Some properties of the dynamics \hspace{1em}
In all the following, we use the notation $x \in L^\infty(\Omega \times \mathcal{C}_{opp})$ instead of letter a to refer to the neural activity, because it is mathematically more rigorous to speak of a functional equation on the Banach space $L^\infty(\Omega \times \mathcal{C}_{opp})$. The neural activity x is solution to

$$\frac{dx}{dt} = -x(t) + F(\omega \ast x(t) + H) =: \Theta(x(t)),$$

with $a(r, c, t) := x(t)(r, c)$. Recall that H is also supposed to be constant w.r.t. time.

Lemma 1 (Condition for the existence of a unique stationary solution). Let $d \in \{1, 2, 3\}$ denote the color space dimension. Suppose that

$$F'(0) \int_{\mathbb{R}^2} |g| \int_{\mathbb{R}^3} (|f_1| + |f_2|) \|x\| \leq 1. \tag{1}$$

Then there exists a unique stationary solution to Eq 3 (main text) in L^∞.

More precisely, for $H \in L^\infty(\Omega \times \mathcal{C}_{opp})$, the map

$$\Phi_H : \left(L^\infty(\Omega \times \mathcal{C}_{opp}) \xrightarrow{x} L^\infty(\Omega \times \mathcal{C}_{opp}) \right) \mapsto F(\omega \ast x + H),$$

is Lipschitz continuous, with the Lipschitz constant given in the left hand side of Eq (1), ensuring Φ_H to be a contraction with respect to L^∞ norm.

Proof. For any $x, y \in L^\infty(\Omega \times \mathcal{C}_{opp}),$

$$\|\omega \ast x\|_\infty \leq \int_{\mathbb{R}^2} |g| \int_{\mathbb{R}^3} (|f_1| + |f_2|) \|x\|_\infty.$$

Indeed, for any $(r, c) \in \Omega \times \mathcal{C}_{opp},$

$$|\omega \ast x|(r, c) \leq \int_{\Omega} |g(r - r')| dr' \int_{\mathcal{C}_{opp}} |f_1(c - c') - f_2(c + c')| dc' \|x\|_\infty \leq \int_{\mathbb{R}^2} |g| \int_{\mathbb{R}^3} (|f_1| + |f_2|) \|x\|_\infty.$$

Thus, for $x, y,$

$$\|\Phi_H x - \Phi_H y\|_\infty \leq F'(0) \int_{\mathbb{R}^2} |g| \int_{\mathbb{R}^3} (|f_1| + |f_2|) \|x - y\|_\infty. \tag{2}$$

\Box
In fact, the same conditions ensure linear stability of the solution, which is the object of the next lemma. Let \(\mathcal{E} \) denote \(L^\infty(\Omega \times \mathcal{C}_{\text{opp}}) \).

Lemma 2 (Stability). Under the conditions of Lemma 1, the unique stationary solution is linearly stable.

Proof. Let \(x_0 \) denote the stationary solution. The linearization of \(\Theta \) around it gives

\[
D\Theta(x_0) \cdot x = -x + F'(\omega \star x_0 + H) \omega \star x \in \mathcal{L}(\mathcal{E}, \mathcal{E}).
\]

Let \(\mathcal{L} := D\Theta(x_0) \) denote the linear part. Then, \(\mathcal{L} = -Id + \mathcal{T} \) where

\[
\mathcal{T} := F'(\omega \star x_0 + H) \omega \star
\]

is a linear operator such that \(\|\mathcal{T}\| < 1 \) thanks to condition (1). Note that \(\mathcal{T} \) takes values in \(\mathcal{C}_0(\Omega \times \mathcal{C}_{\text{opp}}) \) the set of continuous functions defined on the domain. The spectrum of \(\mathcal{L} \), denoted \(\Sigma(\mathcal{L}) := \{ \sigma \in \mathbb{C} \mid \mathcal{L} - \sigma Id \text{ not bijective} \} \), is then equal to \(-1 + \Sigma(\mathcal{T})\), which is a compact contained in a disk centered on \(-1\) and of radius \(\|\mathcal{T}\| \). Thus, for any \(\sigma \in \Sigma(\mathcal{L}) \) we get that \(\Re \sigma < 0 \), which ensures linear stability.

Notice that this does not imply global convergence of the dynamics to the unique stationary solution.

Lemma 3. Let \(d \) denote the dimension of the color space, \(g_1 \) and \(g_2 \) the two gaussians such that \(g = g_1 - g_2 \) and \(\mathcal{D} \) the closed disk on which \(g_1 \geq g_2 \). The radius of the disk is given by

\[
r_0 := \sqrt{\frac{2}{1/\alpha^2 - 1/\beta^2} \log \frac{\mu}{\nu}}.
\]

The contraction condition (1) is equivalent to

\[
\frac{3}{4} \left[\int_{\mathcal{D}} (g_1 - g_2) - \int_{\mathbb{R}^2 \backslash \mathcal{D}} (g_1 - g_2) \right] \int_{\mathbb{R}^d} (f_1 + f_2) < 1
\]

where

\[
\int_{\mathbb{R}^d} u = \mu_c (2\pi)^{d/2} \alpha_c^d
\]

and where the bracket is equal to

\[
2\pi \mu \alpha^2 \left(1 - 2 \left(\frac{\mu}{\nu} \right)^{-\frac{3}{1-\alpha/\beta^2}} \right) - 2\pi \nu \beta^2 \left(1 - 2 \left(\frac{\mu}{\nu} \right)^{-\frac{1}{\alpha/\beta^2}} \right)
\]

thanks to the formulas \(\int_{\mathcal{D}} g_1 = 2\pi \mu \alpha^2 (1 - e^{-\frac{r_0^2}{2\sigma_1^2}}) \) and \(\int_{\mathbb{R}^2} g_1 = 2\pi \mu \alpha^2 \).
Color matching as a projection

Lemma 4. Suppose that $J^{\text{comp}}[c]$ is smooth function of c, and that condition (1) holds. Then the unique stationary solution $a[c]$ to the dynamics with input $H[c]$ related to $J^{\text{comp}}[c]$ is smoothly parameterized by c. Hence under these assumptions, **color matching consists in projecting** a^{test} **on the image set of the parameterization** $\{a^{\text{comp}}[c]\}$.

Proof. For any $c \in \mathcal{C}$, the unique stationary solution $a[c]$ satisfies $0 = Q(a[c],c)$ where the map Q is defined as

$$Q : \left(L^\infty \times \mathcal{C}, (a,c) \mapsto -a + F(\omega \ast a + H[c]) \right).$$

For $J^{\text{comp}}[\cdot]$ regular enough, Q is C^k on $L^\infty \times \mathcal{C}$, and the partial differential $D_a Q(a, c)$ defined below is invertible:

$$D_a Q(a, c) \cdot da = -da + F'(\omega \ast a + H[c]) \omega \ast da$$

because for any $b \in L^\infty$, $da \mapsto F'(\omega \ast a + H[c]) \omega \ast da - b$ defines a contraction mapping in L^∞ under condition (1) (we used the fact that $|F'| \leq F'(0)$), and we can apply Picard’s theorem. Then, in a neighborhood of each c_0 and $a[c_0]$ the map $c \mapsto a[c]$ is C^k thanks to the Implicit Function Theorem. We thus obtain a smoothly parameterized family of elements in $L^\infty(\mathcal{C}) \{a[c]\}_{c \in \mathcal{C}}$.

\square