005 demonstrating that the repulsive van der

Waals score does not aid in docking model discrimination. The

exceptionally small Erep weight however creates two issues. First,

the algorithm produces structures with steric clashes during the

rigid-body minimization step in the docking high-resolution stage

(Fig. 1). RosettaDock [27] addresses this issue by increasing the

Erep weight during minimization using a multiplier. We followed

the same strategy and raised the Erep weight to match the

RosettaDock weight during minimization. Second, some struc-

tures with unfavorable sterics are ranked higher during the final

model discrimination. To address this, we eliminated the worst 5%

percent of the pHDock structures sorted by their Erep scores. For a

balanced comparison, we also omitted the worst 5% of the

RosettaDock structures sorted by their interface scores.

Docking starting conformation generation
In local docking, the input complex consists of unbound

partners (orientation determined by superimposing on the

coordinates of the bound complex) and the starting positions are

generated by randomly perturbing the ligand relative to the

receptor by up to 3 Å translation and 8u rotation around the axis

joining the centers of the two partners. Both pHDock and

RosettaDock use local docking to generate a diverse set of models

sampling both near-native (Irmsd ,4 Å) and non-native (Irmsd.

4 Å) conformations around the binding site.

Docking metrics
The CAPRI structural quality rating [33] classifies docking

predictions as incorrect, acceptable-, medium-, or high-quality

based on a combination of the metrics Lrmsd, Irmsd, and fnat.
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L_rmsd is defined as the root-mean-square deviation (RMSD) of

the ligand Ca atoms after superposition of the receptor chains of

the predicted and the native bound complexes. Irmsd is the Ca-

atom RMSD after superposition of the interface residues

(residues ,4.0 Å from the binding partner) with coordinates

from the bound complex. fnat is the fraction of the residue-

residue contacts (,5.0 Å all-atom distance) in the native bound

complex that are recovered in the predicted complex. CAPRI

ratings depend on multiple criteria, but models are considered

to be at least acceptable quality if they are within 4 Å from the

native interface and recover at least 30% of the native contacts

(fnat) [33].

Docking funnel metrics
A ‘docking funnel’ derives its name from the funnel-like

appearance of the target score vs RMSD plots where the near-

native models have better scores than non-native models. It is

often used as a measure to determine the success of a docking

simulation. We used two different metrics to quantify docking

funnels.

i) N5: As defined by Chaudhury et al. [28], N5 is the number of

models with an Irmsd of at most 4.0 Å among the five top-

scoring structures based on interface score. A docking result is

considered a success if N5$3. We performed bootstrap case

resampling (1000 models per target with replacement) to

compare correlation between the mean m(N5) and calculated

N5, and to quantify the inherent noise within set of models using

the standard deviation s(N5) (S7 Figure).

ii) Discrimination score (D): Applying the formulation by

Conway et al. [34] to docking, we first normalize the model

interface scores (Î) using the 5th and 95th percentile scores as

the reference by assigning them values of 0 and 1,

respectively. The models are then divided into clusters

based on Irmsd with cut-offs from = {1.0, 1.5, 2.0, 2.5,

3.0, 4.0, 6.0} in Ångstroms. Discrimination score (D) is

defined as the normalized interface score difference of the

lowest-energy model below and above each cut-off rM ,

averaged over the number of cut-offs (Nr):

D~
1

Nr

X
r[R

min
i]RMS ið Þƒr

ÎIi{ min
i]RMS ið Þwr

ÎIi

A docking result is considered a success if D#0. We performed

bootstrap case resampling (1000 models per target with replace-

ment) to quantify the inherent noise within the set of models using

the standard deviation s(D) (S2 Figure).

Algorithm availability
pHDock is part of the Rosetta biomolecular modeling suite

(www.rosettacommons.org) which is freely available for academic

and non-profit use. The Supporting Information includes the

complete list of structures from the docking benchmark dataset

with the corresponding pH values and the command-line syntax

for using pHDock method in Rosetta. Component methods and

objects are also available in the PyRosetta libraries (www.

pyrosetta.org) [69].

