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Abstract

Polygenic scores quantify the genetic risk associated with a given phenotype and are widely

used to predict the risk of complex diseases. There has been recent interest in developing

methods to construct polygenic risk scores using summary statistic data. We propose a

method to construct polygenic risk scores via penalized regression using summary statistic

data and publicly available reference data. Our method bears similarity to existing method

LassoSum, extending their framework to the Truncated Lasso Penalty (TLP) and the elastic

net. We show via simulation and real data application that the TLP improves predictive accu-

racy as compared to the LASSO while imposing additional sparsity where appropriate. To

facilitate model selection in the absence of validation data, we propose methods for estimat-

ing model fitting criteria AIC and BIC. These methods approximate the AIC and BIC in the

case where we have a polygenic risk score estimated on summary statistic data and no vali-

dation data. Additionally, we propose the so-called quasi-correlation metric, which quantifies

the predictive accuracy of a polygenic risk score applied to out-of-sample data for which we

have only summary statistic information. In total, these methods facilitate estimation and

model selection of polygenic risk scores on summary statistic data, and the application of

these polygenic risk scores to out-of-sample data for which we have only summary statistic

information. We demonstrate the utility of these methods by applying them to GWA studies

of lipids, height, and lung cancer.

Author summary

Polygenic risk scores use genetic data to predict the genetic risk associated with a given

phenotype. Often, due to privacy concerns, genetic data is provided in a limited format

called summary statistics. This means that we have limited data with which to estimate

polygenic risk scores and cannot apply many standard modelling techniques. We provide

novel methods for the estimation of polygenic risk scores via penalized regression using

summary statistics, and make software available to do this estimation. We also provide

novel methods for model selection and the assessment of model performance in the sum-

mary statistic framework. In total, this enables us to use summary statistic data to estimate
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polygenic risk scores, select a polygenic risk score from among a set of candidate models,

and assess the performance of these models. This allows us to leverage summary statistic

data to better understand genetic risk. We establish the usefulness of our novel methods

via simulation, and apply them to genetic analyses of height, blood lipid levels, and lung

cancer.

This is a PLOS Computational BiologyMethods paper.

Introduction

The polygenic model of inheritance predicts that the genetic basis of complex phenotypes con-

sists of small effects from thousands of genetic variants. Genome-wide association studies

(GWAS) have affirmed this model, identifying many genetic variants that are associated with

complex traits [1]. However, marginally associated markers explain only a limited proportion

of the heritability of many traits [2]. Polygenic risk scores, defined as a linear combination of

individual SNP effects, have been used to quantify the genetic component of some complex

phenotypes. Polygenic risk scores estimated from GWAS have been useful for predicting some

clinical phenotypes [3–5]. Polygenic risk scores have also been used to infer the genetic archi-

tecture of complex traits [6, 7]. The simple polygenic risk score is obtained by summing mar-

ginal genetic effects across all SNPs. Extensions on this method include thresholding [8], in

which SNPs with marginal p-values below a certain cutoff point are excluded, and pruning

and thresholding, which combines thresholding with the exclusion of highly correlated SNPs

via pruning [9]. These methods use only marginal effect size estimates, and do not attempt to

construct a joint model that estimates effect sizes under linkage disequilibrium. Thus, it can be

said that they do not attempt to model the true structure of the genetic effects. We propose a

method for constructing polygenic risk scores that integrates marginal effect size estimates

with publicly available reference panel data, which is used to estimate linkage disequilibrium.

By estimating effect sizes under linkage disequilibrium, we more closely model the true struc-

ture of the genetic effects. This allows us to capture more of the genetic heritability, as shown

via simulation and application to real data.

Popular methods LDPred [10], LassoSum [11], and JAMPred [12] estimate joint models

that account for linkage disequilibrium. Recently published methods in this area include

PRS-CS [13] and SBayesR [14]. Other methods, such as EBPRS [15], leverage the available

GWAS data to estimate a distribution of SNP effect sizes that is leveraged to adjust the mar-

ginal SNP effects. These methods do not necessitate individual level data. They use publicly

available reference data and published summary statistics from GWAS. This is important

because often the published results from a GWAS do not include individual level information.

Our software implements new penalized regression methods for estimating polygenic risk

scores that model linkage disequilibrium. Given a reference panel and marginal SNP effects,

the software constructs a joint penalized regression model. We extend upon the work of Shin

et al [11], who propose using the LASSO penalty, to other penalties: namely the truncated

LASSO penalty [16] and the elastic net penalty [17]. These penalties have some theoretical ben-

efits as compared to the LASSO penalty; the TLP may induce more sparsity when the truth is

sparse and produce less biased estimates, while the elastic net may handle correlated covariates

more stably. The TLP also has application for valid inference that may be useful [18]. We call

these methods TlpSum and ElastSum, respectively.
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Additionally, we describe some criteria that can be used for model selection in the case

where we do not have access to validation data. In an application where we have access to vali-

dation data, we may select the model that maximizes the correlation between the estimated

polygenic risk score and the validation phenotype. In the case where we don’t have access to

validation data, we may still want to perform model selection on a set of candidate polygenic

risk scores. Our methodology approximates the model fitting criteria AIC and BIC in the situ-

ation where we do not have individual level data. These methods, so called ‘pseudo AIC’ and

‘pseudo BIC’, approximate the AIC and BIC criteria for an estimated polygenic risk score

given GWAS summary statistics and a reference panel. These methods extend upon the exist-

ing model selection criterion pseudovalidation [11]. Pseudovalidation controls model degrees

of freedom by weighting SNPs by their local false discovery rate. This method is somewhat ad

hoc, and local FDR estimation may not perform reliably when we don’t have a dense set of

summary statistics available. This is often the case with published summary statistics, which

may only include SNPs above some marginal significance threshold. Pseudo AIC and pseudo

BIC leverage the well established theory of AIC and BIC to impose a penalty on degrees of free-

dom. This leads the pseudo AIC and BIC to select sparser models that more accurately repre-

sent the truth, as demonstrated via simulation study. We also show that pseudo BIC and

pseudo AIC select models with better predictive performance on out-of-sample data in certain

simulation settings and in application to a large GWAS of blood lipid levels.

Lastly, we propose a metric for assessing the predictive accuracy of a polygenic risk score in

the case where we have only summary statistic information on our out-of-sample data. We call

this metric ‘quasi-correlation’. Given an estimated polygenic risk score and a reference panel,

this method allows us to estimate the predictive r2 of the polygenic risk score as applied to an

out-of-sample dataset comprised of summary statistics. Thus, we can determine which model

fits best on out-of-sample data given a candidate set of polygenic risk scores. This enables us to

select a validated polygenic risk score ready for use on other data. These methods allow us to

use published summary statistic data of large sample size to assess the predictive accuracy

of polygenic risk scores, broadening the scope of application. We demonstrate the utility

of these methods by applying them to large GWAS summary statistic data on lipids. Applica-

tions to lung cancer and height are located in Section F in S1 Text and Section G in S1 Text,

respectively.

