Supplementary material and methods

Performance of selection regimes and test statistics

We evaluated the performance of six different truncating selection regimes. We used the 205 haplotypes from the DGRP lines (Freeze 2.0 [Mackay et al., 2012]) and the recombination rates for \textit{D. melanogaster}. We randomly picked 50 QTLs (effect size= 0.25 for 25 QTL, 0.78 for 15 QTL and 1.3 for 10 QTL) and used a heritability of $h^2 = 1$. In each generation 95%, 80%, 60%, 40%, 20%, 5% of the individuals with the largest phenotypic values survived truncating selection. We performed truncating selection for 40 generations and used 10 replicates. To obtain estimates of the error bars we picked 10 independent sets of QTLs for each selection regime (in total $6 \times 10 \times 10 = 600$ simulations) The cmh-test [Kofler et al., 2011] was used to detect the selected loci.

To evaluate the suitability of different test-statistic for identifying selected loci in E&R studies we compared the performance of the cmh-test [Orozco-Terwengel et al., 2012], diffStat [Turner et al., 2011], association statistic [Turner and Miller, 2012] and the F_{ST} [Remolina et al., 2012]. We evaluated the performance of these statistics using truncating selection (as described above) where we retained 60% of the individuals with the highest phenotypic values. The R package ROCR was used to create the ROC curves [Sing et al., 2005].

Stabilizing selection and diminishing returns epistasis

We obtained 205 haplotypes from the DGRP lines (Freeze 2.0) and the recombination rate of \textit{D. melanogaster} [Mackay et al., 2012, Comeron et al., 2012]. Beneficial alleles were introduced into four genes known to confer starvation resistance in Drosophila [gene (effect size): pnt (0.32), kekkon-1 (1.3), Tre1 (0.25), CG151 (0.78) [Harbison et al., 2004]]. The effect sizes was roughly proportional to the observed effect of the genes to starvation resistance [Harbison et al., 2004]. For both stabilizing selection and diminishing return epistasis the phenotypic value was mapped to fitness using a fitness function. For stabilizing selection we used a normal distribution with $\mu = -5$, $\sigma^2 = 2$, a minimum fitness of $f_{\text{min}} = 0.5$ and a maximum fitness of $f_{\text{max}} = 1.5$. For diminishing returns epistasis we used $f = f_{\text{min}} + (f_{\text{max}} - f_{\text{min}}) \times (1 - \frac{1}{e^{\alpha x + \beta}})$, with $f_{\text{min}} = 0.5$, $f_{\text{max}} = 1.5$, $\alpha = 0.4$ and $\beta = 0.0$. We used a female to male ratio of 50:50 and a hemizygous X-chromosome. Simulations were performed for 40 generations and 10 replicates were used. Selected loci were identified with the cmh-test [Kofler et al., 2011] and Manhattan plots were generated with R.

Theoretical expectations used in validations

Genetic drift

To estimate the expected allele frequency after 50 generations of genetic drift in a population of size $N = 250$ we used a Markov chain model. We computed the transition probabilities among all allele frequencies using the binomial formula
resulting in a 501×501 matrix. The expected allele frequency was computed by multiplying the starting frequency (50%) with the matrix 50 times.

Trajectory of selected locus

A trajectory of a selected locus with two alleles (A and a) can be estimated based on the fitness of each genotype [Gillespie, 2010]:

$$W_{AA} = 1 + s \quad (1)$$
$$W_{Aa} = 1 + hs \quad (2)$$
$$W_{aa} = 1 \quad (3)$$

where s is the selection coefficient, h is the heterozygous effect and W_{AA}, W_{Aa}, W_{aa} the fitness of individuals with genotypes AA, Aa and aa respectively.

The allele frequency of a selected locus at time t can be estimated by:

$$p_t = \frac{p_{t-1}W_{AA} + q_{t-1}W_{Aa}}{\bar{w}}$$

where $t - 1$ is the previous generation, p is the allele frequency of A, q is the allele frequency of a and \bar{w} is the mean fitness of the population.

