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Abstract

Fluorescent calcium indicators are a popular means for observing the spiking activity of

large neuronal populations, but extracting the activity of each neuron from raw fluorescence

calcium imaging data is a nontrivial problem. We present a fast online active set method to

solve this sparse non-negative deconvolution problem. Importantly, the algorithm pro-

gresses through each time series sequentially from beginning to end, thus enabling real-

time online estimation of neural activity during the imaging session. Our algorithm is a gener-

alization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits

its linear-time computational complexity. We gain remarkable increases in processing

speed: more than one order of magnitude compared to currently employed state of the art

convex solvers relying on interior point methods. Unlike these approaches, our method can

exploit warm starts; therefore optimizing model hyperparameters only requires a handful of

passes through the data. A minor modification can further improve the quality of activity

inference by imposing a constraint on the minimum spike size. The algorithm enables real-

time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish imaging

data on a laptop.

Author summary

Calcium imaging methods enable simultaneous measurement of the activity of thousands

of neighboring neurons, but come with major caveats: the slow decay of the fluorescence

signal compared to the time course of the underlying neural activity, limitations in signal

quality, and the large scale of the data all complicate the goal of efficiently extracting accu-

rate estimates of neural activity from the observed video data. Further, current activity

extraction methods are typically applied to imaging data after the experiment is complete.

However, in many cases we would prefer to run closed-loop experiments—analyzing data

on-the-fly to guide the next experimental steps or to control feedback—and this requires

new methods for accurate real-time processing. Here we present a fast activity extraction
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algorithm addressing both issues. Our approach follows previous work in casting the

activity extraction problem as a sparse nonnegative deconvolution problem. To solve this

optimization problem, we introduce a new algorithm that is an order of magnitude faster

than previous methods, and progresses through the data sequentially from beginning to

end, thus enabling, in principle, real-time online estimation of neural activity during the

imaging session. This computational advance thus opens the door to new closed-loop

experiments.

This is a PLOS Computational Biology Methods paper.

Introduction

Calcium imaging has become one of the most widely used techniques for recording activity

from neural populations in vivo [1]. The basic principle of calcium imaging is that neural

action potentials (or spikes), the point process signal of interest, each induce an optically mea-

surable transient response in calcium dynamics. The nontrivial problem of extracting the

activity of each neuron from a raw fluorescence trace has been addressed with several different

approaches, including template matching [2] and linear deconvolution [3, 4], which are out-

performed by sparse non-negative deconvolution [5]. The latter can be interpreted as the max-

imum a posteriori (MAP) estimate under a simple generative model (linear convolution plus

noise; Fig 1), whereas fully Bayesian methods [6–8] can provide some further improvements,

but are more computationally expensive. Supervised methods trained on simultaneously-

recorded electrophysiological and imaging data [9, 10] have also recently achieved state of the

art results, but are more black-box in nature; Bayesian methods based on a well-defined gener-

ative model are somewhat easier to generalize to more complex multi-neuronal or multi-trial

settings [11–13].

The methods above are typically applied to imaging data offline, after the experiment is

complete; however, there is a need for accurate and fast real-time processing to enable closed-

loop experiments, a powerful strategy for causal investigation of neural circuitry [14]. In par-

ticular, observing and feeding back the effects of circuit interventions on physiologically rele-

vant timescales will be valuable for directly testing whether inferred models of dynamics,

connectivity, and causation are accurate in vivo, and recent experimental advances [15, 16] are

now enabling work in this direction. Brain-computer interfaces (BCIs) also rely on real-time

estimates of neural activity. Whereas most BCI systems rely on electrical recordings, BCIs have

Fig 1. Generative autoregessive model for calcium dynamics. Spike train s gets filtered to produce

calcium trace c; here we used p = 2 as order of the AR process. Added noise yields the observed

fluorescence y.

https://doi.org/10.1371/journal.pcbi.1005423.g001
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been driven by optical signals too [17], providing new insight into how neurons change their

activity during learning on a finer spatial scale than possible with intracortical electrodes.

Finally, adaptive experimental design approaches [18–20] also rely on online estimates of neu-

ral activity.

Even in cases where we do not require the strict timing/latency constraints of real-time pro-

cessing, we still need methods that scale to large data sets as for example in whole-brain imag-

ing of larval zebrafish [21, 22]. A further demand for scalability stems from the fact that the

deconvolution problem is solved in the inner loop of constrained non-negative matrix factori-

zation (CNMF) [13], the current state of the art for simultaneous denoising, deconvolution,

and demixing of spatiotemporal calcium imaging data.

In this paper we address the pressing need for scalable online spike inference methods.

Building on previous work, we frame this estimation problem as a sparse non-negative decon-

volution. Current algorithms employ interior point methods to solve the ensuing optimization

problem and are fast enough to process hundreds of neurons in about the same time as the

recording [5], but can not handle larger data sets such as whole-brain zebrafish imaging in real

time. Furthermore, these interior point methods scale linearly in the length of the recording,

but they cannot be warm started [23], i.e., initialized with the solution from a previous itera-

tion to gain speed-ups, and do not run online.

Here we note a close connection between the MAP problem and isotonic regression,

which fits data by a monotone piecewise constant function. A classic algorithm for isotonic

regression is the pool adjacent violators algorithm (PAVA) [24, 25], which can be under-

stood as an online active-set optimization method. We generalized PAVA to derive an

Online Active Set method to Infer Spikes (OASIS); this new approach to solve the MAP

problem yields speed-ups in processing time by at least one order of magnitude compared to

interior point methods on both simulated and real data. Further, OASIS can be warm-

started, which is useful in the inner loop of CNMF, and also when adjusting model hyper-

parameters, as we show below. Importantly, OASIS is not only much faster, but operates in

an online fashion, progressing through the fluorescence time series sequentially from begin-

ning to end. The advances in speed paired with the inherently online fashion of the algorithm

enable true real-time online spike inference during the imaging session (once the spatial

shapes of neurons in the field of view have been identified), with the potential to significantly

impact experimental paradigms.

Methods

This section is organized as follows. The first subsection introduces the autoregressive (AR(p))

model for calcium dynamics.

In the second subsection we derive an Online Active Set method to Infer Spikes (OASIS)

for an AR(1) model. The algorithm is inspired by the pool adjacent violators algorithm

(PAVA, Alg 1), which we review first and then generalize to obtain OASIS (Alg 2). This algo-

rithm requires some hyperparameter values; the optimization of these hyperparameters is

described next, along with several computational tricks for speeding up the hyperparameter

estimation. We finally discuss thresholding approaches for reducing the number of small val-

ues returned by the original L1-penalized approach. The resulting problem is non-convex, and

so we lose guarantees on finding global optima, but we can easily adapt OASIS to quickly find

good solutions.

In the third subsection we generalize to AR(p) models of the calcium dynamics and

describe a dual active set algorithm that is analogous to the one presented for the AR(1) case

(Alg 2). However, this algorithm is greedy if p> 1 and yields only a good approximate
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solution. We can refine this solution and obtain the exact result by warm-starting an alterna-

tive primal active set method we call ONNLS (Alg 3). Finally, Alg 4 summarizes all of these

steps.

Model for calcium dynamics

We assume we observe the fluorescence signal for T timesteps, and denote by st the number of

spikes that the neuron fired at the t-th timestep, t = 1, . . ., T, cf. Fig 1. Following [5, 13], we

approximate the calcium concentration dynamics c using a stable autoregressive process of

order p (AR(p)) where p is a small positive integer, usually p = 1 or 2,

ct ¼
Xp

i¼1

gict� i þ st: ð1Þ

The observed fluorescence y 2 RT is related to the calcium concentration as [5–7]:

yt ¼ a ct þ bþ �t; �t � N ð0; s2Þ ð2Þ

where a is a non-negative scalar, b is a scalar offset parameter, and the noise is assumed to be i.

i.d. zero mean Gaussian with variance σ2. For the remainder we assume units such that a = 1

without loss of generality. We begin by assuming b = 0 for simplicity, but we will relax this

assumption later. (We also assume throughout that all parameters in sight are fixed; in case of

e.g. drifting baselines b we could generalize the algorithms discussed here to operate over

shorter temporal windows, but we do not pursue this here.) The parameters γi and σ can be

estimated from the autocovariance function and the power spectral density (PSD) of y respec-

tively [13]. The autocovariance approach assumes that the spiking signal s comes from a

homogeneous Poisson process and in practice often gives a crude estimate of γi. We will

improve on this below by fitting the AR coefficients directly, which leads to better estimates,

particularly when the spikes have some significant autocorrelation.

The goal of calcium deconvolution is to extract an estimate ŝ of the neural activity s from

the vector of observations y. As discussed in [5, 13], this leads to the following non-negative

LASSO problem for estimating the calcium concentration:

minimize
ĉ ;ŝ

1
2
k ĉ� yk2 þ lk ŝ k1 subject to ŝ ¼ Gĉ � 0 ð3Þ

where the ℓ1 penalty on ŝ enforces sparsity of the neural activity and the lower triangular

matrix G is defined as:

G ¼

1 0 � � � � � � � � � � � � 0

� g1 1 . .
. . .