The central aim of this paper is to assess the predictive performance of the methods for

polygenic risk score estimation and corresponding model selection. We demonstrate that

TlpSum and ElastSum often perform similarly to LassoSum as measured by predictive accu-

racy, but outperform LassoSum when applied to data with substantial allelic heterogeneity. We

show that our proposed model selection methods, pseudo AIC and pseudo BIC, select models

with better predictive performance on out-of-sample data than pseudovalidation in certain

applications. A secondary but relevant concern is the characterization of the fitted models in

terms of sparsity. Given a set of models with similar predictive performance on out-of-sample

data, it is often desirable to select the most parsimonious model, which is the so-called princi-

ple of parsimony. A more parsimonious model that maintains good predictive performance

better facilitates interpretation and certain applications of polygenic risk scoring. One useful

example is the application of polygenic risk scoring to two-stage least squares regression for

causal inference [19]. In this type of applications, overparameterized PRS models may contain

substantial pleiotropic effects, making causal inference difficult with violated modeling

assumptions. In this paper, we demonstrate via simulation that TlpSum, pseudo AIC, and

pseudo BIC impose additional sparsity on their selected models. We discuss the results with

respect to the primary aim of prediction, and characterize the selected models to possibly

explain the performance difference among the various methods.
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An implementation of the methods described in this paper is provided in our R package

‘penRegSum’, located at https://github.com/jpattee/penRegSum. This package directly inter-

faces with PLINK for ease of computation [20, 21]. We note that the authors of the LassoSum

package [11] provide extensive functionality for the estimation and selection of polygenic

scores on summary data. Our package can be considered an extension on their work that is

best used in conjunction with their package. TlpSum demonstrates reasonable computational

cost as compared to other methods for polygenic risk score estimation on summary statistics,

as described in Section H in S1 Text.

Methods

Penalized regression with summary statistics

Consider that we have a linear regression model

y ¼ Xbþ � ð1Þ

with X denoting an n × p design matrix, y denoting a vector of observed outcomes, and ��

MVN(0, σ2I) for some σ2. Ordinary least squares estimates are obtained by minimizing the

sum of squared errors

f ðbÞ ¼ SSE ¼ ðy � XβÞTðy � XβÞ ð2Þ

In the case where p is large and β may be sparse, penalized regression models can be useful.

Penalized regression models introduce a penalty term to the objective function. This penalty

term is typically a function of β, and is denoted J(β). Additionally, consider now that y is a

standardized response vector, and X is a standardized design matrix. This yields the following

objective function:

f ðβÞ ¼ ðy � XβÞTðy � XβÞ þ JðβÞ ¼ yTy þ βTXTXβ � 2βTXTy þ JðβÞ:

Shin et al [11] note that, given some approximations, penalized regression can be used to esti-

mate polygenic risk scores in the case where only summary statistics are available. Consider

that we have two separate datasets: one of summary statistics, and one of reference data. We

use the summary statistic data to estimate univariate SNP effects, and the reference data to esti-

mate the correlation matrix of the SNPs. Let us denote the standardized phenotype vector

from the summary statistic data divided by
ffiffiffiffi
N
p

(the sample size of the summary statistic data)

as ys. Let us denote the standardized summary statistic design matrix as Xs. Let us denote the

standardized SNP reference data as Xr. We can now define the quantity

r ¼ XT
s ys;

where r represents the SNP-wise correlation between the SNPs and the phenotype in the sum-

mary statistic data. We also define R, which is the correlation matrix as estimated from the ref-

erence data as

R ¼ XT
r Xr:

Given these approximations, we can now define an objective function for the estimation of

polygenic risk scores using summary statistic data. That objective function is as follows:

f ðβÞ ¼ yTy þ βTRβ � 2βTrþ JðβÞ:

Shin et al. note that this is no longer strictly a penalized regression problem, due to the use

of two different design matrices Xr and Xs. This may lead to unstable and non-unique
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solutions. They propose regularizing R as

Rs ¼ ð1 � sÞX
T
r Xr þ sI ð3Þ

for some 0< s< 1. This regularization ensures that we have an objective function in the form

of a LASSO problem, as proven in previous literature [11]. Substituting Rs for R yields the fol-

lowing tractable objective function:

f ðβÞ ¼ yTy þ βTRsβ � 2βTrþ JðβÞ: ð4Þ

We now turn our attention to the penalty term J(β). Shin et al propose using the LASSO pen-

alty, which is a popular penalized regression method for high dimensional problems. The

LASSO induces sparsity in β, performing parameter selection and estimation simultaneously.

In LASSO, the penalty term is the L1 penalty, ie J(β) = λkβk1 = λ∑i|βi|, where λ is a tuning

parameter selected via a model selection method. The LASSO tends to bias parameter esti-

mates towards zero in a uniform manner. This causes biased effect size estimates. To mitigate

bias issues, we propose the use of the Truncated Lasso Penalty, or the TLP [16]. The TLP can

be expressed as follows: J(β, τ) = λ∑i min(|βi|, τ), where λ and τ are tuning parameters deter-

mined via model selection. The TLP does not penalize effect size estimates above some thresh-

old τ, which may decrease bias. Additionally, we propose the use of the elastic net penalty [17],

namely J(β) = αλkβk1 + (1 − α)λkβk2. This method has some advantages of the LASSO while

retaining some advantages of ridge regression, such as stable estimation of highly correlated

covariates. The application of the elastic net penalty to summary statistics is called ElastSum.

We note that the use of the regularized covariance matrix approximates a sort of elastic

net already. To see that, consider the expanded expression of Eq (4):

f ðβÞ ¼ yTy þ ð1 � sÞβTRβþ sβTβ � 2βTrþ JðβÞ: ð5Þ

We note that the term s βTβ approximates the L2 penalty. Given this, we are unsure of the util-

ity of the elastic net penalty in many cases. We also note that this may affect the TLP estimates.

If s> 0, the objective function will function somewhat like an elastic net, meaning the TLP

may not induce its characteristic sparsity.

Notes on application of penalized regression

If SNPs are in high linkage disequilibrium, then it may be difficult or impossible to arrive at

stable estimates for β given the objective function (4). In this case, we advise performing LD

clumping on the data prior to estimating a penalized regression model. LD clumping should

prioritize SNPs in the target data where model performance is assessed. Even after clumping, it

is often the case that convergence is impossible (or very slow) unless a sufficiently large value

of s is chosen. The value of s chosen depends on the sparseness of the genetic signal. For phe-

notypes with a sparse genetic signal, choosing an s as small as 0 may work, and choosing s� .1

should ensure good convergence and fairly sparse effect size estimates. For phenotypes with

more dense signal, we recommend experimenting with larger values of s.
As Shin et al note [11], penalized regression generates effect size estimates that are not

appropriately scaled. Considering that penalized regression is conducted on normalized data,

we can say these estimates are scaled as correlations. If we want to use a polygenic risk score

generated via penalized regression to estimate genetic risk, we need to appropriately scale our

estimates. We have the following expression for the effect size estimates: bβunstandardizedi ¼ bβ i
sdðyÞ
sdðXiÞ

,

where Xi is column i in the reference panel Xr, y is the phenotype vector, and bβ i are the effect
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size estimates produced by the penalized regression; that is, those estimates minimizing objec-

tive function (4). Note that bβunstandardizedi is equivalent to the per-allele effect size.

Existing literature demonstrates that estimation by LD blocks improves the predictive per-

formance of penalized regression methods applied to summary statistics [11]. We also recom-

mend performing estimation by LD blocks, and do so in this paper unless otherwise specified.

Supplementary Section C in S1 Text displays some simulation results estimated without LD

blocks, and the modest loss in predictive power that ensues. We used LD blocks as defined by

the LDetect method [22].

If some SNPs in the summary statistic data are not included in the reference data, we are

not able to incorporate those SNPs into our objective function (5) as currently formulated.

Simply excluding these SNPs from our analysis may result in information loss. A straightfor-

ward approach, as described by the authors of the LassoSum paper, is to treat these SNPs as

though they are mutually independent. We take an identical approach here. We define β0 as a

subvector of β corresponding to those SNPs missing from the reference panel, and the corre-

sponding submatrix R0 of R as containing all zero entries. Thus, we can reformulate the objec-

tive function as follows:

f ðβÞ ¼ yTy þ ð1 � sÞβTRβþ sβTβ � 2βTrþ ð1 � sÞβT
0
β0 þ JðβÞ

This approach to handling SNPs missing from the reference panel has been implemented in

our R package.

