Supplementary Note: The relation between MTV-LMM and the generalized Lotka-Volterra models

The following serves as a brief introduction to the generalized Lotka-Volterra family of models and its relation to MTV-LMM, inspired by the theoretical considerations provided in [1]. The generalized Lotka-Volterra family of models are first-order differential equations that model growth rates as a non-linear function of the community composition, and thus assume the existence of an interaction mechanism between species in the community. MTV-LMM, by contrast, assumes linear dynamics. Notably, in both the generalized Lotka-Volterra and MTV-LMM, dynamics are defined by species-species interaction terms.

To further elaborate, generalized Lotka-Volterra models are given by:

\[\frac{dy_i}{dt} = a_i y_i(t) \left(1 - \frac{y_i(t)}{K} \right) + y_i(t) \sum_{j=1, j \neq i}^n u_{ij} y_j(t) \]

where \(y_i \) is the abundance of species \(i \), \(t \) is the time, \(a_i \) is the self-interaction coefficient for species \(i \), \(u_{ij} \) is the interaction coefficient between species \(i \) and \(j \), \(K \) is abundance and \(n \) is the number of species in the community. Dividing by abundance and converting to the difference equation form allows for generalized Lotka-Volterra parameters to be solved with a system of linear equations

\[\log(y_i(t)) - \log(y_i(t-1)) = a_i - \frac{a_i}{K} y_i(t-1) + \sum_{j=1, j \neq i}^n u_{ij} y_j(t-1) \]

In this form, we can draw similarities to MTV-LMM:

\[y_i(t) = \beta_{i0} + \beta_i y_i(t-1) + \sum_{j=1, j \neq i}^n u_{ij} f(y_j(t-1)) + \sum_{j=1, j \neq i}^n r_{ij} f(y_{j,ind}(t-1)) + \epsilon_i(t) \]

where \(u_{ij} \) is the effect of species \(i \) on species \(j \), \(f \) is a normalization/binning function (e.g quantile normalization) and \(\epsilon_i(t) \) is the error term, \(r \) are the effects of individual hosts and \(y_{j,ind} \) corresponds to the data of each one of the individuals, but with no information about the time. Thus, both
generalized Lotka-Volterra and \textit{MTV-LMM} can be solved using linear equations, but with different interpretation to the coefficients. The most significant difference is the fact that \textit{MTV-LMM} assumes a stochastic process (by introducing the error term $\epsilon_i(t)$, while the Lotka-Volterra model implies a fully deterministic model. Other evident differences are that \textit{MTV-LMM} model the observed abundance data, can include any number of time lags (AR(p) process), and the linear function is a function of a transformed version of the abundance levels using quantile-normalization, while generalized Lotka-Volterra models maps the observed abundance data to a difference of the log-transformed data and can only include one time lag, and the linear function is a direct function of the abundance levels.

Notably, \textit{MTV-LMM} has a natural interpretation, similar to the one suggested by the generalized Lotka-Volterra - it assumes that the abundance of species i at time $t+1$ is affected by the abundance levels of many species at time t. The underlying assumption is that each of these effects is small, with a normal prior distribution on the effect size with mean 0 and some variance σ^2. Nonetheless, the generalized Lotka-Volterra does not assume any prior distribution associated with the effects.

A VAR(1) process can be modeled in a similar way:

$$y_i(t) = \beta_i 0 + \beta_i y_i(t-1) + \sum_{j=1, j\neq i}^{n} u_{ij}y_j(t-1) + \epsilon_i(t)$$

The main methodological advancements of \textit{MTV-LMM}, in comparison to a VAR(p) process, are (1) the ability to model the effects of the microbial community with only one parameter $\sigma^2_{AR_i}$ (as opposed to number of taxa if we only use a model with fixed effects), and (2) the ability to account for the effect of the individual host. These important advancements, coupled with the ability to use multiple variance components, grant \textit{MTV-LMM} its improved scalability both in terms of number of individuals as well as number of taxa which is crucial when studying microbiome data.
References