Sequential infection experiments for quantifying innate and adaptive immunity during influenza infection

Text S2:
Notes on biologically plausible ranges for the parameters $p_{V \text{ratio}}$, α and γ

First, we examine the parameter α. The concentration of virions in nasal wash is lower than the concentration of virions in the respiratory tract by a factor of $a = 1 - 100$ [1]. The volume of the ferret upper respiratory tract, which was assumed to be the site of infection, is approximately $v = 1\text{mL}$ [2], while the concentration of nasal wash was reported per $b = 0.1\text{mL}$ [3]. We assumed that 1 RNA copy number corresponded to one (infectious or non-infectious) virion. Hence, the number of RNA copies/100 μL of nasal wash corresponding to one virion in the respiratory tract (α) was $(b/v)/a$. Based on the bounds for a and b, the bounds for α were then $[10^{-3}, 10^{-1}]$.

Next, we examine the parameter γ. Petrie et al. [4] used the bounds $[10^0, 10^5]$ to fit the initial ratio of total to infectious virions. These bounds were in units of RNA copy number/TCID$_{50}$ (f). These bounds were based on the variability across different inocula given to donor ferrets in the experiments by Butler et al. [5]; the study by Petrie et al. [4] analysed data from these experiments. However, in our study, γ was required to be in units of RNA copy number/virion, as we accounted for the loss of a single virion due to its infecting a target cell. Assays to measure the amount of infectious virus cannot measure the number of virions directly; hence, we needed to estimate the conversion factor between TCID$_{50}$ and virions (h). At the minimum, one virion was required to establish an infection; hence, the lower bound for the number of virions corresponding to 1 TCID$_{50}$ was 1 virion. Handel et al. [1] estimated that 1 TCID$_{50}$ corresponds to 1–100 virions, so the bounds for h were [1, 100]. Hence, the initial ratio of total to infectious virions in the respiratory tract in units of RNA copy number/virion (γ), which by definition had a lower bound of 1, was $\gamma = f/h$. Based on the bounds for f and h, the bounds for γ were then $[10^0, 10^5]$.

Lastly, we tackle the parameter $p_{V \text{ratio}}$. Petrie et al. [4] used the bounds $[10^0, 10^6]$ to fit the ratio of production of total to infectious virions, in units of RNA copy number/TCID$_{50}$ (q). These bounds were based on the variability of this ratio in the data provided by Butler et al. [5]. The ratio of production of total to infectious virions in units of RNA copy number/virion ($p_{V \text{ratio}}$), which also by definition had a lower bound of 1, was then $p_{V \text{ratio}} = q/h$. Based on
the bounds for h and q, the bounds for $p_{V\text{ratio}}$ were then $[10^0, 10^6]$.

References