We estimate penalized regression models on summary statistics via coordinate descent

[23]. The details of this algorithm are located in Section 1 in S1 Text.

Pseudo AIC / BIC

It may be the case that we do not have access to validation data for use in model selection. In

this case, it is desirable to have a model selection technique to select tuning parameters that

can be applied to summary statistic data. Shin et al propose the pseudovalidation method for

this purpose [11]. Pseudovalidation approximates the correlation between the predicted phe-

notypes and the phenotypes from the summary statistic data. One drawback of their method is

that it may tend to overfit the model, as the pseudovalidation criteria will tend to increase as

parameters are added to the model. This is somewhat controlled for by their weighting of mar-

ginal p-values by local FDR, but this isn’t necessarily a rigorous approcah. We propose a

method of estimating model fitting metrics AIC and BIC using only summary statistics and a

reference panel. We believe these methods may select less overfit and therefore sparser models.

Suppose that we have trait Y measured on N subjects. We have data on p SNPs for each sub-

ject, giving us N × p design matrix X. Say X, Y are centered at zero. We assume model (1).

Given this, we have the following likelihood function:

L ¼
YN

i¼1

pðyijxi; β; s
2Þ / s� Nexp½ðY � XβÞ0ðY � XβÞ=ð2s2Þ�

and the following log-likelihood function:

l ¼ C � N � lns �
1

2s2
ðY0Y � 2β0X0Yþ β0X0XβÞ:

C does not depend on the parameters, and so can be ignored.

Placing this problem in our summary statistic framework, we want to estimate Y0Y, X0Y

and X0X from reference data and summary statistics. Suppose we have univariate summary
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statistics bβ ¼ ðbβ1;
bβ2; . . . ; bβpÞ

0
and corresponding variances cvarðbβjÞ, which quantify the mar-

ginal associations between phenotype y and each of the p SNPs in design matrix X. We also

have reference panel Xr. Denote the variance of a given SNP j, as estimated from the reference

panel, asbs2
j . We define that there are N individuals in X and n individuals in Xr. Because of the

differing sample sizes, we want to compare quantities that have been normalized by sample

size when estimating the log-likelihood. With this in mind, we define the following approxi-

mations:

1

N
dXTX ¼ Σ ¼

1

n
XT
r Xr; ð6Þ

1

N
dY0Y ¼ ðN �bs2

j � cvarðbβ jÞ þbs
2

j �
bβ2

j Þ; ð7Þ

1

N
dX0Y ¼ diagðΣÞðbβ1;

bβ2; . . . ; bβpÞ
0
¼ ðbs2

1
bβ1;bs

2

2
bβ2; . . . ;bs2

p
bβpÞ

0
: ð8Þ

Note that diagðΣÞ ¼ ðbs2
1
; . . . ;bs2

pÞ. In practice, we advise taking some central tendency the

expression for 1

N
dY0Y across the p SNPs to obtain a more accurate approximation. We have

found the median to work well.

We briefly justify approximations (6), (7), and (8) here. Expression (6) simply describes the

approximation of the covariance matrix by a reference panel. Expression (7) can be derived as fol-

lows. Consider that, for single linear regression, bβi ¼
PN

j¼1
xjiyj

N�s2i
and cvarðbβ iÞ ¼

PN

j¼1
ðyj � xjibβ iÞ2

N2�s2i
. Thus

we have: 1

N
dY0Y ¼ N � s2i �

PN

j¼1
ðyj � xjibβ iÞ2

N2�s2i
þ s2i � bβ

2
i . Expanding the squared term and using the fact

that bβi ¼
PN

j¼1
xjiyj

N�s2i
, we have:N � s2i �

PN

j¼1
ðyj � xjibβ iÞ2

N2�s2i
¼

PN

j¼1
ðyj � xjibβ iÞ2

N ¼

PN

j¼1
y2
j

N � 2bβ2
i � s

2
i þ

bβ2
i � s

2
i .

Thus, we conclude that 1

N
dY0Y ¼

PN

j¼1
y2
i

N . Now, we examine expression (8). Given that

bβi ¼
PN

j¼1
xjiyj

N�s2i
, it is straightforward that

PN

j¼1
xjiyj

N ¼ s2i bβ i. Expression (8) follows from this. Note

that expressions (6), (7), and (8) have been derived assuming single linear regression. Given some

mild assumptions and changes in interpretation, these expressions are still valid when summary

statistics are estimated using multiple regression, i.e. in a GWAS that includes non-SNP covari-

ates. Details are in Section L in S1 Text.

To estimate the log likelihood of a linear regression model, we must estimate the sum of

squared errors (2). Additionally, we must estimate the residual variance ~s2. We estimate the

SSE with the penalized regression estimates, which we denote bβP. Note that these differ from

the marginal effect size estimates bβ. We estimate the residual variance with the ordinary least

square estimates, denoted bβOLSE.
To estimate ~s2, we use the ordinary least squares estimates

bβOLSE ¼ ðX
0XÞ� 1X0Y:

For a linear regression, we have residual variance estimated as follows:

~s2 ¼ MSE ¼
ðY � XβÞ0ðY � XβÞ

N � q
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where q is the degrees of freedom. In the case of linear regression, this is equivalent to the

number of parameters. We substitute β ¼ bβOLSE to yield

~s2 ¼
Y0Y � Y0XðX0XÞ� 1X0Y

N � q
:

The above expression is tractable given our substitutions. Because our approximations (6), (7),

and (8) have been normalized by sample size before comparison, the value we get from direct

comparison is equivalent to a so-called “average SSE”, and must be multiplied by the sample

size N. This yields the following expression:

b~s2 ¼
1

N � q
½
1

N
dY0Y � ð

1

N
dX0YÞTð

1

N
dX0XÞ� 1 1

N
dX0Y� � N: ð9Þ

We demonstrate the effectiveness of estimator b~s2 via simulation in Section E in S1 Text, and

show that it behaves well as compared to some other plausible estimators. To calculate the SSE

based on some set of estimates bβP, we substitute our approximations (6), (7) and (8) and the

penalized regression estimates into the following expanded expression for SSE:

SSE ¼ Y0Y � 2β0X0Yþ β0X0Xβ:

This yields the following expression:

dSSE ¼ ð
1

N
dY0Y � 2bβ

0

P
1

N
dX0Y þ bβ 0P

1

N
dX0XbβPÞ � N: ð10Þ

Note that, as in the estimation of ~s2, we multiply by the expression for SSE by N because all of

the terms in the expression are normalized.

Given this, we can express our log-likelihood, as estimated from the reference panel and

summary statistics, as follows:

l ¼ �
1

2b~s2

dSSE:

Consider that we have omitted constants from the above expression that do not affect the rela-

tive values of the pseudo AIC / BIC. Given the log-likelihood, we can construct the pseudo

AIC and BIC as follows, which mirrors existing literature on AIC and BIC for penalized

regression [24]:

AIC ¼ 2k � 2l;

BIC ¼ lnðNÞ � k � 2l:

Where k is the degrees of freedom of the model, and l is the log-likelihood. Since our penalized

regression models can be thought of as a form of elastic net, we use the degrees of freedom of

the ridge regression model, calculated as df ðl; sÞ ¼ tr½ðX0rXr þ lsIÞ
� 1
ðX0rXrÞ�. If this is too

intensive to calculate for data with a large number of parameters p, we can also use the

degrees of freedom for the LASSO model, which is simply the number of nonzero parameter

estimates.