Supporting Information

S1 Figure Distribution of ionizable residues at docking
interfaces. Frequency histogram of the number of dataset

complexes with various fractions of ionizable interface residues

(Asp, Glu, His, Tyr, Lys).

(TIF)

S2 Figure Discrimination score (D) distributions for
RosettaDock and pHDock algorithms. Mean D (m(D))

values obtained from bootstrap case resampling of the docking

models (1000 models per target with replacement) for pHDock

(orange) and RosettaDock (grey). Standard deviations (s(D)) are

represented as error margins. The average m(D) value for pHDock

(20.05) is lower than RosettaDock (20.02) over the complete

dataset. The average s(D) values for pHDock (0.07) and

RosettaDock (0.07) are similar, approximately 4% of the observed

m(D) value range. The distribution curves are generated after

independent sorting of the pHDock and RosettaDock targets

based on increasing D values.

(TIF)

S3 Figure pHDock models containing nonstandard
residue protonation states. Number of near-native (Irmsd

,4 Å) (black) and non-native (Irmsd.4 Å) (grey) pHDock models

containing nonstandard residue protonation states (protonated

Asp, Glu, His; deprotonated Tyr, Lys) for each target complex in

the curated docking benchmark dataset. For almost all pHDock

target complexes (160/161), at least one non-native model exhibits

a nonstandard protonation state, while for approximately 4/5 of

the complexes (127/161), at least one near-native model has

nonstandard residue protonation states. The complexes are sorted

based on the crystallization pH.

(TIF)

S4 Figure Nonstandard residue protonation states in
pHDock models. (A) Number of ionizable residues exhibiting

nonstandard protonation states in pHDock models for each target

complex. The number of recovered nonstandard residue proton-

ation states (compared to the protonation state in the native bound

complex) in (B) near-native and (C) non-native pHDock models

are also shown. The complexes are sorted based on the

crystallization pH. A majority of the nonstandard residue

protonation states are observed in complexes with docking pH

within one pH unit of the residue intrinsic pKa values (Asp 50%,

Glu 78%, His 59%, Tyr 53%, Lys 70%). Only a small fraction of

all the pHDock-generated nonstandard protonation states (Asp

17%, Glu 30%, His 70%, Tyr 34%, Lys 66%) are recovered

nonstandard residue protonation states that are also observed in

the native bound complex.

(TIF)

S5 Figure Summary of pHDock performance highlight-
ing cases with nonstandard protonation states. Correla-

tion plot comparing discrimination scores of pHDock and

RosettaDock docking predictions for each target in the complete

benchmark dataset. This plot is the same as Fig. 3 in main

manuscript. However, here, grey, orange and red points

represent complexes where top-ranked pHDock models contain

no nonstandard protonation states, recovered nonstandard

protonation states found in the native bound complex, and

nonstandard protonation states not observed in the bound

complex, respectively. Complexes docked at acidic pH (pH#

7.0) and basic pH (pH.7.0) are represented as circles and

squares, respectively. The discrimination score cutoffs for a

successful prediction (D,0) are marked using broken lines.

Corner numbers indicate the total predictions in each plot section

(edges defined by the broken lines and the solid line at 45u).
Overall, pHDock outperforms RosettaDock in 67% (20/30) of

the cases where the top-ranked pHDock model recovers a
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nonstandard protonation state observed in the native bound

complex. pHDock also performs better than RosettaDock in 64%

(7/11) of the cases where the top-ranked pHDock produces a

nonstandard protonation state different from the one observed in

the native bound complex illustrating the importance of dynamic

protonation states.

(TIF)

S6 Figure Quality of models sampled during docking.
Kernel density estimate curves of the number of high-, medium-,

and acceptable-quality models sampled by pHDock and Rosetta-

Dock during a docking run generating 1000 models. Numbers in

the parentheses in the legends are the average number of the

various quality models sampled by the docking algorithms.