. . .
. . .

.
0

..

. . .
. . .

. . .
. . .

. . .
. ..

.

� gp � � � � g1 1 0 � � � 0

0 � gp � � � � g1 1 . .
.

0

..

. . .
. . .

. . .
. . .

. . .
. ..

.

0 � � � 0 � gp � � � � g1 1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
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C
C
C
C
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A

: ð4Þ

The deconvolution matrix G is banded with bandwidth p for an AR(p) process. Equivalently,

s = c � g with g a finite impulse response filter of order p (p + 1 filter taps) and � denoting
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convolution. To produce calcium trace c, spike train s is filtered with the inverse filter of g,

an infinite impulse response h, c = s � h. (Although our main focus is on the autoregressive

model, we will discuss more general convolutional observation models below as well, and

touch on nonlinear effects such as saturation in the Appendix.) Following the approach in

[5], note that the spike signal ŝ is relaxed from non-negative integers to arbitrary non-nega-

tive values.

Derivation of the active set algorithm

The optimization problem (3) could be solved using generic convex program solvers. Here we

derive the much faster Online Active Set method to Infer Spikes (OASIS). The algorithm is

inspired by the pool adjacent violators algorithm (PAVA) [24, 25], which we review first for

readers not familiar with this classic algorithm before generalizing it to the non-negative

LASSO problem.

Pool Adjacent Violators Algorithm (PAVA). The pool adjacent violators algorithm (Alg

1) is a classic exact algorithm for isotonic regression, which fits data by a non-decreasing piece-

wise constant function. This algorithm is due to [24] and was independently discovered by

other authors [26, 27] as reviewed in [25, 28]. It can be considered as a dual active set method

[29]. Formally, the (convex) problem is to

minimize
x

kx � yk2 subject to x1 � ::: � xT : ð5Þ

We first present the algorithm in a way that conveys its core ideas (see Alg A in S1 Appen-

dix), then improve the algorithm’s efficiency by introducing “pools” of variables (adjacent xt

values) which are updated simultaneously. We introduce temporary values x0 and initialize

them to the unconstrained least squares solution, x0 = y. Initially all constraints are in the “pas-

sive set” and possible violations are fixed by subsequently adding the respective constraints to

the “active set”. Starting at t = 2 the algorithm moves to the right until a violation of the con-

straint x0
t
� x0

t� 1
at some time τ is encountered. Now the monotonicity constraint is added to

the active set and enforced by setting x0
t
¼ x0

t� 1
. (Supposing the opposite, i.e. x0

t
> x0

t� 1
, we

could move x0
t

and x0
t� 1

by some small � to decrease the objective without violating the con-

straints, yielding a proof by contradiction that the monotonicity constraint should be made

“active” here—i.e., the constraint holds with strict equality.) We update the values x0
t
¼ x0

t� 1
at

the two time steps to the best possible fit with constraints. Minimizing their contribution to

the residual ðyt� 1 � x0
t� 1
Þ

2
þ ðyt � x0

t� 1
Þ

2
by setting the derivative with respect to x0

t� 1
to zero,

yt� 1 � x0
t� 1
þ yt � x0

t� 1
¼ 0, amounts to replacing the values with their average,

x0
t� 1
¼ x0

t
¼

yt� 1þyt

2
. However, this updated value can violate the constraint x0

t� 1
� x0

t� 2
and we

need to add this constraint to the active set and update x0
t� 2

as well,

x0
t� 2
¼ x0

t� 1
¼ x0

t
¼

yt� 2þyt� 1þyt

3
, etc. In this manner the algorithm continues to back-average to

the left as needed until we have backtracked to time t0 where the constraint x0t0 � x0t0 � 1
is already

valid. Solving

minimize
x0

t0

Xt

t¼t0
ðx0t0 � ytÞ

2
ð6Þ

by setting the derivative to zero yields an update that corresponds to averaging

x0t0 ¼ x0t0þ1
¼ ::: ¼ x0

t
¼

Pt

t¼t0 yt

t � t0 þ 1
: ð7Þ

The optimal solution that satisfies all constraints up to time τ has been found and the search
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advances to the right again until detection of the next violation, backtracks again, etc. This pro-

cess continues until the last value xT is reached and having found the optimal solution we

return x = x0.

Algorithm 1 Pool Adjacent Violators Algorithm (PAVA) for isotonic regression

Require:data yt 2 y at time of reading
1: initializeset of poolsP  fg, data indext 0, pool indexi 0
2: for y in y do .read next data pointy
3: t t + 1
4: P  P [ fðy; 1; tÞg .add pool
5: while i > 0 and vi+1 < vi do .merge poolsif necessary

6: P i  
wiviþwiþ1viþ1

wiþwiþ1
;wi þ wiþ1; ti

� �

7: removePiþ1

8: i i − 1
9: i i + 1
10: for (v, w, t) inP do .constructsolutionfor all t
11: for τ = 0, . . ., w − 1 do xt+τ v
12: returnx

In a worst case situation a constraint violation is encountered at every step of the

forward sweep through the series. Updating all t values up to time t yields overall
PT

t¼2
t ¼ TðTþ1Þ

2
� 1 updates and an O(T2) algorithm. However, note that when a violation is

encountered the updated time points all share the same value (the average of the data at

these time points, Eq 7) and it suffices to track this value just once for all these updated time

points [30]. The constraints x0t � x0t� 1
between the updated time points hold with equality

x0t ¼ x0t� 1
, and are part of the active set. In order to obtain a more efficient algorithm, cf.

Algorithm 1 and S1 Video, we introduce “pools” or groups of the form (vi, wi, ti) with value

vi, weight wi and event time ti where i indices the groups. Initially the ordered set of pools is

empty. During the forward sweep through the data the next data point yt is initialized as its

own pool (yt, 1, t) and appended to the set of pools. Adjacent pools that violate the con-

straint vi+1� vi are combined to a new pool ð
wiviþwiþ1viþ1

wiþwiþ1
;wi þ wiþ1; tiÞ. Whenever pools i and

i + 1 are merged, former pool i + 1 is removed. It is easy to prove by induction that these

updates guarantee that the value of a pool is indeed the average of the corresponding data

points (see S1 Appendix) without having to explicitly calculate it using Eq (7). The latter

would be expensive for long pools, whereas merging two pools has O(1) complexity inde-

pendent of the pool lengths. With pooling the considered worst case situation results in a

single pool and only its value and weight are updated at every step forward, yielding O(T)

complexity. Constructing the optimal solution xt for all t in a final effort after the optimal

pool partition has been reached is also O(T). At convergence all constraints have been

enforced; further note that convergence to the exact solution occurs after a finite number of

steps, in contrast to interior point-methods which only approach the optimal solution

asymptotically.

Online Active Set method to Infer Spikes (OASIS). Now we adapt the PAVA approach

to problem (3). PAVA solves a regression problem subject to the constraint that the value at

the current time bin must be greater than or equal to the last. The AR(1) model posits a more

general but very similar constraint that bounds the rate of decay instead of enforcing monoto-

nicity. The key insight is that problem (3) is a generalization of problem (5): if p = 1 in the AR

model and we set γ = 1 (we skip the index of γ for a single AR coefficient) and λ = 0 in Eq (3)

we obtain Eq (5). Therefore we focus first on the p = 1 case and deal with p> 1 and arbitrary

calcium response kernels in the next section.

Fast online deconvolution of calcium imaging data
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We begin by inserting the definition of ŝ (Eq 3). Using that ŝ is constrained to be non-nega-

tive yields for the sparsity penalty

l k ŝk1 ¼ l1>ŝ ¼ l
XT

t¼1

XT

k¼1

Gk;t ĉt ¼ l
XT

t¼1

ð1 � gþ gdtTÞĉt ¼
XT

t¼1

mt ĉt ¼ μ>ĉ ð8Þ

with μt ≔ λ(1 − γ + γδtT) (with δ denoting Kronecker’s delta) by noting that the sum of the last

column of G is 1, whereas all other columns sum to (1 − γ).

Now the problem

minimize
ĉ

1

2

XT

t¼1

ðĉt � ytÞ
2
þ
XT

t¼1

mt ĉt subject to ĉtþ1 � gĉt � 0 8t ð9Þ

shares some similarity to isotonic regression with the constraint ĉtþ1 � ĉt (Eq 5). However, our

constraint ĉtþ1 � gĉt bounds the rate of decay instead of enforcing monotonicity. Thus we

need to generalize PAVA to handle the additional factor γ.

For clarity we mimic our approach from the last section: we first present the algorithm in

a way that conveys its core ideas, and then improve the algorithm’s efficiency using pools.