Notes on the application of pseudo AIC / BIC

In the case where we have a binary phenotype, the univariate effect size estimates are typically

obtained via logistic regression. We note that the theory on pseudo AIC / BIC applies only to
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linear regression, and is intractable for logistic regression. Thus, we want to convert the uni-

variate logistic regression estimates to univariate linear regression estimates bβ.

Consider that we have some binary vector of phenotypes y and a centered design matrix X

where each column is a SNP. We start with the condition that linear and logistic regression

should give similar results; that is, for any entry xij, π = p(yi = 1|xij) is approximately equal

under linear and logistic regression. Let us denote the logistic regression estimates as ðbb0;
bb1Þ

0
,

and the linear regression estimates as ðbβ0;
bβ1Þ

0
. Thus, we have:

bβ0 þ
bβ1xij ¼

1

1þ e� ðbb0þ
bb1xijÞ

:

Given that these two expressions are equivalent, we know that the terms comprising their

respective Taylor expansions are also equivalent. Taking the first term of the Taylor expansion

of each expression and equating them, we get the get the following equivalence:

bβ0 ¼
1

1þ e� bb0

:

Taking the second term of the Taylor expansion for each expression and equating them, we

get the equivalence

bβ1xij ¼
e� bb0

ð1þ e� bb0Þ
2

bb1xij;

from which we have, straightforwardly,

bβ1 ¼
e� bb0

ð1þ e� bb0Þ
2

bb1:

Note that e� b0 ¼
pðY¼0Þ

pðY¼1Þ
, which is easily obtainable. It is simply the ratio of controls to cases in

the phenotype vector y. This method will work best when b1 is small, and thus the slope of the

estimated logistic function is shallow. This is almost always the case in GWAS applications

given the small effect sizes of individual SNPs, so this approximation should hold.

We also need to approximate the standard error of the linear regression estimates. A deriva-

tion with a general formula and some discussion is contained in Section I in S1 Text. Follow-

ing this derivation, we get the expression

cvarðbβ1Þ ¼ ð
e� bb0

ð1þ e� bb0Þ
2
Þ

2varðbb1Þ;

and thus

cSEðbβ1Þ ¼ ð
e� bb0

ð1þ e� bb0Þ
2
Þseðbb1Þ:

We assume the standard error of the logistic regression estimate SEðbb1Þ is contained in the

summary statistic information, making this calculation straightforward. An application of our

pseudo AIC/BIC methodology to binary lung cancer data is described in Section F in S1 Text.
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Another issue is the selection of the degrees of freedom q in the calculation of the OLSE-

based b~s2. In the case where p> N, we cannot include all univariate summary statistics in our

estimation of b~s2. We propose using pruning and thresholding to determine a set of indepen-

dent and moderately associated SNPs, and using this set for the calculation of b~s2. Some experi-

mentation has shown the estimation of b~s2 to be relatively invariant across reasonable choices

of a SNP set.

When calculating dSSE and b~s2 in practice, we found it useful to regularize the estimated

covariance matrix. When estimating dSSE as described in (10) and b~s2 as described in (9), we

make the substitution described below. Note that this bears some similarity to the regulariza-

tion we describe in Eq (3) with s = .2, although it is not identical:

1

n
dXTX ¼

1

n
XT
r Xr þ :2I:

In our experience, when estimating penalized regression models via summary statistics and

pseudo AIC / BIC via summary statistics on the same data, it is crucial not to reuse the same

reference panel for the calculation of the polygenic risk scores and the calculation of the

pseudo AIC / BIC. Doing so leads to a sort of overfitting issue, and will badly degrade the per-

formance of the pseudo AIC / BIC. In practice, this can be avoided by splitting the reference

panel in half, and using one half for the estimation of polygenic risk scores and the other half

for the estimation of model fitting metrics.

As in the estimation of polygenic risk scores via penalized regression, we recommend esti-

mating the pseudo AIC / BIC by independent LD blocks [22]. This is relevant to the covariance

matrix 1

n
dXTX as estimated from the reference panel. All estimation of pseudo AIC / BIC in this

paper was done by LD blocks unless otherwise noted.

Quasi-correlation

The so-called quasi-correlation is a model-fitting metric that can be used to evaluate the per-

formance of a polygenic risk score on out-of-sample data for which we have only summary

statistics. It similar to existing method SummaryAUC [25], except that quasi-correlation is

relevant to continuous phenotype data. The quasi-correlation estimates the true correlation.

Because the correlation between a polygenic risk score and a validation phenotype is frequently

used for model selection of polygenic risk scores, we can apply the quasi-correlation for model

selection purposes as well.

Now, we describe the scenario when application of quasi-correlation is useful. In this sce-

nario, we have three datasets. Firstly, we have the ‘training’ dataset, with centered design

matrix denoted X and centered phenotype denoted Y. Using some method, such as penalized

regression, we estimate a polygenic risk score. We denote this bβP ¼ ðbβP
1
; . . . ; bβPpÞ

0
. Secondly,

we have the reference panel, denoted Xr. That is, Xr is some centered matrix with columns cor-

responding to the same SNPs as those in X. We also use Xr to estimate the variances of the

SNPs. Let’s denote this vector of estimated variances as ðbs2
1
; . . . ;bs2

pÞ. Lastly, we have the ‘testing’

dataset, where we want to test the accuracy of our polygenic risk score bβP. For this data, we

have centered design matrix X�, centered phenotype Y�, and sample size nt. Using univariate

linear regression, we estimate marginal effect sizes bβ� for the testing data. We assume that we

do not have access to either X� or Y�, and only have bβ�.

We want to use our polygenic risk score bβP to predict phenotypes for the testing data. Then,

we want to calculate the correlation between our estimated phenotypes on the testing data
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bY� ¼ X�bβP and the true phenotypes Y�. That is, we want to estimate the following quantity:

corðY�; bY�Þ ¼

1

nt

X

i
Y�i bY

�

i � ð
1

nt

X

i
Y�i Þð

1

nt

X

i
bY �i Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðY�ÞvarðbY�Þ
q :

We note that 1

nt

P
iY
�
i

� �
¼ 0, because we assume a centered Y�. Thus, we have the following

expression:

corðY�; bY�Þ ¼

1

nt

X

i
Y�i bY

�

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðY�ÞvarðbY�Þ
q :

This is still not tractable, given that we cannot calculate bY� directly because we don’t have

access to X�. To obviate this, we make the following observation:

1

nt

X

i

Y�i bY
�

i ¼
1

nt
YT
�
bY� ¼

1

nt
YT
�
X�bβ

P ¼
1

nt
ðXT
�
Y�Þ

TbβP ¼
Xp

j¼1

bs2

j
bβ�j bβ

P
j :

Now, we must find a way to estimate varðbY�Þ. To show the derivation, we introduce the nota-

tion that X�Ti is a transposed column vector corresponding to a row of X�. We then have

varðcY�Þ ¼
1

nt

X

i

½ðX�Ti bβ
PÞ

2
� � ½

1

nt

X

i

ðX�Ti bβ
PÞ�

2
¼ A � B:

Now, we investigate terms A and B:

A ¼
1

nt

X

i

ðbβPÞTX�i X
�T
i
bβP ¼ ðbβPÞTð

1

nt

X

i

X�i X
�T
i Þ
bβP ¼ ðbβPÞTXT

r Xr
bβP;

B ¼ ½
1

nt

X

i

ðX�Ti bβ
PÞ�

2
¼ ðX�bβPÞ

2
¼ 0:

Finally, we must estimate var(Y�). We note that we can approximate the variance of a centered

phenotype using summary statistics via Eq (7). As in the estimation of pseudo AIC / BIC, we

suggest taking some measure of central tendency of the p estimates of cvarðY�Þ, such as the

median. Given these approximations, we can now define the quasi-correlation in a usable

form:

quasiCorðY�; bY�Þ ¼
P

ibs
2
i
bβ�i bβ

P
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cvarðY�ÞðbβPÞ
TXT

r Xr
bβP

q :

Results

Simulation study for penalized regression

Here we show the effectiveness of penalized regression in predicting quantitative phenotypes

in a simulation scenario. We show the accuracy of penalized regression compared to results

from similar methods LDPred [10], LDPred-Inf, pruned and thresholded (P+T) polygenic risk

scoring, and simple polygenic risk scoring.
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We simulated quantitative phenotypes using data from the Wellcome Trust Case Control

Consortium, or WTCCC [26]. We conducted three simulations. One simulation used geno-

type data from chromosomes 1 and 4 (� 30, 000 SNPs), which we will call simulation 1. The

second simulation used genotype data from chromosomes 1, 2, 3 and 4 (� 61, 000 SNPs),

which we will call simulation 2. The third simulation used SNPs from all chromosomes

(� 230, 000 SNPs), which we call simulation 3. The ratio of sample size of the training data to

the number of SNPs has been shown to affect the predictive performance of polygenic risk

scoring in previous literature [10]; this ratio differentiates simulation 1, 2, and 3. The data was

comprised of 12,479 individuals. The data were split into three sets: training, which consisted

of 6240 individuals, tuning, which consisted of 3119 individuals, and testing, which consisted

of 3120 individuals. We pruned SNPs such that no two included SNPs were in linkage disequi-

librium higher than 0.9 in order to ensure convergence. In practice, one can perform LD

clumping to ensure that no two SNPs are in LD higher than 0.9. We additionally removed all

ambiguous SNPs (A/T, C/G), and all SNPs withMAF< .01.

We simulated SNP effect sizes from the point normal model:

βj�iid

N 0; h2

Mp

� �
; with probability p

0; with probability 1 � p

8
<

:

Where h2 is the SNP-based heritability of the disease (0.5 in our simulation), M is the number

of SNPs, and p is the fraction of causal SNPs. We used the following values of p in our simula-

tion: p = 0.1, p = 0.01, p = 0.001, p = .0005. Simulation 1 excluded the case where p = .0005,

and simulation 3 excluded the case where p = .1. We used the SNP effects to generate quantita-

tive phenotypes under the additive model of genetic effects. Using the simulated phenotypes

and the training data, we calculated summary statistics. We used the summary statistics from

the training data and LD information from the tuning data to estimate penalized regression

models, using LassoSum, TlpSum, and ElastSum. With these penalized regression estimates,

we generated predicted phenotypes for the tuning data set, and selected tuning parameter val-

ues that optimized the prediction r2. We then calculated predicted phenotypes for the test data,

using the optimized tuning parameter values. We then report the predictive r2 of the testing

data. We performed 20 replications for each method at each value of p.

When applying LDPred, we tuned parameter p on the tuning data, and obtained prediction

r2 from the testing data. The true value of p was contained in the set of tuning values for p, as

were four other values; two larger than the true p, and two smaller. As per the recommendation

of the original paper [10], we used M/3000 as the LD parameter, which controls the size of a

sliding window of how many SNPs to consider when estimating joint effect sizes. When apply-

ing the polygenic risk score (denoted PRS), we used all marginal SNP effect size estimates

from the training data. When applying the pruned and thresholded polygenic risk score

(denoted PRS P+T), we first performed LD clumping in PLINK to ensure that no two SNPs

were in LD R2 > .2. We then implemented a p-value cutoff, where only SNPs with marginal p-

value below some cutoff were included in the risk score. The p-value cutoff was treated as a

tuning parameter, and determined by maximizing accuracy on the tuning data. Both the LD

R2 cutoff and the method of determining the p-value cutoff were done as in the LDPred paper

[10]. The results are displayed in Figs 1, 2 and 3.

The penalized regression methods may have a slight advantage over LDPred when the ratio

of SNPs to sample size N is smaller, as demonstrated by the simulation 1 results, while LDPred

slightly outperforms the penalized methods slightly as N grows, as demonstrated by the simu-

lation 2 results. In simulation 3, the penalized regression methods have roughly equivalent
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Fig 1. Prediction r2 values for simulation 1. Error bars represent standard deviation for the r2 value across 20

replications.

https://doi.org/10.1371/journal.pcbi.1008271.g001

Fig 2. Prediction r2 values for simulation 2. Error bars represent standard deviation for the r2 value across 20

replications.

https://doi.org/10.1371/journal.pcbi.1008271.g002
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predictive accuracy to LDPred. In general, LDPred demonstrates similar predictive accuracy

to the penalized regression methods across the three simulation settings. Additionally, it

appears that the penalized regression methods perform comparatively better when p is smaller;

that is, the signal is sparser. LDPred and the penalized regression methods outperform

clumped polygenic risk scoring in all cases. The simple PRS performs poorly in most cases,

except for when the fraction of causal SNPs p is large. These simulation results demonstrate

that the penalized regression methods are competitive with LDPred in all simulation settings,

and outperform PRS methods that do not account for linkage disequilibrium. In this simula-

tion structure, we do not see much difference in performance between the three penalized

regression methods.

Simulating allelic heterogeneity. The penalized regression methods LassoSum, TlpSum,

and ElastSum demonstrate similar predictive performance in the previous section. Motivated

by the concept of so-called ‘widespread allelic heterogeneity’ [27], we conduct a simulation

where causal SNPs are clustered together in regions of high linkage disequilibrium. This simu-

lates allelic heterogeneity, which is characterized by multiple SNPs within a single region

(often a gene) that are causal for a trait. Under this simulation structure, we investigate the per-

formance of the penalized regression methods, and demonstrate that TlpSum incurs modest

but persistent gains in predictive accuracy as compared to LassoSum and ElastSum.

We set up the simulation as follows. We use the ‘simulation 1’ structure from the previous

section, with the following adjustments. Instead of simulating effect sizes from the point nor-

mal model with the probability of nonzero effect drawn independently for each SNP, we now

simulate causal SNPs (i.e. SNPs with nonzero effect size) in groups of size 2 to 8. The process

for simulating SNP effect sizes is described in Section K in S1 Text. We also adjusted the frac-

tion of causal SNPs p and the SNP-based heritability h2. We considered values for p of.002

and.005, and values for h2 of .2, .5, .6. We conducted 100 replications at each simulation set-

ting. In all four of the simulation settings considered, TlpSum had better predictive accuracy

on out-of-sample data as compared to ElastSum and LassoSum. This improvement was mea-

sured to be statistically significant at p< .05 with a paired t-test. Figs 4 and 5 describe the per-

formance of the TlpSum as compared to ElastSum and LassoSum across the four simulation

settings. Additional results describing the relative performance of the LassoSum and the Elast-

Sum, the results from some significance tests, and some results on predictive accuracy are

located in Section B in S1 Text.

Figs 4 and 5 demonstrate the persistent advantage of the TlpSum as compared to the Lasso-

Sum and ElastSum when effect sizes are simulated under widespread allelic heterogeneity.

Fig 3. Prediction r2 values for simulation 3. Error bars represent standard deviation for the r2 value across 20

replications.

https://doi.org/10.1371/journal.pcbi.1008271.g003
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This substantive improvement in predictive accuracy is evidence for the superior performance

of the TlpSum as compared to other penalized regression methods for summary statistics in

the context of widespread allelic heterogeneity.