The mean fitness of the population can be estimated by:

$$\bar{w} = p^2W_{AA} + 2pqW_{Aa} + q^2W_{aa}$$

Response to selection

According to [Falconer, 1960] the expected response to selection on a quantitative trait can be estimated using the breeder’s equation:

$$R = h^2S$$

where h^2 is the heritability and S is the selection differential.

The selection differential can be estimated for truncating selection if the phenotypic values of the population follow a normal distribution:

$$S = i\sigma_p$$

where i is the selection intensity and σ_p is the phenotypic standard deviation of the population.

The selection intensity can be estimated by:

$$i = \frac{z}{p}$$

where z is the height of the ordinate at the point of truncation and p is the proportion of individuals surviving truncation selection.
Linkage disequilibrium decay

The correct implementation of recombination was validated by measuring the decay of LD over the course of 200 generations. The D value was used as an estimation of the LD between two loci. The expected D was calculated by:

$$D_t = D_0(1 - c)^t$$

where t is the generations, D_t is the LD at generation t, D_0 is the initial LD and c is the recombination rate.

Benchmarking different tools using the DGRP data

MimicrEE2

Simulations with MimicrEE2 were performed with the DGRP haplotypes, the recombination rate of $D. melanogaster$ and the following command:

```
java -jar mim2-v193.jar qt --haplotypes=g0 mimicree_format_dgrp_snps_X_chromosome --recombination-rate comeron_sex_specific --effect-size effect_size_1locus_X --heritability 1 --snapshots 40 --replicate-runs 10 --output-sync starvation_resistance_sex_second.sync --threads 8 --selection-regime ../selection_regime_08 --sex sex-info
```

The input files can be found here: https://sourceforge.net/projects/mimicree2/files/publication_files/

MimicrEE

MimicrEE1, does not support the simulation of quantitative traits and we thus performed neutral simulations. We used the DRGP haplotypes, the recombination rate of $D. melanogaster$ and the following command:

```
java -jar MimicrEEsummary.jar --haplotypes=g0 mimicree_format_dgrp_snps_X_chromosome --recombination-rate dmel.rr.txt --output-mode 40 --replicate-runs 10 --output-format sync --output-file mimicree1_test --threads 8
```

The input files can be found here: https://sourceforge.net/projects/mimicree2/files/publication_files/

forqs

The DGRP haplotypes were converted into the ms format supported by forqs using a custom Python script. Recombination rate estimates were transformed into the HapMap format. When multiple replicates are simulated with forqs the input haplotypes must be repeated 10 times in the same haplotype file. This is a very time and memory consuming approach that largely affects the performance of forqs. We performed two simulations with forqs, in the first the output was allele frequencies and in the second the output was haplotypes.
We used the following forqs configuration file to estimate allele frequencies:

```plaintext
PopulationConfigGenerator_ConstantSize pcg
  chromosome_pair_count = 5
  population_size = 205
  population_count = 10
  generation_count = 40
  chromosome_lengths = 23011544 21146708 24543557 27905053 22422827
  fitness_function = fitness

LocusList qtl_loci_2L
  chromosome:position = 1 12822160

LocusList qtl_loci_3L
  chromosome:position = 3 16143897

LocusList qtl_loci_3R
  chromosome:position = 4 23345117

LocusList qtl_loci_X
  chromosome:position = 5 5679736

LocusList neutral_loci_2L
  chromosome:position = 1 4998
  chromosome:position = 1 5002
  chromosome:position = 1 5039
  chromosome:position = 1 5040
  chromosome:position = 1 5092
  chromosome:position = 1 5095
  chromosome:position = 1 5153
  ...
  ...
  ...
  chromosome:position = 5 22422249
  chromosome:position = 5 22422279
  chromosome:position = 5 22422323
  chromosome:position = 5 22422335

VariantIndicator_File my_variant_indicator
  mfile = forqs_dgrp_haps_10pops
  loci = qtl_loci_2L qtl_loci_3L qtl_loci_3R qtl_loci_X
         neutral_loci_2L neutral_loci_2R neutral_loci_3L
         neutral_loci_3R neutral_loci_X

RecombinationPositionGenerator_RecombinationMap rpg
  filename = 2L_rr_forqs
  filename = 2R_rr_forqs
  filename = 3L_rr_forqs
  filename = 3R_rr_forqs
  filename = X_rr_forqs

Distribution_Constant positive_effect_2L
  value = 1.3

Distribution_Constant positive_effect_3L
  value = 0.78

Distribution_Constant positive_effect_3R
```