We introduce temporary values c0 and initialize them to the unconstrained least squares

solution, c0 = y − μ. Starting at t = 2 one moves forward until a violation of the constraint

c0
t
� gc0

t� 1
at some time τ is detected (Fig 2A). Updating the two time steps by minimizing

1

2
yt� 1 � c0

t� 1
Þ

2
þ 1

2
yt � gc0

t� 1
Þ

2
þ mt� 1c0t� 1

þ mtgc0
t� 1

��
yields an updated value c0

t� 1
. However,

this updated value can violate the constraint c0
t� 1
� gc0

t� 2
and we need to update c0

t� 2
as

well, etc., until we have backtracked some Δt steps to time t0 = τ − Δt where the constraint

c0t0 � gc0t0 � 1
is already valid. At most one needs to backtrack to the most recent spike, because

c0t0 > gc0t0 � 1
at spike times t0 (Eq 1). Solving

minimize
c0
t0

1

2

XDt

t¼0

ðgtc0t0 � ytþt0 Þ
2
þ
XDt

t¼0

mtþt0g
tc0t0 ð10Þ

Fig 2. Illustration of OASIS for an AR(1) process (see S2 Video). Red lines depict true spike times. The

shaded background shows how the time points are gathered in pools. The pool currently under consideration

is indicated by the blue crosses. A constraint violation is encountered for the second time step (A) leading to

backtracking and merging (B). The algorithm proceeds moving forward (C-E) until the next violation occurs

(E) and triggers backtracking and merging (F-G) as long as constraints are violated. When the most recent

spike time has been reached (G) the algorithm proceeds forward again (H). The process continues until the

end of the series has been reached (I). The solution is obtained and pools span the inter-spike-intervals.

https://doi.org/10.1371/journal.pcbi.1005423.g002
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by setting the derivative to zero yields

c0t0 ¼
PDt

t¼0
ðytþt0 � mtþt0 Þg

t

PDt
t¼0

g2t
ð11Þ

and the next values are updated according to c0t0þt ¼ gtc0t0 for t = 1, . . ., Δt. Note the similarity

of Eqs (7) and (11), which differs by weighting the summands by powers of γ due to the

altered constraints, and by subtracting μ from the data y due to the sparsity penalty. (Along

the way it is worth noting that, because a spike induces a calcium response described by ker-

nel h with components h1+t = γt, c0t0 could be expressed in the more familiar regression form

as
h>

1:Dtþ1
ðy� μÞt0 :t

h>
1:Dtþ1

h1:Dtþ1
, where we used the notation vi:j to describe a vector formed by components i to

j of v.) Now one moves forward again (Fig 2C–2E) until detection of the next violation (Fig

2E), backtracks again to the most recent spike (Fig 2G), etc. Once the end of the time series is

reached (Fig 2I) we have found the optimal solution and set ĉ ¼ c0.
While this yields a valid algorithm, it frequently updates each value c0t and recalculates the

full sums in Eq (11) for each step of backtracking. A similar algorithm has been suggested by

[31] for the problem without sparsity penalty. However, it passes through the time series in

reverse direction, from its end to its beginning, and is thus not applicable to online processing.

It considers directly the deconvolved activity ŝ and efficiently does not update all time steps

but only suspected spike times. However, their algorithm uses the inefficient updates of Eq 11,

rendering it an O(T2) algorithm.

As in PAVA, next we introduce “pools” into the algorithm; these are of critical importance

in order to obtain a true O(T) algorithm. In PAVA these pools serve as sufficient statistics sum-

marizing the data between jumps in the estimated output xt; here the pools summarize the

data between estimated spike times, where the estimated calcium signal ĉt jumps. Pools are

now tuples of the form (vi, wi, ti, li) with value vi, weight wi, event time ti and pool length li.
Here we explicitly track the pool length, which was identical to its weight for PAVA. Initially

the ordered set of pools is empty. During the forward sweep through the data the next data

point yt is initialized as its own pool (yt − μt, 1, t, 1) and appended to the set of pools. During

backtracking pools get combined and only the first value vi ¼ c0ti is explicitly considered, while

the other values are merely defined implicitly via c0tþ1
¼ gc0t . The constraint c0tþ1

� gc0t translates

to viþ1 � gli vi as the criterion determining whether pools need to be combined. The introduced

weights allow efficient value updates whenever pools are merged by avoiding recalculating the

sums in Eq (11). Values are updated according to

vi  
wivi þ gliwiþ1viþ1

wi þ g2liwiþ1

ð12Þ

where the denominator is the new weight of the pool and the pool lengths are summed

wi  wi þ g2li wiþ1 ð13Þ

li  li þ liþ1 ð14Þ

Whenever pools i and i + 1 are merged, former pool i + 1 is removed. It is easy to prove by

induction that the updates according to Eqs (12–14) guarantee that Eq (11) holds for all values

(see S1 Appendix).

Analogous to PAVA, the updates solve Eq (9) not just greedily but optimally, finding the

exact solution to the convex problem in O(T). One important point (especially relevant for

online use) is that the computation time per observation timestep is not fixed but random, since
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we might have to backtrack to update an unpredictable number of pools. We found empirically

that, over a wide range of hyperparameters, in about 80% of the cases 0–1 merge operation was

performed per observation timestep. With less than 0.5% probability four or more merges were

necessary; in all our experiments so far, never more than seven merges were needed.

The final algorithm is summarized in Algorithm 2 and illustrated in Fig 2 as well as in S2

Video. Comparing Algorithm 1 with 2 clearly reveals the modifications made and shows that

for γ = 1 and λ = 0 the algorithm reduces to PAVA.

Algorithm 2 Fast online deconvolution algorithm for AR1 processes with positive jumps

Require:decayfactorγ, regularizationparameterλ, data yt 2 y at time of
reading
1: initializeset of poolsP  fg, time index t 0, pool index i 0, solution

ŝ  0

2: for y in y do .read next data pointy
3: t t + 1
4: P  P [ fðy � lð1 � gþ gdtTÞ; 1; t; 1Þg .add pool
5: whilei > 0 and viþ1 < gli vi do .merge poolsif necessary

6: P i  
wiviþgli wiþ1viþ1

wiþg2li wiþ1
;wi þ g2li wiþ1; ti; li þ liþ1

� �
.Eqs (12–14)

7: removeP iþ1

8: i i − 1
9: i i + 1
10: for (v, w, t, l) inP do .constructsolutionfor all t†

11: for τ = 0, . . ., l − 1 do ĉtþt  gtmaxð0; vÞ .enforce ĉt � 0 via max
12: if t > 1 then ŝ t  ĉt � gĉt� 1

13: return ĉ; ŝ
†For onlineestimatesof ĉ and ŝ the solutioncan be constructed withinthe
loop over y not just after it.

Dual formulation with hard noise constraint. The formulation above contains a trou-

blesome free sparsity parameter λ (implicit in μ). A more robust deconvolution approach

chooses the sparsity implicitly by inclusion of the residual sum of squares (RSS) as a hard

constraint and not as a penalty term in the objective function [13]. The expected RSS satisfies

hkc − yk2i = σ2 T and by the law of large numbers kc − yk2� σ2 T with high probability, lead-

ing to the constrained problem

minimize
ĉ ;ŝ

k ŝk1 subject to ŝ ¼ Gĉ � 0 and k ĉ � yk2 � ŝ2T: ð15Þ

(As noted above, we estimate σ using the power spectral estimator described in [13]; see also

[8] for a similar approach.)

We will solve this problem by increasing λ in the dual formulation until the noise constraint

is tight. We start with some small λ, e.g. λ = 0, to obtain a first partitioning into pools P, cf. Fig

3A. From Eqs (11–13) along with the definition of μ (Eq 8) it follows that given the solution

(vi, wi, ti, li), where

vi ¼

Pli � 1

t¼0
ðytiþt � mtiþtÞg

t

Pli � 1

t¼0
g2t

¼

Pli � 1

t¼0
ðytiþt � lð1 � gþ gdtiþt;TÞÞg

t

wi
ð16Þ

for some λ, the solution ðv0i;w
0
i; t
0
i ; l
0
iÞ for λ + Δλ is

v0i ¼ vi � Dl

Pli� 1

t¼0
ð1 � gþ gdtiþt;TÞg

t

wi
¼ vi � Dl

1 � glið1 � dizÞ

wi
ð17Þ

where z is the index of the last pool and because pools are updated independently we make the
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approximation that no changes in the pool structure occur. Inserting Eq (17) into the noise

constraint (Eq 15) results in

Xz

i¼1

Xli � 1

t¼0

vi � Dl
1 � glið1 � dizÞ

wi

� �

gt � ytiþt

� �2

¼ ŝ2T ð18Þ

and solving the quadratic equation for Δλ yields

Dl ¼
� bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2
� 4a�

p

2a
ð19Þ

with a ¼
P

i;tx
2

it , β = 2 ∑i,t χit ξit and � ¼
P

i;tw
2
it � ŝ2T where xit ¼

1� gli ð1� dizÞ

wi
gt and

χit = yti+t − vi γ
t.