Investigation of models fit by penalized regression. Many penalized regression methods

impose a degree of sparsity on the estimated effect sizes. In particular, when the fraction of

causal SNPs p is small, the proportion of nonzero estimated effects is generally also small. It is

of interest to characterize this sparsity and examine how it might influence the predictive per-

formance. In this section, we characterize the sparsity of the fitted penalized regression models.

This issue bears some similarity to fine mapping, which includes methods such as CaviarBF

[28] and FINEMAP [29]. We do not formulate formal hypothesis tests for variable selection in

penalized regression in this paper, and we do not seek to compare our method to the fine map-

ping literature.

Given that TLP does not penalize effect size estimates above a certain threshold, it may pro-

duce a smaller number of nonzero effect size estimates. This has been demonstrated in previ-

ous literature [16]. Thus, the TLP may be more parsimonious when the truth is sparse. We

investigate the number of nonzero parameter estimates for sparse situations in simulations 1,

2, and 3. We find that the TLP produces sparser estimates than the LASSO and the elastic

net in the case where p = .001 for simulation 1, p = .0005 for simulation 2, and p = .0005 for

Fig 4. Predictive r2 on out-of-sample data for TlpSum and LassoSum for each of the 100 replications at each of the

four simulation settings. Lines are at a 45 degree angle through the origin, and not a line of best fit. Points below the

line indicate better performance of TlpSum.

https://doi.org/10.1371/journal.pcbi.1008271.g004
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simulation 3. The results are not as clear for the cases where the fraction of causal SNPs p is

larger. We suspect this is because all of the selected values for the tuning parameter s are non-

zero in the case where p 2 [.01, .1], and some of the time when p = .001 in simulations 2 and 3.

This means that we do not have a “true” TLP, as is described in the methods section and illus-

trated in Eq (5). In the case where p = .001 in simulation 1 and p = .0005 in simulations 2 and

3, the optimal value of s is zero for all models or nearly all models, giving us a “true” TLP. We

present the results for the three sparse simulation settings in Fig 6, while the full results are

presented in Section B in S1 Text. Given that the models all achieve similar predictive perfor-

mance on out of sample data as illustrated in Figs 1, 2 and 3, we see that the TLP can generate

the same amount of predictive power with sparser models.

Also of interest is the number of true nonzero effects that are estimated to be nonzero by

the penalized regression models. We can think of this as a binary prediction problem, where

we are trying to predict which effects are nonzero. This information is presented in Fig 7 for

the three sparse simulation settings. We see that the TLP has nearly the same number of true

positives as the elastic net and LASSO, while having fewer total nonzero estimated effects, as

displayed in Fig 6. This corresponds to a higher precision, as displayed in Fig 8. Note that pre-

cision corresponds to TP
TPþFP, where TP is the number of true positives, and FP is the number of

false positives.

Fig 5. Predictive r2 on out-of-sample data for TlpSum and ElastSum for each of the 100 replications at each of the

four simulation settings. Lines are at a 45 degree angle through the origin, and not a line of best fit. Points below the

line indicate better performance of TlpSum.

https://doi.org/10.1371/journal.pcbi.1008271.g005
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These simulation results provide evidence that, when the truth is sparse, the TLP may pro-

duce sparser effect size estimates and reduce the number of false positives, while capturing

nearly the same number of true positives. This indicates that TLP models maintain predictive

accuracy while being closest to the true structure of effects, thus facilitating the estimation of

parsimonious models.

Fig 6. Number of nonzero effect sizes estimated by the three penalized regression methods as compared to the

true number of nonzero effects, for the three sparse simulation settings.

https://doi.org/10.1371/journal.pcbi.1008271.g006

Fig 7. Number of true positives for the three penalized regression methods in the three sparse simulation settings.

https://doi.org/10.1371/journal.pcbi.1008271.g007

PLOS COMPUTATIONAL BIOLOGY Methods for model estimation and selection on GWAS summary statistics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008271 October 1, 2020 17 / 27

https://doi.org/10.1371/journal.pcbi.1008271.g006
https://doi.org/10.1371/journal.pcbi.1008271.g007
https://doi.org/10.1371/journal.pcbi.1008271


Simulation study for model selection

Using the simulation structure without allelic heterogeneity as described previously, we

assessed the comparative accuracy of model selection methods. We compared the three

model selection methods we proposed, namely the pseudo AIC, pseudo BIC, and quasi-cor-

relation, to existing model selection method pseudovalidation. Note that these four model

selection methods do not require the existence of individual level tuning or training data,

and are thus more widely applicable, especially in the framework of summary statistics and

reference panels. As a point of comparison, we also include the performance of AIC and BIC

for the model as fit on the training data (the so-called ‘true AIC’ and ‘true BIC’). The true

AIC and true BIC assume that we have access to individual level genotype data for the train-

ing dataset, which is not generally the case. They also directly use the true residual variance

~s2, which must be estimated in practice. We also compare the performance of selecting the

model with maximum r2 on the tuning data, which is a widely applied model selection crite-

ria. This assumes that we have individual level phenotype data for the tuning dataset, which

may not be the case.

We split the WTCCC data into four disjoint datasets as described below. This allowed us to

simulate a setting where our proposed pseudo AIC / BIC and quasi-correlation could be esti-

mated in a realistic setting. As described in the methods section, it is important not to reuse

the same reference panel for the penalized regression methods and the model fitting methods.

This explains the presence of two ‘tuning’ datasets. This practice, where we essentially split the

reference panel in half and use one half for the penalized regression methods and the other

half for the model fitting methods, is used in our real data applications as well. The four data-

sets are as follows:

• The training data Xtr, which we used to estimate univariate summary statistics for each SNP.

Xtr had sample size 6240.

Fig 8. Precision of estimated nonzero effect sizes for the penalized regression methods applied to the three sparse

simulation settings.

https://doi.org/10.1371/journal.pcbi.1008271.g008
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• The tuning-1 data Xtu1, which was used as a refernece panel for the model estimation meth-

ods, namely TlpSum and LassoSum. Xtu1 had sample size 3119.

• The tuning-2 data Xtu2, which was used as a reference panel for the model selection metrics

that required a reference panel: namely pseudo AIC, pseudo BIC, pseudovalidation, and

quasi-correlation. Xtu2 had sample size 1560.

• The testing data Xte, which was used to evaluate the performance of the polygenic risk scores.

Xte had sample size 1560.

For this simulation study, we used simulation setting 1: that, is, we used SNPs from chro-

mosomes 1 and 4 from the WTCCC study, and simulated phenotypes from the point-normal

model, varying the fraction of causal SNPs p. We used the same filtering steps as described pre-

viously. We estimated univariate summary statistics from the training data (N = 6240). We

then used the tuning-1 data (N = 3119) as a reference panel to estimate polygenic risk scores

using TlpSum and LassoSum. For TlpSum, we used a three dimensional matrix of tuning

parameters λ, s, τ to generate a set of candidate polygenic risk scores. For LassoSum, we used a

two dimensional matrix of tuning parameters λ, s to generate a set of candidate polygenic risk

scores. The results from applying the model selection metrics to LassoSum are presented here.

The results of applying the model selection metrics to the TlpSum models, which are similar,

are located in Section B in S1 Text.

For the estimation of the pseudo AIC, pseudo BIC, quasi-correlation, and pseudovalidation,

we used the tuning-2 dataset (N = 1560) as a reference panel. Although pseudovaldiation does

not require the tuning data to be split in half as pseudo AIC and pseudo BIC do, we note that

using the split tuning data versus the full tuning data made no difference in practice for pseu-

dovalidation. For the quasi-correlation criteria we used summary statistics estimated from

the tuning-2 data. Using the seven model fitting criteria that we described, we selected a best

model in accordance with each of the criteria. We then measured the predictive r2 of that

model applied to the testing data. This was repeated for each of the 20 simulations, across

three different values of p, the fraction of causal SNPs.