8
value = 0.32

Distribution_Constant positive_effect_X
value = 0.25

Distribution_Constant no_dominance
value = 0

QTLEffectGenerator generator_positive_2L
locus_list = qtl_loci_2L
effect_size_distribution = positive_effect_2L
dominance_distribution = no_dominance

QTLEffectGenerator generator_positive_3L
locus_list = qtl_loci_3L
effect_size_distribution = positive_effect_3L
dominance_distribution = no_dominance

QTLEffectGenerator generator_positive_3R
locus_list = qtl_loci_3R
effect_size_distribution = positive_effect_3R
dominance_distribution = no_dominance

QTLEffectGenerator generator_positive_X
locus_list = qtl_loci_X
effect_size_distribution = positive_effect_X
dominance_distribution = no_dominance

QuantitativeTrait_IndependentLoci qt
qtl_effect_generator = generator_positive_2L
ttl_effect_generator = generator_positive_3L
qtl_effect_generator = generator_positive_3R
qtl_effect_generator = generator_positive_X
environmental_variance = 0.0

FitnessFunction_TruncationSelection fitness
quantitative_trait = qt
proportion_selected = 0.8

Reporter_AlleleFrequencies reporter_allele_frequencies
quantitative_trait = qt
locus_list = neutral_loci_2L
locus_list = neutral_loci_2R
locus_list = neutral_loci_3L
locus_list = neutral_loci_3R
locus_list = neutral_loci_X

SimulatorConfig
seed = 0
output_directory = output_example_truncating
population_config_generator = pcg
variant_indicator = my_variant_indicator
quantitative_trait = qt
quantitative_trait = fitness
reporter = reporter_allele_frequencies
recombination_position_generator = rpg

We used the following forqs configuration file to track haplotype chunks:
PopulationConfigGenerator_ConstantSize pcg
 chromosome_pair_count = 5
 population_size = 205
 population_count = 10
 generation_count = 40
 chromosome_lengths = 23011544 21146708 24543557 27905053 22422827
 fitness_function = fitness

LocusList qtl_loci_2L
 chromosome:position = 1 12822160

LocusList qtl_loci_3L
 chromosome:position = 3 16143897

LocusList qtl_loci_3R
 chromosome:position = 4 23345117

LocusList qtl_loci_X
 chromosome:position = 5 5679736

LocusList neutral_loci_2L
 chromosome:position = 1 4998
 chromosome:position = 1 5002
 chromosome:position = 1 5039
 ...
 ...
 chromosome:position = 5 22422249
 chromosome:position = 5 22422279
 chromosome:position = 5 22422323
 chromosome:position = 5 22422335

VariantIndicator_File my_variant_indicator
 msfile = forqs_dgrp_haps_10pops
 loci = qtl_loci_2L qtl_loci_3L qtl_loci_3R qtl_loci_X neutral_loci_2L neutral_loci_2R neutral_loci_3L neutral_loci_3R neutral_loci_X

RecombinationPositionGenerator_RecombinationMap rpg
 filename = 2L_rr_forqs
 filename = 2R_rr_forqs
 filename = 3L_rr_forqs
 filename = 3R_rr_forqs
 filename = X_rr_forqs

Distribution_Constant positive_effect_2L
 value = 1.3

Distribution_Constant positive_effect_3L
 value = 0.78
Distribution Constant positive_effect_3R
type = 0.32