(TIF)

S7 Figure N5 distributions for RosettaDock and
pHDock algorithms. Mean N5 (m(N5)) values obtained from

bootstrap case resampling of the docking models (1000 models per

target with replacement) for pHDock (orange) and RosettaDock

(grey). Standard deviations (s(N5)) are represented as error

margins. The average m(N5) values for pHDock (2.60) and

RosettaDock (2.55) are similar over the complete dataset. The

average s(N5) values are high for both pHDock (0.65) and

RosettaDock (0.65), approximately 13% of the observed m(N5)

range, indicating significant inherent noise using the N5 metric for

the set of models. The distribution curves are generated after

independent sorting of the pHDock and RosettaDock targets

based on decreasing N5 values.

(TIF)

S8 Figure Docking plots for pHDock and RosettaDock.
Grey, orange, red, and blue points represent incorrect, acceptable-

, medium-, and high-quality predictions, respectively. Discrimina-

tion scores are shown in the bottom right corner of the plots.

(PDF)

S9 Figure Docking plots for pHDock and RosettaDock
highlighting models with nonstandard residue proton-
ation states. Grey, orange and red points represent models

containing no nonstandard protonation states, recovered nonstan-

dard protonation states found in the bound complex, and

nonstandard protonation states not observed in the bound

complex, respectively. Discrimination scores are shown in the

bottom right corner of the plots.

(PDF)

S10 Figure Docking plots comparing ensemble pHDock
to pHDock and RosettaDock. Grey, orange, and red points

represent incorrect, acceptable-, and medium- quality predictions,

respectively. Discrimination scores are shown in the bottom right

corner of the plots.

(PDF)

S11 Figure Docking plots comparing RosettaDock,
pHDock at crystallization pH, pHDock at pH 7.0 and
FixpHDock. Grey, orange and red points represent models

containing no nonstandard residue protonation states, recovered

nonstandard residue protonation states found in the bound

complex, and nonstandard residue protonation states not observed

in the bound complex, respectively. In FixpHDock, the proton-

ation states found in the starting unbound complex are held

constant during docking. Discrimination scores are shown in the

bottom right corner of the plots.

(PDF)

S1 Table Score functions used for the study. Weights for

the score terms used during residue side-chain and protonation

state sampling, receptor-ligand minimization, and for ranking final

docking models.

(PDF)

S2 Table Docking performance summary. PDB IDs and

pH values of the benchmark dataset used for the study.

Discrimination scores, N5 values, Irmsd and fnat of the lowest-

Irmsd and top-ranked models generated using pHDock and

RosettaDock are also listed.

(PDF)

S3 Table Ensemble pHDock performance summary.
PDB IDs and pH values of the benchmark subset used for

ensemble pHDock. Discrimination scores, Irmsd, fnat, and number

of recovered native interface hydrogen bonds in the top-ranked

models generated using ensemble pHDock are compared to

pHDock and RosettaDock.

(PDF)

S1 Text Command lines for pHDock, RosettaDock and
ensemble pHDock.
(PDF)
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11. Polgár T, Magyar C, Simon I, Keserü GM (2007) Impact of Ligand Protonation
on Virtual Screening against b-Secretase (BACE1). J Chem Inf Model 47: 2366–

2373. doi: 10.1021/ci700223p.

12. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization

of pKa values for protein–ligand complexes. Proteins 73: 765–783.

13. Kalliokoski T, Salo HS, Lahtela-Kakkonen M, Poso A (2009) The Effect of
Ligand-Based Tautomer and Protomer Prediction on Structure-Based

Virtual Screening. J Chem Inf Model 49: 2742–2748. doi: 10.1021/

ci900364w.

Protein-Protein Docking with Dynamic Residue Protonation States

PLOS Computational Biology | www.ploscompbiol.org 12 December 2014 | Volume 10 | Issue 12 | e1004018



14. Ten Brink T, Exner TE (2009) Influence of Protonation, Tautomeric, and

Stereoisomeric States on Protein2Ligand Docking Results. J Chem Inf Model
49: 1535–1546. doi: 10.1021/ci800420z.

15. Park M-S, Gao C, Stern HA (2011) Estimating binding affinities by docking/

scoring methods using variable protonation states. Proteins 79: 304–314. doi:
10.1002/prot.22883.