In addition to considering quasi-correlation as a model selection metric, we have also pro-

posed using quasi-correlation as a measure of model fit; that is, as a way to compare the perfor-

mance of different models. In the case where we do not have individual level testing data, we

will not be able to use many common measures of predictive performance. If we have access to

summary statistics from the testing data, we will be able to use quasi-correlation. We want the

relative performance of the different model selection methods as measured by predictive r2 on

the testing data to be the same as the relative performance as measured by quasi-correlation.

Note that we have two different applications of quasi-correlation here; we are using it for

model selection, and to quantify model performance. Quasi-correlation for model selection is

estimated using summary statistics from the tuning-2 data; this corresponds to the ‘Qcor’ bar

group in the bar chart. Quasi-correlation for quantifying model performance is estimated

using summary statistics from the testing data; this corresponds to the red bars in the bar

chart. The results are displayed in Fig 9.

These results show that quasi-correlation performs well as a model selection method, out-

performing all other metrics except for tuning r2, which it performs equivalently to. The

pseudo AIC and pseudo BIC perform relatively similarly to the true AIC and true BIC,

although the true AIC and BIC do perform equivalently or better in all cases, which is to be

expected. Additionally, we see that the pseudo AIC outperforms pseudovalidation in the case

where p = .01. The methods perform similarly when p = .001 and p = .1. In this simulation,

pseudovalidation, pseudo AIC, and pseudo BIC all appear to be reasonable methods for model
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selection when validation data is not available. A more thorough analysis of the accuracy of the

different components of the estimation of pseudo AIC / BIC and quasi-correlation is located

in Section D in S1 Text.

We also assess the usefulness of quasi-correlation as a measure of model fit. Fig 9 shows

that the relative performance of the model selection methods as measured by quasi-correlation

squared and testing r2 are generally equivalent. Quasi-correlation appears to slightly overesti-

mate the testing r2 a majority of the time, and the standard deviation across the twenty replica-

tions is a somewhat larger. Nevertheless, we can conclude that quasi-correlation does a good

job approximating the testing r2 given the high degree of similarity between the testing r2 and

squared quasi-correlation estimates.

These results demonstrate that quasi-correlation approximates the predictive performance

of selected models well on average. Also of interest is how well quasi-correlation performs

within a single replication, i.e. whether quasi-correlation can generally differentiate between

the predictive performance on out-of-sample data for a set of candidate models. This particu-

larly concerns the performance of a set candidate models on a single out-of-sample dataset,

rather than the average across twenty replications as shown in Fig 9. Results described in Sec-

tion D in S1 Text indicate that the quasi-correlation generally does this well.

Investigation of selected models. We examine the model selection performance of

pseudo AIC and pseudo BIC as applied to penalized regression models in the summary statis-

tic framework, and generally conclude that they demonstrate good performance.

Via simulation, we show that pseudo AIC and pseudo BIC select sparser models than pseu-

dovalidation, and that pseudo AIC and pseudo BIC generally reproduce the true model more

accurately. In particular, we consider simulation setting 1 without allelic heterogeneity as

described previously. For each of the 20 replications at each of the three fractions of causal

SNPs p, we compare the number of nonzero effect sizes for each of the three model selection

methods to demonstrate the tendency of the methods to select models of differing sparsity. We

describe the precision, recall, and F1 score for the model selected by each the three model

selection methods to demonstrate the degree to which selected models recapture the true

model. These measures of accuracy are considered in the following context. A ‘true positive’

occurs when a SNP with a nonzero effect size has an estimated nonzero effect in the corre-

sponding model. Likewise, a false positive occurs when a model estimates a SNP effect to be

nonzero and the true SNP effect is zero. If we define TP as the number of true positives cap-

tured by a model, FP as the number of false positives, and FN as the number of false negatives,

Fig 9. Performance of the seven different model selection methods applied to a set of candidate LassoSum models.

Performance is measured by r2 on the testing data (the right bar in each group), and by squared quasi-correlation on

the testing data (the left bar in each group). Error bars represent the standard deviation across 20 replications.

https://doi.org/10.1371/journal.pcbi.1008271.g009
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we can define precision as TP
TPþFP and recall as TP

TPþFN. The F1 score is defined as F1 ¼ 2
precision�recall
precisionþrecall,

which is the harmonic mean of precision and recall. We consider the application of model

selection to a set of candidate LassoSum models; we believe that the performance would be

similar for TlpSum. We expect that the pseudo AIC and pseudo BIC may select sparser models

than pseudovalidation, and that the selected models may perform better as measured by preci-

sion and F1 score. We generally expect the models selected by pseudovalidation to display bet-

ter recall, given that they have more estimated nonzero effects. The results are displayed in

Figs 10 and 11.

Fig 10. Number of estimated nonzero effects for each model selection method across each of the simulation

settings in simulation 1. Models were selected from a set of candidate LassoSum models.

https://doi.org/10.1371/journal.pcbi.1008271.g010
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We see that the three model selection methods perform equivalently when p = .1, but there

is discrepancy when p< .1. Pseudo BIC selects substantially sparser models than either pseudo

AIC or pseudovalidation, while pseudo AIC selects somewhat sparser models than pseudovali-

dation. Fig 11 shows that pseudo BIC substantially outperforms pseudo AIC and pseudovali-

dation according to the precision and F1 score metrics, although pseudo BIC performs less

well as measured by recall. Pseudo AIC outperforms pseudovalidation as measured by preci-

sion and F1 score as well. Given that F1 score can be considered an overall measure of binary

classification performance that considers precision and recall, it is reasonable to state that

pseudo BIC substantially outperforms the other two model selection methods, indicating that

it best reproduces the true model.

Pseudo AIC and pseudo BIC impose model sparsity according to established theory, while

pseudovalidation selects a model by minimizing training error under an ad hoc condition that

imposes some sparsity. The previous section demonstrates that these three selection methods

perform reasonably similarly as measured by predictive accuracy on out-of-sample data, but

there is moderate discrepancy among the three methods in ability to reproduce the true

model. In applications where it is important to select only those variants that are truly associ-

ated, such as the selection of valid instruments for a TWAS-type analysis [30], it may be prefer-

able to use pseudo AIC or pseudo BIC.

Application to lipids

We leverage our methodology to perform model estimation and model selection for GWAS

analyses of lipid data. We estimate models based on summary statistics from the Teslovich

et al. study [31]. We assess model accuracy via quasi-correlation, using summary statistics

from the UK BioBank as our out-of-sample data [32]. For partial validation and the estimation

of quasi-correlation for model selection on a third dataset, we use summary statistics from the

Global Lipids Genetics Consortium, or GLGC [33]. We consider three different phenotypes in

this analysis: high-density lipoprotien (HDL), low-density lipoprotein (LDL), and triglycerides

(TG). We use the 1000G data as a reference panel [34], and limit the reference panel to only

those individuals of European ancestry.