The solution Δλ provides a good approximate proposal step for updating the pool values vi

(using Eq 17). Since this update proposal is only approximate it can give rise to violated con-

straints (e.g., negative values of vi). To satisfy all constraints Algorithm 2 is run to update the

pool structure, cf. Fig 3C, but with a warm start: we initialize with the current set of merely z
pools P 0 instead of the T pools for a cold start (Alg 2, line 4). This step returns a set of vi values

that satisfy the constraints and may merge pools (i.e., delete spikes); then the procedure

(update λ then rerun the warm-started Algorithm 2) can be iterated until no further pools

need to be merged, at which point the procedure has converged. In practice this leads to an

increasing sequence of λ values (corresponding to an increasingly sparse set of spikes), and no

pool-split (i.e., add-spike) moves are necessary. (Note that it is possible to cheaply detect any

Fig 3. Optimizing sparsity parameter λ and AR coefficient ĝ. (A) Running the active set method, with

conservatively small estimate ĝ, yields an initial denoised estimate (blue) of the data (gray) roughly capturing

the truth (red). We also report the correlation between the deconvolved estimate and true spike train as a

direct measure for the accuracy of spike train inference. (B) Updating sparsity parameter λ according to Eq

(18) such that RSS = σ2 T (left) shifts the current estimate downward (right, blue). (C) Running the active set

method enforces the constraints again and is fast due to warm-starting. (D) Updating ĝ by minimizing the

polynomial function RSS(ĝ) and (E) running the warm-started active set method completes one iteration,

which yields already a decent fit. (F) A few more iterations improve the solution further. The obtained estimate

(blue) is hardly distinguishable from the one obtained with known true γ (yellow dashed trace, plotted in

addition to the traces in A-E, is on top of blue solid line). Note that determining ĝ based on the autocovariance

(additionally plotted purple trace) yields a crude solution that even misses spikes (at 24.6 s and 46.5 s).

https://doi.org/10.1371/journal.pcbi.1005423.g003
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violations of the KKT conditions in a candidate solution; if such a violation is detected, the cor-

responding pool could be split and the warm-started Algorithm 2 run locally near the detected

violations. However, as we noted, due to the increasing λ sequence we did not find this step to

be necessary in the examples examined here.)

This warm-starting approach brings major speed benefits: after the residual is updated fol-

lowing a λ update, the computational cost of the algorithm is linear in the number of pools z,

hence warm starting drastically reduces computational costs from k1 T to k2 z with proportion-

ality constants k1 and k2: if no pool boundary updates are needed then after warm starting the

algorithm only needs to pass once through all pools to verify that no constraint is violated,

whereas a cold start might involve a couple passes over the data to update pools, so k2 is typi-

cally significantly smaller than k1, and z is typically much smaller than T (especially in

sparsely-spiking regimes).

Additional baseline. For ease of exposition we thus far assumed no offsetting baseline.

Adding a known baseline b 6¼ 0 the problem reads

minimize
ĉ ;ŝ

1
2
kb1þ ĉ� yk2 þ lk ŝ k1 subject to ŝ ¼ Gĉ � 0: ð20Þ

For known baseline one merely needs to initialize OASIS by subtracting not only the sparsity

parameter μ(λ) from the data y, cf. Eq (11) and Algorithm 2, but also the baseline b. The fluo-

rescence ĉ depends only on the sum ϕ = b1 + μ.

If the baseline is not known, we want to optimize it too by solving the noise constrained

dual problem

minimize
b̂;ĉ ;ŝ

k ŝk1 subject to ŝ ¼ Gĉ � 0 and k b̂1þ ĉ � yk2 � ŝ2T: ð21Þ

We denote all except the differing last component of μ by μ = λ(1 − γ) (Eq 8) and of ϕ by

ϕ = b + λ(1 − γ). ϕ is the total shift applied to the data (except for the last time step) due to the

baseline and sparsity penalty before running OASIS. We increase ϕ until the noise constraint

is tight. ϕ can be initialized by min yt or better by a small percentile of y, e.g. 15%. Once OASIS

has been run with some ϕ the baseline b̂ is obtained by minimizing the objective Eq (20) with

respect to it, yielding b̂ ¼ hy � ĉi ¼ 1

T

PT
t¼1

yt � ĉtð Þ, and the sparsity parameter is m ¼ � � b̂.

Appropriately adding b̂ to Eq (18)

Xz

i¼1

Xli� 1

t¼0

vi � D�
1 � glið1 � dizÞ

ð1 � gÞwi

� �

gt � ytiþt þ b̂
� �2

¼ ŝ2T ð22Þ

and plugging the analytic expression b̂ ¼ 1

T

PT
t¼1

yt � ĉtð Þ ¼

1

T

Pz
j¼1

Plj � 1

t¼0 ytjþt � vj � D�
1� g

lj ð1� djzÞ

ð1� gÞwj

� �

gt

� �

into Eq (22) to account for the changing base-

line, we obtain an estimate of Δϕ using a block coordinate update of ϕ and b̂. Solving the ensu-

ing quadratic equation for Δϕ, yields

D� ¼
� bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

2
� 4a�

p

2a
ð23Þ

with a ¼
P

i;tx
2

it , β = 2 ∑i,t χit ξit and � ¼
P

i;tw
2
it � ŝ2T where xit ¼

1� gli ð1� dizÞ

ð1� gÞwi
gt �

P
j
ð1� g

lj ð1� djzÞÞ
2

Tð1� gÞ2wj

and wit ¼ ytiþt � vig
t � 1

T

P
j;tðytjþt � vjg

tÞ. All pools are updated according to
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v0i ¼ vi � D�
1� gli ð1� dizÞ

ð1� gÞwi
, cf. Eq (17). To satisfy all constraints Algorithm 2 is run, warm-started

by initializing with the current set of pools.

Optimizing the AR coefficient. Thus far the parameter γ has been known or been esti-

mated based on the autocovariance function. We can improve upon this estimate by optimiz-

ing ĝ as well, which is illustrated in Fig 3. After updating λ (and b̂) followed by running

Algorithm 2, we perform a coordinate descent step in ĝ that minimizes the RSS, cf. Fig 3D.

The RSS as a function of ĝ is a high order polynomial, cf. Eq (11), and we need to settle for

numerical solutions of

ĝ ¼ arg min
g

Xz

i¼1

Xli � 1

t¼0

b̂ þ
Pli � 1

t¼0
ðytiþt � mtiþtÞg

t

Pli � 1

t¼0
g2t

gt � ytiþt

 !2

: ð24Þ

We used Brent’s method [32] with bounds 0 � ĝ < 1 to solve this problem. One iteration con-

sists now of steps B-E in Fig 3, while for known γ only B-C were necessary. If optimizing the

baseline too, we obtained better results by minimizing the RSS jointly with respect to ĝ and b̂
using L-BFGS-B [33] instead of keeping the baseline b̂ fixed.

Faster optimization of hyperparameters. We have presented methods to estimate the

hyperparameters λ, b and γ, which require a handful of warm-started iterations of OASIS. To

gain further speed-ups these parameters can be estimated on decimated data. When downsam-

pling by a factor k, the average of k subsequent frames is calculated, the noise ŝ divided by a

factor
ffiffiffi
k
p

and the initial estimate of the AR coefficient scaled to ĝk. Alternatively, one could

estimate σ and γ based on the decimated data. Once the hyperparameters have been obtained,

the corresponding inverse transformations are performed: ĝ ! ĝ
1
k, b̂ ! b̂ and l! l 1� ĝ

1� ĝ1=k

such that the shrinkage m ¼ lð1 � ĝÞ due to the penalty term stays invariant. The final run of

OASIS on the full data is warm started using the solution obtained on the decimated data.

Data points that are not in the proximity of a spike of the downsampled solution are already

combined into large pools, instead of initializing each data point as its own separate pool.

More precisely, if the deconvolved decimated data has positive values at times {ti}, for decon-

volving the full data time steps
S

i{(k − 1)ti, . . ., (k + 1.5)ti} are initialized as individual pools,

while the remaining time steps are pooled together into bigger pools, separated from each

other by the individual ones, with values given by Eq (11) and weights by its denominator.

In particular the estimation of the AR coefficient γ is computationally burdensome, because

it involves expensive repeated evaluations of the RSS in order to minimize it as function of ĝ

(and b̂). The computing time depends linearly on the number of pools z and we gain further

speed-ups by restricting the attention to merely a subset of pools. In particular, because γ can

be well estimated based on large isolated calcium events, we restrict the calculation of the RSS

to the pools with largest product of value and length. A large value indicates a large event and a

long pool an isolated event. We present detailed results in the Results section, indicating that

altogether we can save about an order of magnitude computation with the greatest savings

obtained by reducing the optimization of ĝ from O(z) to O(1).

It is also worth noting that the hyperparameter estimation discussed above is performed in

‘batch’ mode, not online. However, once good hyperparameter values are obtained on a short

initial batch we can switch into online mode (with the hyperparameters held fixed) and handle

the remaining data in a stream.