Distribution Constant positive_effect_X
type = 0.25

Distribution Constant no_dominance
type = 0

QTLEffectGenerator generator_positive_2L
 locus_list = qtl_loci_2L
effect_size_distribution = positive_effect_2L
dominance_distribution = no_dominance

QTLEffectGenerator generator_positive_3L
 locus_list = qtl_loci_3L
effect_size_distribution = positive_effect_3L
dominance_distribution = no_dominance

QTLEffectGenerator generator_positive_3R
 locus_list = qtl_loci_3R
effect_size_distribution = positive_effect_3R
dominance_distribution = no_dominance

QTLEffectGenerator generator_positive_X
 locus_list = qtl_loci_X
effect_size_distribution = positive_effect_X
dominance_distribution = no_dominance

QuantitativeTrait_IndependentLoci qt
 qtl_effect_generator = generator_positive_2L
 qtl_effect_generator = generator_positive_3L
 qtl_effect_generator = generator_positive_3R
 qtl_effect_generator = generator_positive_X
 environmental_variance = 0.0

FitnessFunction_TruncationSelection fitness
 quantitative_trait = qt
 proportion_selected = 0.8

Reporter_Population haps_reporter

SimulatorConfig
 seed = 0
 output_directory = output_example_truncating
 population_config_generator = pcg
 variant_indicator = my_variant_indicator
 quantitative_trait = qt
 quantitative_trait = fitness
 reporter = haps_reporter
 recombination_position_generator = rpg

The haplotype identifiers at generation 40 were mapped onto the initial genomes to produce the new haplotypes using the following configuration file to perform simulations for one replicate:
ms_map_config.txt
#
sample mapping config file for forqs_map_ms
#

ms_filenames = forqs_dgrp_haps_10pops

chromosome = 1
position_begin = 0
position_end = 119029689

map_entry = 0 410 0 0
map_entry = 410 820 0 0
map_entry = 820 1230 0 0
map_entry = 1230 1640 0 0
map_entry = 1640 2050 0 0
map_entry = 2050 2460 0 0
map_entry = 2460 2870 0 0
map_entry = 2870 3280 0 0
map_entry = 3280 3690 0 0
map_entry = 3690 4100 0 0

quantiNemo

Since quantiNemo does not support simulating truncating selection for a quantitative trait we simulated random genetic drift instead. Genotypic data from the DGRP lines were converted to the FSTAT format using a custom Python script. We used a distance between consecutive loci of 0.1cM. Time estimates were obtained only for one run and then multiplied by the number of replicates (10). When simulations performed for ten replicates, memory usage was increasing to 300GB as quantiNemo stores the output of each generation in memory. The result was the interruption of the simulation process when the available memory was exhausted.

We used the following configuration file:

patch_number 1
patch_capacity 205
replicates 1
generations 40

ntrl_loci 3954651
ntrl_all 2
ntrl_ini_genotypes qnhaps_dgrp_all
ntrl_loci_positions $genetic_map_for_dgrp
stat {n.adlt.nbAll}
stat_dir stats
stat_save 0
SliM2