For each study, we did quality control as follows. We removed SNPs withMAF< .01 in the

reference panel or in the Teslovich data. We then determined the subset of SNPs that was pres-

ent in all four datasets: the Teslovich data, the GLGC data, the BioBank data, and the 1000G

Fig 11. Performance of the selected models for each of the model selection methods across the different

simulation settings of simulation 1, as measured by precision, recall, and F1 score. The leftmost box in each

grouping of three corresponds to pseudo AIC, the center corresponds to pseudo BIC, and the rightmost corresponds

to pseudovalidation. Models were selected from a set of candidate LassoSum models.

https://doi.org/10.1371/journal.pcbi.1008271.g011
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data. We excluded all SNPs not in the intersection of these datasets. We did LD clumping

using the 1000G data as a reference panel and univariate p-values from the Teslovich data,

ensuring that no two SNPs were in LD R2 > .9. This was done to ensure convergence of our

penalized regression methods, and shouldn’t substantively affect the results, given that we

don’t expect many informative SNPs to be pruned away. We removed all ambiguous SNPs (i.e.

those SNPs with alleles A/T or C/G), and all SNPs with allele coding irreconcilably different

between the datasets. After quality control, we had 640,675 SNPs for TG, 639,754 SNPs for

LDL, and 642,675 SNPs for HDL. The Teslovich and GLGC studies are meta-analyses, so the

sample size varies by SNP. The BioBank study has equal sample size for all SNPs. We present

the median sample size for each study and phenotype in Table 1.

Using these sets of SNPs, we estimated a set of 48 candidate polygenic risk scores for each

lipid phenotype. We estimated polygenic risk scores via TlpSum using 48 unique sets of tuning

parameters τ, s and λ, with the summary statistics from the Teslovich study as our training

data. Application of model selection methods to LassoSum models produced similar results, as

demonstrated in Section J in S1 Text. We did not apply model selection methods to LDPred

models. As LDPred models impose no sparsity, the penalty on model size imposed by pseudo

AIC and pseudo BIC cannot be interpreted in a meaningful way. Thus, these selection meth-

ods degenerate into simply using estimated training SSE as a criteria for model selection,

which is not particularly useful. This is an advantage of penalized regression methods that

impose sparsity as compared to LDPred; namely, that models that impose sparsity can leverage

the pseudo AIC and pseudo BIC for model selection.

We split the 1000G data into two groups of equal sample size as described in the methods

section, and used one half of this data as the reference panel for estimating the TlpSum models.

The other half was used to estimate the model fitting criteria. We then estimated model fitting

criteria pseudo AIC, pseudo BIC, and pseudovalidation. We also estimated quasi-correlation

for model selection by using the GLGC study as our out-of-sample data. There is substantial

overlap between the samples used in the GLGC study and the Teslovich study; however, given

that the study populations are not identical, we believe it is reasonable to apply the quasi-corre-

lation here.

We present the accuracy of each method, as measured by quasi-correlation on the BioBank

data, in Table 2. In this case, none of the model selection methods perform particularly well,

given that all methods select a model that performs worse than the best performing model.

The accuracy of the best performing model is quantified in the ‘Maximum’ column, and

Table 1. Median sample size for each study in the lipid analysis.

Teslovich GLGC BioBank

TG 95,877 90,976 343,992

LDL 94,769 89,855 343,621

HDL 99,179 94,277 315,133

https://doi.org/10.1371/journal.pcbi.1008271.t001

Table 2. Model performance, as measured by quasi-correlation of the model predicted into the BioBank data, for each model selection method. Models were esti-

mated via TlpSum on the Teslovich data.

Quasi-cor Pseudo AIC Pseudo BIC Pseudoval Maximum

TG .14 .13 .11 .10 .22

LDL .12 .16 .14 .11 .21

HDL .20 .18 .18 .17 .30

https://doi.org/10.1371/journal.pcbi.1008271.t002
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represents the maximum quasi-correlation attained by any of the 48 candidate models pre-

dicted into the BioBank data. We see that the pseudo AIC, pseudo BIC, and quasi-correlation

all outperform pseudovalidation for all three lipid phenotypes. Given the relatively small

amount of heritability captured, even by the best performing models, and the smaller sample

size of the Teslovich study, this is likely a scenario where it is important to impose model spar-

sity during model selection. Because the pseudo AIC and pseudo BIC impose more model

sparsity than pseudovalidation, and tend to be more parsimonious in recapturing the true

model, the performance of the models selected by pseudo AIC and pseudo BIC are superior to

the model selected by pseudovalidation in this application. On balance, the best performing

model selection method is quasi-correlation, given that it selects the model with the best per-

formance for two of the three lipid phenotypes. This is reasonable, given that quasi-correlation

for model selection leverages information from a third dataset.

In this application, we demonstrate that pseudo AIC and pseudo BIC select models with

superior predictive accuracy on out-of-sample data as compared to pseudovalidation for all

three lipid phenotypes. We demonstrate the usefulness of quasi-corrleation for model selection

given a third dataset by showing that it selects models with good predictive accuracy on out-

of-sample data. Likewise, we use quasi-correlation to assess predictive performance on out-of-

sample data. Without quasi-correlation, it would not be possible to leverage summary statistic

data as out-of-sample data for this purpose.

Discussion

In this paper, we propose applying the Truncated Lasso penalty and the elastic net penalty to

calculate polygenic risk scores using summary statistic data and linkage disequilibrium infor-

mation. We demonstrate via simulation that the TlpSum produces sparser models when the

underlying genetic architecture is sparse, and does a good job recovering truly nonzero effect

sizes while limiting false positives. Additionally, we demonstrate that the TlpSum improves

predictive accuracy as compared to other penalized regression models when applied to data

simulated under widespread allelic heterogeneity. We propose methods for estimating model

fit statistics AIC and BIC for polygenic risk scores in the case where we have only summary

statistic data and linkage disequilibrium information. This facilitates model selection in the

case where we do not have access to validation data. This complements existing method pseu-

dovalidation, which may tend to select overfit models. We also propose the so-called quasi-

correlation, which allows us to quantify the predictive accuracy of a polygenic risk score on

out-of-sample data for which we have only summary statistic information. Quasi-correlation

can also be used to leverage information from a third ‘tuning’ dataset of summary statistics for

model selection. These methods in totality broaden the scope of the application of polygenic

risk scores. Using only summary statistics and publicly available reference panels, we can esti-

mate polygenic risk scores, perform model selection given a candidate set of polygenic risk

scores, and quantify the predictive accuracy of these polygenic risk scores on out-of-sample

summary statistic data. This facilitates the construction of validated polygenic risk scores

ready for use on new data. Additionally, it facilitates the application of polygenic risk scores to

large summary statistic data, generating robust models based on large studies. These models

can be used infer the genetic architecture of complex phenotypes.

We demonstrate via simulation that penalized regression with the TLP penalty performs

well as compared to existing methods, improving predictive performance in the context of alle-

lic heterogeneity and inducing sparsity when the true model is sparse. We investigate the com-

parative performance of the pseudo AIC, pseudo BIC, pseudovalidation, and quasi-correlation

for model selection via simulation, demonstrating that quasi-correlation performs well in all
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cases, and that pseudo AIC and pseudo BIC outperform pseudovalidation in some cases.

Pseudo AIC and pseudo BIC demonstrate some desirable model selection properties in simu-

lation, with pseudo BIC in particular tending to recover the true model better than pseudovali-

dation. We also show via simulation that quasi-correlation approximates the actual predictive

r2 well, indicating that it is an appropriate and robust measure of model fit. We demonstrate

the usefulness of pseudo AIC and BIC and quasi-correlation for model selection by demon-

strating their superior performance to pseudovalidation in an application to a large GWAS of

lipid data. In Section F in S1 Text, we apply penalized regression and model fitting methods to

a large lung cancer meta-analysis, demonstrating that penalized regression methods improve

accuracy as compared to simple polygenic risk score methods. We additionally demonstrate

the application of pseudo AIC and BIC methods to a GWAS analysis with a binary phenotype.

In Section G in S1 Text, we apply penalized regression and model fit methods to large sum-

mary statistic data of the height phenotype, which allows us to assess the performance of our

penalized regression methodology and model selection methods on a large GWAS for a highly

heritable phenotype.

Supporting information
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