Hard shrinkage and ℓ0 penalty. It is well-known that ℓ1 penalization results in “soft-

thresholding” [34], in which small values are zeroed out and large values are shifted to lower

values (where the size of this shift is proportional to the penalty λ). We can perform hard
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instead of soft thresholding (avoiding this shrinkage of large values) by replacing the sparsity

penalty by a constraint on the minimum spike size smin. The problem

minimize
ĉ ;ŝ

1
2
k ĉ � yk2 subject to ŝ ¼ Gĉ with ŝt � smin or ŝt ¼ 0 ð25Þ

is non-convex and we are not guaranteed to find the global minimum. However, we obtain a

good local minimum by merely changing the condition to merge pools from viþ1 < gli vi to

viþ1 < gli vi þ smin, modifying lines 3 and 5 in Algorithm 2.

Now we must choose a value for smin. In many cases we found that simply setting smin as a

small multiple of the noise level led to good results. If the scaling factor a (Eq 2) relating fluo-

rescence to action potentials was known, we could properly normalize the spike train such that

ŝt ¼ 1 corresponds to one spike and choose smin = 0.5, or a slightly higher value to avoid split-

ting one spike into two of size 0.5. However, often the factor is unknown or difficult to esti-

mate, rendering the choice of smin cumbersome. Analogous to the variation of λ, we can start

with smin = 0 and increase it until the RSS crosses the σ2 T threshold by sequentially removing

the smallest ‘spike’ and merging the pools it used to separate. By maximizing smin under the

noise constraint we minimize the number of non-zero values of ŝ. De facto, we try to find a

parsimonious description of the data by minimizing the number of non-zero values of ŝ, thus

solving a sparsity problem with ℓ0 penalty:

minimize
ĉ ;ŝ

k ŝk0 subject to ŝ ¼ Gĉ � 0 and k ĉ � yk2 � ŝ2T ð26Þ

Instead of sequentially removing the smallest ‘spike’ we actually obtained the best performance

by sequentially adding spikes at the highest values of the ℓ1-solution ŝ until the RSS is smaller

than ŝ2T. While the updates resemble those of matching pursuit [35], in practice we found

that adding spikes at the positions suggested by the ℓ1-solution yields better results than match-

ing pursuit (which adds spikes at positions that greedily lead to the highest RSS reduction per

step). Specifically, we found that often matching pursuit cannot resolve spikes in close proxim-

ity, but instead results in erroneous placement of one big spike as an explanation for all nearby

spikes. Instead of merging pools we now need to split pools. Denoting the time where to add a

spike by ts, i.e. the time where the ℓ1-solution has its highest value after ruling out times where

spikes have already been added, one searches for the pool i in which it falls, i.e. ti < ts < ti + li.

Pool i gets updated as l0i ¼ ts � ti, w0i ¼
Pl0i � 1

t¼0 g2t , and v0i ¼
Pl0i � 1

t¼0 ytþti
gt=w0i, which follows

directly from Eq (11) with μt = 0. All pool indices greater than i are increased by one and a new

pool is inserted after pool i with l0iþ1
¼ li � l0i, t0iþ1

¼ ts, w0iþ1
¼
Pl0iþ1

� 1

t¼0 g2t , and

v0iþ1
¼
Pl0iþ1

� 1

t¼0 ytþts
gt=w0iþ1

.

As is the case with all optimized hyperparameters, once we have obtained a decent estimate

of smin on an initial subset of the data we can switch back into online mode. In online mode

our algorithm is typically faster than matching pursuit, since matching pursuit requires updat-

ing O(Δ) points of the residual with each update, where Δ is the length of the calcium transient

(in number of frames).

Generalization beyond the AR(1) case

A greedy solution for the AR(p>1) processes. An AR(1) process models the calcium

response to a spike as an instantaneous increase followed by an exponential decay. This is a

good description when the fluorescence rise time constant is small compared to the length of a

time-bin, e.g. when using GCaMP6f [36] with a slow imaging rate. For fast imaging rates and

slow indicators such as GCaMP6s it is more accurate to explicitly model the finite rise time.
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Typically we choose an AR(2) process, though more structured responses (e.g. multiple decay

time constants) can also be modeled with higher values for the order p.

For an AR(p) process the sparsity penalty lkŝk1 can again be expressed as μ>ĉ, because

l k ŝk1 ¼ l1>ŝ ¼ l
XT

t¼1

XT

k¼1

Gk;t ĉt ¼ l
XT

t¼1

ð1 �
Xminðp;T� tÞ

i¼1

giÞĉt ¼
XT

t¼1

mt ĉt ¼ μ>ĉ; ð27Þ

with mt≔lð1 �
Pminðp;T� tÞ

i¼1
giÞ, by evaluating the column sums of G. For p> 1 the dynamics are

no longer first-order Markov and the next value depends not only on the current but on possi-

bly multiple previous time steps. Now following along the lines of the previous section just

leads to a greedy, approximate solution; we will present an exact algorithm later. We use

matrix- and vector notation to describe the dynamics of ct. Let the transition matrix A, multi

time step calcium vectors ζt, and vector e be defined as

A ¼

g1 g2 � � � gp

1 0 � � � 0

..

. . .
. . .

. ..
.

0 � � � 1 0

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ζt ¼

ct

ct� 1

..

.

ct� pþ1

0

B
B
B
B
B
@

1

C
C
C
C
C
A

e ¼

1

0

..

.

0

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð28Þ

The calcium dynamics is given by ζt = Aζt−1 + ste. Analogously to the AR(1) case we derive

an algorithm that moves through the time series until it finds a violation of the constraint

c0
t
� e>Aζ0

t� 1
for some time τ, updates c0

t
and c0

t� 1
, and backtracks further until the updates do

not violate any constraints at previous time steps. Note that we also implicitly have constraints

on ζt, enforcing the fact that ζt+1 is mostly a time-shifted version of ζt.

Assuming we need to backtrack by Δt steps and introducing again t0 = τ − Δt, the objective

is to minimize
Pt

t¼t0
1

2
c0t � ytÞ

2
þ mtc0t

� ��
with respect to c0t0 under the active constraints ζt =

Aζt−1 for t = t0 + 1, . . ., τ. Plugging in the constraints on the dynamics the objective reads

minimize
c0
t0

1

2

XDt

t¼0

ðe>Atζ 0t0 � ytþt0 Þ
2
þ
XDt

t¼0

mtþt0e
>Atζ 0t0 : ð29Þ

Setting the derivative with respect to c0t0 to zero and solving for c0t0 yields

c0t0 ¼
PDt

t¼0
ðytþt0 � mtþt0 �

Pp
k¼2
ðAtÞ

1;kc
0
t0þ1� kÞðA

tÞ
1;1

PDt
t¼0
ðAtÞ

2

1;1

ð30Þ

where ðAtÞ
2

1;1
denotes the square of the entry in the first row and column in the matrix

obtained as t-th matrix power of A. Again, note that these entries describe the calcium kernel

h with components h1+t = (At)1,1. Eq (30) reduces to Eq (11) for p = 1 where A is just a

1 × 1-matrix with entry γ. The next values are updated according to c0t0þt ¼
Pp

k¼1
gkc0t0þt� k for

t = 1, . . ., Δt.
We derive again an efficient formulation of the algorithm using pools. Considering the

denominator in Eq (30) as a weight in analogy to the AR(1) case and calculating the weighted

sum upon merging of pools is not valid for p> 1 because in general (At)1,1(Au)1,1 6¼ (At+u)1,1.

Introducing pools is still useful as it allows us to keep track of only a small number of p ele-

ments in each pool. While for the case of AR(1) we only kept track of each group’s first

element, we now keep track of the first as well as the p − 1 last elements. In order to speed

up the update in Eq (30), we can precompute the powers of A and store (At)1,: in memory.
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Note that only the powers up to the maximal inter-spike-interval are needed, which can

be much smaller than T; of course, for very large values of t, (At)1,:� 0, by the stability of

A; thus for high powers the entries of (At)1,: can also be well approximated by a quickly

computable exponential function or simply be truncated. Analogous to the case p = 1, we

can also impose a constraint on the minimum spike size smin at the expense of having to

deal with a non-convex problem by merely changing the condition to merge pools from

viþ1 < ðAliÞ
1;1

vi þ ðAliÞ
1;2

ui� 1 to viþ1 < ðAliÞ
1;1

vi þ ðAliÞ
1;2

ui� 1 þ smin where vi and ui denote the

first and last value of pool i.
According to Eq (30) the solution is a linear function of μ, and hence of λ. Thus the hard

noise constraint for the RSS kc − yk2 = σ2 T is a quadratic equation in λ, that can be solved ana-

lytically, under the assumption of invariant pool structure analogous to above case of AR(1),

but involving more lengthy expressions which we state explicitly in S1 Appendix. Updating all

pools independently according to Eq (30) can give rise to violated constraints, requiring us to

rerun the algorithm, warm-started by initializing with the current set of pools, as described

above. After 2–3 iterations no pools need to be merged and the final solution has been found.