The DGRP haplotypes were converted into the SliM2 format using a custom Python script. Initially we tried to convert an MS file containing the DGRP haplotypes into the SliM2 format. We terminated the process after 5 days of no result. SliM2 performs faster when the input file provided is in binary format. Simulations for multiple replicates are not possible with SliM2. Time estimates were obtained only for one run and then multiplied by the number of replicates (10). First we converted the input file into the binary format and and finally the following script was used for the simulations:

```bash
initialize() {
    initializeSLiMOptions(mutations=256);
    initializeMutationRate(0.0);

    initializeMutationType("m1", 0.5, "f", 0.0);
    initializeMutationType("m2", 0.5, "f", 0.0);

    initializeGenomicElementType("g1", m1, 1);
    initializeGenomicElementType("g2", m1, 1);
    initializeGenomicElementType("g3", m1, 1);
    initializeGenomicElementType("g4", m1, 1);
    initializeGenomicElementType("g5", m1, 1);

    initializeGenomicElement(g1, 0, 23011543);
    initializeGenomicElement(g2, 23011544, 44158251);
    initializeGenomicElement(g3, 44158252, 68701808);
    initializeGenomicElement(g4, 68701809, 96606861);
    initializeGenomicElement(g5, 96606862, 119029689);

    lines2L = readFile("/Users/vetgrid06/runslim/2L_rr_slim");
    rates2L = NULL;
    ends2L = NULL;
    for (line2L in lines2L) {
      components2L = strsplit(line2L, \"\t\");
      ends2L = c(ends2L, asInteger(components2L[0]));
      rates2L = c(rates2L, asFloat(components2L[1]));
    }
    ends2L = c(ends2L[1:(size(ends2L) - 1)] - 2, 23011543);
    rates2L = rates2L * 1e-8;

    lines2R = readFile("/Users/vetgrid06/runslim/2R_rr_slim");
    rates2R = NULL;
    ends2R = NULL;
    for (line2R in lines2R) {
      components2R = strsplit(line2R, \"\t\");
      ends2R = c(ends2R, asInteger(components2R[0]) + 23011543);
      rates2R = c(rates2R, asFloat(components2R[1]));
    }
    ends2R = c(ends2R[1:(size(ends2R) - 1)] - 2, 44158251);
```
rates2R = rates2R * 1e-8;

lines3L = readFile("/Users/vetgrid06/runslim/3L_rr_slim");
rates3L = NULL;
ends3L = NULL;
for (line3L in lines3L)
{
 components3L = strsplit(line3L, "\t");
 ends3L = c(ends3L, asInteger(components3L[0])+44158251);
 rates3L = c(rates3L, asFloat(components3L[1]));
}
ends3L = c(ends3L[1:(size(ends3L) -1)] - 2, 68701808);
rates3L = rates3L * 1e-8;

lines3R = readFile("/Users/vetgrid06/runslim/3R_rr_slim");
rates3R = NULL;
ends3R = NULL;
for (line3R in lines3R)
{
 components3R = strsplit(line3R, "\t");
 ends3R = c(ends3R, asInteger(components3R[0])+68701808);
 rates3R = c(rates3R, asFloat(components3R[1]));
}
ends3R = c(ends3R[1:(size(ends3R) -1)] - 2, 96606862);
rates3R = rates3R * 1e-8;

linesX = readFile("/Users/vetgrid06/runslim/X_rr_slim");
ratesX = NULL;
endsX = NULL;
for (lineX in linesX)
{
 componentsX = strsplit(lineX, "\t");
 endsX = c(endsX, asInteger(componentsX[0])+96606861);
 ratesX = c(ratesX, asFloat(componentsX[1]));
}
endsX = c(endsX[1:(size(endsX) -1)] - 2, 119029689);
ratesX = ratesX * 1e-8;

initializeRecombinationRate(c(rates2L, 0.5, rates2R, 0.5, rates3L, 0.5, rates3R, 0.5, ratesX), c(ends2L, 23011544, ends2R, 44158252, ends3L, 68701809, ends3R, 96606862, endsX));
// Recombination map is finished

// return substitutions
m1.convertToSubstitution = F;

// positions of non-neutral loci
defineConstant("Q2L", 12822159);
defineConstant("Q3L", 60302148);
defineConstant("Q3R", 92046925);
defineConstant("QX", 102286597);
}
// recombination map is finished