16. Spassov VZ, Yan L (2013) pH-selective mutagenesis of protein–protein
interfaces: In silico design of therapeutic antibodies with prolonged half-life.

Proteins 81: 704–714. doi: 10.1002/prot.24230.

17. De Vries SJ, van Dijk M, Bonvin AMJJ (2010) The HADDOCK web server for

data-driven biomolecular docking. Nat Protocols 5: 883–897. doi: 10.1038/

nprot.2010.32.

18. Vriend G (1990) WHAT IF: A molecular modeling and drug design program.

J Mol Graph 8: 52–56. doi: 10.1016/0263-7855(90)80070-V.

19. Georgescu RE, Alexov EG, Gunner MR (2002) Combining Conformational

Flexibility and Continuum Electrostatics for Calculating pKas in Proteins.
Biophys J 83: 1731–1748.

20. Nielsen JE, Gunner MR, Garcı́a-Moreno E B (2011) The pKa Cooperative: A

collaborative effort to advance structure-based calculations of pKa values and
electrostatic effects in proteins. Proteins 79: 3249–3259. doi: 10.1002/prot.

23194.

21. Dong F, Olsen B, Baker NA (2008) Computational Methods for Biomolecular

Electrostatics. Methods Cell Biol 84: 843–870. doi: 10.1016/S0091-

679X(07)84026-X.
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resolution. J Mol Biol 225: 107–123. doi: 10.1016/0022-2836(92)91029-O.
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58. Mosca R, Céol A, Aloy P (2013) Interactome3D: adding structural details to
protein networks. Nat Meth 10: 47–53. doi: 10.1038/nmeth.2289.

59. Vakser IA (2013) Low-resolution structural modeling of protein interactome.

Curr Opin Struct Biol 23: 198–205. doi: 10.1016/j.sbi.2012.12.003.

60. Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, et al. (2012) Structure-based

prediction of protein-protein interactions on a genome-wide scale. Nature 490:

556–560. doi: 10.1038/nature11503.

61. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular

pH. Nat Rev Mol Cell Biol 11: 50–61. doi: 10.1038/nrm2820.

62. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The
Protein Data Bank. Nucleic Acids Res 28: 235–242. doi: 10.1093/nar/28.1.235.

63. Mintseris J, Wiehe K, Pierce B, Anderson R, Chen R, et al. (2005) Protein–

protein docking benchmark 2.0: An update. Proteins 60: 214–216. doi: 10.1002/

prot.20560.

64. Moutevelis E, Warwicker J (2004) Prediction of pKa and redox properties in the

thioredoxin superfamily. Protein Science 13: 2744–2752. doi: 10.1110/

ps.04804504.

65. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, et al. (1983)

CHARMM: A program for macromolecular energy, minimization, and

dynamics calculations. J Comput Chem 4: 187–217. doi: 10.1002/jcc.
540040211.

66. Lazaridis T, Karplus M (1999) Effective energy function for proteins in solution.

Proteins 35: 133–152.

67. Kortemme T, Morozov AV, Baker D (2003) An Orientation-dependent

Hydrogen Bonding Potential Improves Prediction of Specificity and Structure

for Proteins and Protein-Protein Complexes. J Mol Biol 326: 1239–1259. doi:
10.1016/S0022-2836(03)00021-4.

Protein-Protein Docking with Dynamic Residue Protonation States

PLOS Computational Biology | www.ploscompbiol.org 13 December 2014 | Volume 10 | Issue 12 | e1004018



68. Simons KT, Ruczinski I, Kooperberg C, Fox BA, Bystroff C, et al. (1999)

Improved recognition of native-like protein structures using a combination of
sequence-dependent and sequence-independent features of proteins. Proteins 34:

82–95.

69. Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a script-based interface for

implementing molecular modeling algorithms using Rosetta. Bioinformatics 26:

689–691. doi: 10.1093/bioinformatics/btq007.

Protein-Protein Docking with Dynamic Residue Protonation States

PLOS Computational Biology | www.ploscompbiol.org 14 December 2014 | Volume 10 | Issue 12 | e1004018