We can again interleave an update step for optimizing the parameters γi, as described above.

Online Non-Negative Least Squares (ONNLS). We noted above that Eq (30) is not first-

order Markovian: it includes a dependency on p − 1 previous time steps and hence in general

the previous pool. In updating only the first value within a pool and using the current values of

the p − 1 last values of the previous pool within the update Eq (30), we actually performed

greedy updates. These greedy updates can yield remarkably good results, in particular for long

pools, such that the last value is already well constrained by a number of data points and hardly

affected by the next pool. Nonetheless, in some cases these greedy updates lead to errors in the

timing of inferred activity, in particular when the rise time of the calcium response is slow

compared to the frame rate. The method described in this section can be used to correct these

small errors. It is again an active set method that can be run in online mode; however, the

method introduced above is a dual active set method, whereas here we describe a primal active

set method.

We begin by reformulating the problem as

minimize
ŝ

1
2
kK ŝ� yk2 þ lk ŝ k1 subject to ŝ � 0 ð31Þ

where K = G−1 is the convolution matrix with entries Kt,u = h1+t−u if t� u else zero; the kernel

vector h can be taken as an arbitrary response kernel for most of the development in this sec-

tion. As noted earlier, h1+t = (At)1,1 for the special case of an AR process. As we have seen pre-

viously, the effect of the sparsity penalty (together with the non-negative constraint) is to shift

the data down by a vector μ = λK−>1, and the problem reduces to a non-negative least squares

(NNLS) problem.

minimize
ŝ

1
2
kK ŝ � ðy � lK � >1Þk2 subject to ŝ � 0: ð32Þ

(Note that the gradient of Eq (32) is the same as the gradient of Eq (31),

K>ðK ŝ � ðy � lK � >1ÞÞ ¼ K>ðK ŝ � yÞ þ l1. In addition, K is triangular with positive num-

bers on the main diagonal, hence det K> 0 and K is invertible.)

A classic algorithm for solving a NNLS problem is the active set method of [37] and [38].

This algorithm alternates between normal equation matrix solves involving sub-matrices of

K>K and updates of the active set. A naive application of this algorithm would scale cubically

with the number of spikes. Instead, we exploit the locality of the problem (the fact that chang-

ing a spike height at time t does not affect the solution at very distant times s) and apply the
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NNLS algorithm in the inner loop of a sequential coordinate block descent method. Specifi-

cally, we apply warm-started NNLS on blocks of size Δ (where Δ is the length of the calcium

transient), stepping the block in steps of size Δm < Δ (we found Dm ¼
D

2
to be effective for off-

line applications; for online applications Δm would be set smaller) and applying NNLS while

holding the values of s outside the block fixed. We further exploit the Toeplitz structure of K to

precompute the necessary sub-matrices of K>K.

Algorithm 3 Fast online deconvolution for arbitrary convolution kernels

Require:kernelh, regularizationparameterλ, windowsize Δ, shift size Δm,
data subsetyt:t+Δ−1� y at time of reading

1: initializeKt,u h1+t − u for 1� u� t� Δ, y y − λK−>1, A K>K, t 1
2: whilet + Δ� T do
3: ŝt:tþD� 1  NNLS ðA;K>yt:tþD� 1; ŝt:tþD� 1Þ .classicNNLS on ŝt:tþD� 1, but warm-started

†

4: yt:tþD� 1  yt:tþD� 1 � K:;1:Dm
ŝt:tþDm � 1 .peel off contributionof previousactivity

5: t t + Δm
6: ŝt:T  NNLS ðAtþD� T:D;tþD� T:D;K>1:T� tþ1;1:T� tþ1

yt:T ; ŝt:TÞ .robustnessto T� D

Dm
=2N

7: return ŝ
†The functionNNLS implementsa minorvariationof the classicalgorithmof
[38] to solveminŝ2RT

þ
ky � K ŝk2: K>K and K>y are precomputed outsidethe func-

tion,to exploitthat NNLS is calledseveraltimeswith the same K. Further ŝ
is warm-started instead of initializing it as 0.

The resulting algorithm (Alg 3) runs in O(T) time. It involves solving a least squares prob-

lem for the time points within the considered window where ŝt > 0; thus it scales cubically

with the number of spikes per window and depends on the sparsity of ŝ. (In fact, for AR(p)

models, the required matrix solves can be performed using linear-time (not cubic-time) Kal-

man filter-smoother methods, but the matrix sizes were sufficiently small in the examples

examined here that the Kalman implementation was not necessary.) Further speedups can be

obtained by restricting the set of possible spike times, for example, by running the AR(1) ver-

sion of OASIS on a temporally decimated version of the signal to crudely identify the set of

spike times, then never updating ŝ away from zero on the complement of this set.

To summarize, we describe in Algorithm 4 how the algorithmic variants introduced here

are combined into a final full algorithm that includes hyperparameter optimization, the vari-

ants for AR(1) or AR(2), and soft (ℓ1 penalty) or hard shrinkage (ℓ0 penalty).

Algorithm 4 Full algorithm with hyperparameter optimization

Require:data y, order p of the AR-process,sparsitynorm q
1: initialize
2: AR parameters ĝ1; . . . ; ĝp usingautocorrelationof y
3: noiselevel ŝ usingPSD of y
4: background b̂ usingpercentileof y
5: dual variableλ 0
6: ~y  temporallydecimatebatchof y .for fasterhyperparameter

optimization
7: rescalehyperparamatersdue to decimation
8: whilehyperparamatersnot convergeddo .optimizehyperparameters,

cf. Fig 3
9: Run warm-started Alg 2 on ~y with currenthyperparameters
10: Updatehyperparameters .Eqs (19, 23 and 24)
11: if q = 0 then determinesmin .Sec. ‘Hard shrinkageand ℓ0 penalty’
12: rescalehyperparamatersusingthe inversetransformationsof line 7
13: ĉ; ŝ  run Alg 2 on full data y
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14: if p = 1 then
15: return ŝ
16: else
17: ŝ  run warm-startedAlg 3 on full data y
18: return ŝ

Results

Benchmarking OASIS

We generated datasets of 20 fluorescence traces each for p = 1 and 2 with a duration of 100 s at

a framerate of 30 Hz, such that T = 3,000 frames. The spiking signal came from a homogeneous

Poisson process. We used γ = 0.95, σ = 0.3 for the AR(1) model and γ1 = 1.7, γ2 = −0.712, σ = 1

for the AR(2) model. Fig 4A–4C are reassuring that our suggested (dual) active set method

yields indeed the same results as other convex solvers for an AR(1) process and that spikes are

extracted well. For an AR(2) process OASIS is greedy and yields good results that are similar to

Fig 4. OASIS produces the same high quality results as convex solvers at least an order of magnitude

faster. (A) Raw and inferred traces for simulated AR(1) data, (B) simulated AR(2) and (C) real data from [36]

fitted with an AR(2) model. OASIS solves Eq (3) exactly for AR(1) and just approximately for AR(2) processes,

nevertheless well extracting spikes. (D) Computation time for simulated AR(1) data with given λ (blue circles,

Eq 3) or inference with hard noise constraint (green x, Eq 15). GUROBI failed on the noise constrained

problem. The inset shows the same data in logarithmic scale. (E) Computation time for simulated AR(2) data.

(F) Normalized computation time of OASIS for simulated AR(1) data with given λ (blue circles, Eq 3) and

inference with hard noise constraint on full data (green x, Eq 15) or small initial batch followed by processing in

online mode (orange crosses).

https://doi.org/10.1371/journal.pcbi.1005423.g004
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the one obtained with convex solvers (lower panels in Fig 4B and 4C), with virtually identical

denoised fluorescence traces (upper panels).

Fig 4D and 4E report the computation time (±SEM) averaged over all 20 traces and ten

runs per trace on a MacBook Pro with Intel Core i5 2.7 GHz CPU. We compared the run time

of our algorithm to a variety of state of the art convex solvers that can all be conveniently called

from the convex optimization toolbox CVXPY [39]: embedded conic solver (ECOS, [40]),

MOSEK [41], splitting conic solver (SCS, [42]) and GUROBI [43]. ECOS and MOSEK are the

most competitive methods; these are interior-point methods that cannot use warm starts.

With a known sparsity parameter λ (Eq 3), OASIS is about two magnitudes faster than any

other method for an AR(1) process (Fig 4D, blue disks) and more than one magnitude for an

AR(2) process (Fig 4E). Whereas several of the other solvers take almost the same time for the

noise constrained problem (Eq 15, Fig 4D and 4E, green x), our method takes about three

times longer to find the value of the dual variable λ compared to the formulation where the

residual is part of the objective; nevertheless it still outperforms the other algorithms by a huge

margin.

We also ran the algorithms on longer traces up to a length of T = 300,000 frames (Fig 4F),

confirming that OASIS scales linearly with T, where we obtained a proportionality constant of

1 μs/frame. For an unknown hyperparameter λ we obtained its value not only on the full data

but on an initial small batch (1,000 frames) and kept it fixed, which sped activity inference up

by a factor of three once T is sufficiently large (Fig 4F, orange vs green) without compromising

quality (correlation between deconvolved activity and ground truth spike train 0.882 ± 0.001 vs

0.881 ± 0.002 for T = 300,000). Our active set method maintained its lead by 1–2 orders of

magnitude in computing time. Further, compared to our active set method the other algo-

rithms required at least an order of magnitude more RAM, confirming that OASIS is not only

faster but much more memory efficient. Indeed, because OASIS can run in online mode the

memory footprint can be O(1), instead of O(T).

We verified these results on real data as well. Running OASIS with the hard noise con-

straint and p = 2 on the GCaMP6s dataset of 14,400 frames collected at 60 Hz from [36, 44]

took 0.101±0.005 s per trace, whereas the fastest other methods required 2.37±0.12 s. Fig 4C

shows the real data together with the inferred denoised and deconvolved traces as well as the

true spike times, which were obtained by simultaneous electrophysiological recordings [36].

We also extracted each neuron’s fluorescence activity using CNMF from an unpublished

whole-brain zebrafish imaging dataset from the M. Ahrens lab. Running OASIS with hard

noise constraint and p = 1 (chosen because the calcium onset was fast compared to the acquisi-

tion rate of 2 Hz) on 10,000 traces out of a total of 91,478 suspected neurons took 81.5 s

whereas ECOS, the fastest competitor, needed 2,818.1 s. For all neurons we would hence

expect 745 s for OASIS, which is below the 1,500 s recording duration (3,000 frames), and over

25,780 s for ECOS and other candidates.

OASIS solves the non-negative deconvolution problem exactly for an AR(1) process; how-

ever, as discussed above, for p> 1 the solution is only a good (greedy) approximation. To

obtain the exact solution we ran the ONNLS algorithm on the simulated AR(2) traces using a

window size of 200 frames, which was about ten times larger than the fluorescence decay time,

and shifting the window by 100 frames. We obtained higher accuracy results than all the state

of the art convex solvers we compared to, requiring merely 27.8±0.4 ms per trace for λ = 0 and

20.0±0.4 ms per trace for λ = 30, the value that ensures that the hard noise constraint is tight.

The choice of λ regulated the sparsity of the solution, which affects the run time of ONNLS.

The fastest state of the art convex solver (ECOS) required 305±9 ms and was thus an order of

magnitude slower. It took merely 8.56±0.04 ms to obtain an approximate greedy solution

using OASIS, independent of the choice of sparsity parameter λ. Though obtaining the exact
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solution requires more computing time, it is well within the same order of magnitude. In

contrast, running batch NNLS was significantly slower, requiring 2,430±53 ms for λ = 0 and

1,620±37 ms for λ = 30. Solving the noise constrained problem by iterating warm-started

ONNLS to obtain the corresponding value of the dual variable λ took 73±1 ms. However, we

can improve on that by first running the fast but (for p> 1) approximate dual method to

obtain a good estimate of λ as well as s, and then switching to the slower but exact primal

method. Running OASIS and executing warm-started ONNLS just once required collectively

merely 23±1 ms, similarly to cold-started ONNLS with given λ. Running ONNLS not just

once, but until the value of λ has been further tuned such that the noise constraint holds not

approximately but exactly, took altogether 31±1 ms.

Hyperparameter optimization

We have shown that we can solve Eqs (3) and (15) faster than interior point methods. The AR

coeffient γ was either known or estimated based on the autocorrelation in the above analyses.

The latter approach assumes that the spiking signal comes from a homogeneous Poisson

process, which does not generally hold for realistic data. Therefore we were interested in

optimizing not only the sparsity parameter λ, but also the AR(1) coeffient γ. To illustrate the

optimization of both, we generated a fluorescence trace with spiking signal from an inhomoge-

neous Poisson process with sinusoidal instantaneous firing rate (Fig 3). We conservatively ini-

tialized ĝ to a small value of 0.9. The value obtained based on the autocorrelation was 0.9792

and larger than the true value of 0.95. The left panels in Fig 3B and 3D illustrate the update of

λ from the previous value λ− to λ� by solving a quadratic equation analytically (Eq 18) and the

update of ĝ by numerical minimization of a high order polynomial respectively. Note that after

merely one iteration (Fig 3E) a good solution is obtained and after three iterations the solution

is virtually identical to the one obtained when the true value of γ has been provided (Fig 3F).

This holds not only visually, but also when judged by the correlation between deconvolved
activity and ground truth spike train, which was 0.869 compared to merely 0.773 if ĝ was

obtained based on the autocorrelation. The optimization was robust to the initial value of ĝ, as

long as it was positive and not, or only marginally, greater than the true value. The value

obtained based on the autocorrelation was considerably greater and partitioned the time series

into pools in a way that missed entire spikes.

After illustrating the hyperparameter optimization we next quantify the computing time

and quality of spike inference for various optimization scenarios. We generated 20 fluores-

cence traces with sinusoidal instantaneous firing rate as used in the illustration (Fig 3), again

having a duration of 100 s at a framerate of 30 Hz, such that T = 3,000 frames, however we off-

set the data by an additional positive baseline b that can be present in real data. This baseline

can be optimized together with the sparsity parameter λ, as shown in Methods (subsection

“Additional baseline”). The fastest deconvolution method is to merely estimate all parameters

and run OASIS just once, cf. first row in Table 1 which shows the mean (±SEM) for computing

time as well as correlation of the inferred spike train. As a baseline estimate we used the 15%

percentile of the fluorescence trace. The sparsity penalty was set to λ = 0. A better choice of λ is

actually obtained by optimizing it, such that the hard noise constraint kb1þ ĉ � yk2
¼ ŝ2T

holds, cf. second row in Table 1. The next rows show that optimizing b further improves the

result, as does adding γ. However, the increased number of optimized parameters results in

extra computational cost. The computation time can be reduced by estimating γ not using the

full data but only a limited number of pools, which does not affect the quality of the result, cf.

row five and six in Table 1. Note that by restricting the optimization to a fixed number of

pools, its computational load does not increase with the duration of the recording, hence the
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gain would be even more dramatic for longer time series. Further speed ups are obtained by

estimating the parameters on a decimated version of the data, as the last rows in Table 1 illus-

trate. Here we decimated the fluorescence traces by a factor of ten, without harming the infer-

ence quality.

Hard thresholding

OASIS solves a LASSO problem resulting in soft shrinkage. The deconvolved trace ŝ typically

has values smaller than 1 and often shows “partial spikes” in neighboring bins reflecting the

uncertainty regarding the exact position of a spike, cf. Fig 4. While this information can be

useful, one sometimes wants to merely commit to one event within a time bin instead and get

rid of remaining small values in ŝ. We ran a slightly modified version of the algorithm that

replaces the sparsity penalty by a constraint on the minimal spike size smin, yielding sparser

solutions but rendering the problem non-convex. Although we are not guaranteed to find the

global minimum, we obtained good results, cf. Fig 5. To quantify directly the similarity

Table 1. Cost and quality of spike inference with parameter optimization.

optimize accelerate Time [ms] Correlation

- - 3.25 ± 0.03 0.831 ± 0.006

λ - 9.2 ± 0.1 0.849 ± 0.006

λ, b - 8.4 ± 0.2 0.857 ± 0.007

λ, b, γ - 48.4 ± 2.3 0.875 ± 0.006

λ, b, γ use 10 pools 16.0 ± 0.4 0.875 ± 0.006

λ, b, γ use 5 pools 14.2 ± 0.3 0.875 ± 0.006

λ, b, γ decimate 29.4 ± 1.3 0.878 ± 0.006

λ, b, γ decimate, use 10 pools 12.1 ± 0.2 0.878 ± 0.006

λ, b, γ decimate, use 5 pools 10.6 ± 0.2 0.877 ± 0.006

The first column shows the quantities that have been optimized, the second methods used to accelerate the parameter optimization, the third the computing

time per trace (±SEM) and the last shows the performance of spike train inference using the correlation between inferred activity and true spike train. We

used 20 simulated fluorescence traces with a spiking signal coming from an inhomogeneous Poisson process and a duration of 100 s at a framerate of 30

Hz such that T = 3,000 frames.

https://doi.org/10.1371/journal.pcbi.1005423.t001

Fig 5. Thresholding can improve the accuracy of spike inference. (A) Inferred trace using L1 penalty (L1,

blue) and the thresholded OASIS (Thresh., green). The data (gray) are simulated with AR(1) model. (B)

Inferred spiking activity. (C) The detected events using thresholded OASIS depend on the selection of smin.

The ground truth is shown in red. (D,E,F), same as (A,B,C), but the data are simulated with AR(2).

https://doi.org/10.1371/journal.pcbi.1005423.g005
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between the inferred deconvolved trace and ground truth spike train we calculated the correla-

tion between the two. The best results were obtained for smin = 0.5 yielding correlation

0.899 ± 0.009 with the true spike train compared to 0.879 ± 0.006 for the solution of the prob-

lem with hard noise constraint (Eq 15). However, in a practical application the scaling factor

between calcium fluorescence and a single spike, which is 1 for our simulated data, is often

unknown, rendering it impossible to simply set the threshold smin to the half of it. Instead, we

can vary the threshold until the RSS crosses the threshold σ2 T. The order in which the pools

are merged or split matters for this non-convex case and sequentially adding spikes at the high-

est values of the ℓ1-solution yielded the best performance with correlation 0.888 ± 0.007.

Fig 5 also shows results with a constraint on the minimal spike size for an AR(2) process.

Adding the constraint helps when pressed for a binary decision whether to assign a spike or

not, yielding visually excellent results. However, with a finite rise time of the calcium

response the onset detection is notoriously difficult, because for a low threshold there are a

lot of false positives due to noise, whereas for a high threshold, closer to the peak of the cal-

cium kernel, the onset has already occurred earlier. Indeed, the greedy method for an AR(2)

process tends to register spikes too late, which is further exacerbated when a threshold on the

spike size (smin = 0.5) is introduced, leading to low values of spike similarity (correlation

0.419 ± 0.016) compared to the solution of basis pursuit denoising (Eq 15) (correlation

0.497 ± 0.013). We can incorporate a correction step that whenever a new spike is added,

slightly jitters the previous one and calculates the change in the optimization objective in

order to determine the optimal placement of the spike. For simplicity and low computational

burden, we restrict the consideration of the changing RSS to the pools prior and after the jit-

tered spike, which improves the spike detection (correlation 0.462 ± 0.015) while only mar-

ginally increasing computational cost (from 8.65 ms to 11.65 ms). Further improvements can

be obtained by following up with (O)NNLS. The solution obtained by OASIS with threshold

on the minimal spike size and jittering can be used to restrict (O)NNLS to have non-zero val-

ues only in close proximity to the spikes of the greedily obtained solution. This processing

step increased the performance of spike inference to correlation 0.530 ± 0.010, which is better

than the already mentioned one obtained for exactly solving the convex problem (Eq 15).

Hence, though imposing a minimal spike size renders the problem non-convex, a tractable

approximate solution to this problem can improve over the exact solution of the convex basis

pursuit denoising problem.

In the AR(2) case the exact solutions (ONNLS with λ or ONNLS with support only in the

proximity of the thresholded solution) consistently improved over the faster greedy methods,

as measured by spike train correlation. The performance was hardly affected by whether the

penalized or the thresholded version was chosen. Spike train correlation harshly penalizes

spikes that are detected but at an incorrect time, no matter how close; therefore the activity

plots and correlation values convey somewhat complementary information about the quality

of the inference. We attribute the performance gap between greedy and exact solutions to

greedy methods missing the exact time step more often. However, the optimally attainable

time resolution is already limited by low SNR, in particular if the rise time of the calcium indi-

cator is finite. Indeed, being more lenient regarding the exact spike timing we calculated the

correlations after convolving the spike trains with a Gaussian with standard deviation of one

bin width. The correlation values increased to 0.731 ± 0.008 for the greedy thresholded solu-

tion and to 0.800 ± 0.007 if followed up by ONNLS, but did not increase further for wider

Gaussian kernels. This indicates that in the considered SNR regime single time bin resolution

is out of reach, but spike times can be inferred with an uncertainty of about one time bin

width.
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Online spike inference with limited lag

For an exact solution of the non-negative deconvolution problem of an AR(1) process

OASIS needs to backtrack to the most recent spike. (For an AR(2) process the solution is

greedy and merely approximate. ONNLS yields an exact solution in this case but considers

an even wider time window.) Such delays could be too long for some interesting closed loop

experiments; therefore we were interested in how well the method performs if backtracking

is limited to just a few frames. We varied the lag in the online estimator, i.e. the number of

future samples observed before assigning a spike at time zero, for different signal-to-noise

ratios (SNR). For each lag we chose the sparsity parameter λ such that the noise constraint

kĉ � yk2
� s2T was tight. This yielded increasing values of λ for smaller lags, compensating

for the fact that limiting backtracking to fewer frames also imposes fewer constraints

(ĉt � gĉt� 1) on the dynamics. In the case of hard thresholding, better results were obtained

with higher smin for smaller lags too, in order to avoid that one spike is split in two. We used

a hand-chosen value of smin = 0.5 + 0.175 e−τ where τ is the lag, that asymptotically

approaches the 0.5 for batch processing. The obtained results are depicted in Fig 6. For realis-

tic SNR (3–5, though [36] report even higher values, cf. Fig 4C) and sample rates (30 Hz),

lags of 2–5 yielded virtually the same results as offline estimation. The exact number depends

on the noise; however, the main effect of noise was to reduce the optimal performance attain-

able even with batch processing, as the asymptotic values in Fig 6A and 6B reveal.

Discussion

We presented an online active set method for spike inference from calcium imaging data. We

assumed that the forward model to generate a fluorescence trace from a spike train is linear-

Gaussian. Further development will extend the method to nonlinear models [45] incorporat-

ing saturation effects and a noise variance that increases with the mean fluorescence to better

resemble the Poissonian statistics of photon counts. In S1 Appendix we already extend our

mathematical formulation to include weights for each time point as a first step in this

direction.

Our method considered spike inference as a sparse non-negative deconvolution problem.

We focused on the formulation that imposes sparsity using an ℓ1 penalty that renders the

Fig 6. Varied lag in the online estimator. (A,B) Performance of spike inference as function of lag for various

noise levels (i.e., inverse SNR) without (A) and with positive threshold smin (B). We used correlation of the

inferred spike train as similarity measure and compared to ground truth as well as to the optimally recoverable

activity when the lag is unlimited as in offline processing. (C) Inferred trace with positive threshold smin for

increasing lag using the data depicted in Fig 4A with high noise level (σ = 0.3). The gray lines indicate the true

spike times.

https://doi.org/10.1371/journal.pcbi.1005423.g006
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problem convex. Using this problem formulation for spike inference has already long standing

success within the neuroscientific community. We were able to speed it up by an order of mag-

nitude compared to previously employed interior point methods and derived an algorithm

that lends itself to online applications. However, recently several investigators [46–48] have

advocated sparser methods, e.g. by using an ℓq-norm with q< 1 instead of q = 1 [46] or by

enforcing refractoriness [47] (see also [13] for some further discussion of sparsening beyond ℓ1

penalization). They report improved results, however in some cases at the expense of non-con-

vexity, thus losing the guarantee of finding the global optimum. We leave it to future work to

incorporate refractoriness into the methods developed here, but we did slightly modify the

sparse non-negative deconvolution problem by adding the constraint that positive spikes need

to be larger than some minimal value. A minor modification to our algorithm enabled it to

find an (approximate) solution of this non-convex problem, which can be marginally better

than the solution obtained with ℓ1 regularizer. The ℓ1-penalized solution reflects the uncer-

tainty regarding the exact position of a spike by distributing it as “partial spikes” over neigh-

boring bins. The thresholded solution lets go of this potentially useful information and instead

commits to one event within the locally optimal time bin. We leave it up to the user which

approach to choose.

Availability

We provide Python and MATLAB implementations of our algorithm online (https://github.

com/j-friedrich/OASIS and linked repositories therein). The code is readily usable on new

data and includes example scripts that produce all figures and Table 1 of this article.

Here we focused on temporal data, i.e. noisy neural fluorescence data that has been

extracted and demixed from raw pixel data. We further added OASIS as deconvolution sub-

routine to CaImAn (https://github.com/simonsfoundation/CaImAn) [49], which implements

CNMF for simultaneous denoising, deconvolution, and demixing of spatio-temporal calcium

imaging data.

Supporting information

S1 Appendix. Technical appendix. The supplementary material includes a naïve isotonic

regression algorithm without pooling. We generalize OASIS to the case of weighted regression

and provide a mathematical proof for updates according to Eqs (12–14). We further discuss

how to account for elevated initial calcium fluorescence levels and provide explicit expressions

of the hyperparameter updates for an AR(2) model.

(PDF)

S1 Video. Illustration of PAVA. The supplementary video illustrates PAVA. The pool cur-

rently under consideration is indicated by the blue crosses. The algorithm sweeps through the

time series and enforces the order constraints x1� . . .� xT.

(MP4)

S2 Video. Illustration of OASIS. The supplementary video illustrates OASIS for an AR(1)

process. As in Fig 2, red lines depict true spike times and the shaded background shows how

the time points are gathered in pools. The pool currently under consideration is indicated by

the blue crosses. The upper panel shows how the calcium fluorescence trace c0 develops while

the algorithm runs, cf. Fig 2. The video additionally shows the deconvolved trace s0 = Gc0

(Eq 3) in the lower panel. The algorithm sweeps through the time series and enforces the con-

straint s0 � 0.

(MP4)
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