1 late () {
sim . readFromPopulationFile("/Users/vetgrid06/runslim/dgrp_slim_final_bin");
}
1 late (){
g=p1 . genomes ;
genome_vector1_pos =c(g[0:1] , g[2:3] ,
g[4:5] , g[6:7] , g[8:9] , g[10:11] ,
g[12:13] , g[14:15] , g[16:17] , g[18:19] ,
g[20:21] , g[24:25] , g[30:31] , g[32:33] ,
g[34:35] , g[36:37] , g[38:39] , g[40:41] ,
g[42:43] , g[44:45] , g[46:47] , g[50:51] ,
g[52:53] , g[54:55] , g[56:57] , g[58:59] ,
g[60:61] , g[62:63] , g[64:65] , g[68:69] ,
g[70:71] , g[72:73] , g[74:75] , g[76:77] ,
g[78:79] , g[80:81] , g[82:83] , g[84:85] ,
g[86:87] , g[88:89] , g[92:93] , g[96:97] ,
g[98:99] , g[100:101] , g[102:103] , g[104:105] ,
g[114:115] , g[116:117] , g[122:123] , g[124:125] ,
g[126:127] , g[128:129] , g[132:133] , g[134:135] ,
g[136:137] , g[140:141] , g[142:143] , g[150:151] ,
g[152:153] , g[154:155] , g[156:157] , g[158:159] ,
g[160:161] , g[166:167] , g[168:169] , g[170:171] ,
g[172:173] , g[174:175] , g[176:177] , g[180:181] ,
g[182:183] , g[184:185] , g[186:187] , g[188:189] ,
g[190:191] , g[192:193] , g[194:195] , g[196:197] ,
g[198:199] , g[200:201] , g[202:203] , g[204:205] ,
g[208:209] , g[210:211] , g[212:213] , g[214:215] ,
g[216:217] , g[218:219] , g[220:221] , g[224:225] ,
g[226:227] , g[228:229] , g[230:231] , g[232:233] ,
g[234:235] , g[238:239] , g[240:241] , g[242:243] ,
g[244:245] , g[246:247] , g[248:249] , g[250:251] ,
g[252:253] , g[254:255] , g[258:259] , g[260:261] ,
g[262:263] , g[266:267] , g[268:269] , g[270:271] ,
g[272:273] , g[274:275] , g[276:277] , g[280:281] ,
g[282:283] , g[284:285] , g[286:287] , g[292:293] ,
g[294:295] , g[296:297] , g[298:299] , g[300:301] ,
g[302:303] , g[304:305] , g[306:307] , g[308:309] ,
g[310:311] , g[312:313] , g[314:315] , g[316:317] ,
g[318:319] , g[320:321] , g[322:323] , g[324:325] ,
g[326:327] , g[328:329] , g[330:331] , g[332:333] ,
g[334:335] , g[336:337] , g[338:339] , g[340:341] ,
g[344:345] , g[346:347] , g[348:349] , g[350:351] ,
g[352:353] , g[354:355] , g[356:357] , g[358:359] ,
g[360:361] , g[364:365] , g[366:367] , g[368:369] ,
g[372:373] , g[374:375] , g[376:377] , g[378:379] ,
g[380:381] , g[382:383] , g[384:385] , g[386:387] ,
g[388:389] , g[390:391] , g[392:393] , g[394:395] ,
g[406:407] , g[408:409]);

genome_vector1_neg =c(g[22:23] , g[26:27] , g[28:29] ,
g[48:49] , g[66:67] , g[90:91] , g[94:96] ,
g[106:107] , g[108:109] , g[110:111] ,
g[112:113] , g[118:119] , g[120:121],
g[130:131], g[138:139], g[144:145], g[146:147], g[162:163], g[164:165], g[178:179], g[206:207], g[222:223], g[236:237], g[256:257], g[264:265], g[278:279], g[288:289], g[342:343], g[362:363], g[370:371], g[396:397], g[398:399], g[400:401], g[402:403], g[404:405]);

gene_vector2_pos = c(g[0:1], g[2:3], g[4:5], g[6:7], g[8:9], g[12:13], g[14:15], g[16:17], g[18:19], g[20:21], g[22:23], g[24:25], g[26:27], g[28:29], g[30:31], g[32:33], g[34:35], g[36:37], g[40:41], g[44:45], g[46:47], g[48:49], g[50:51], g[52:53], g[54:55], g[56:57], g[58:59], g[60:61], g[62:63], g[64:65], g[66:67], g[68:69], g[70:71], g[72:73], g[76:77], g[78:79], g[80:81], g[82:83], g[84:85], g[86:87], g[88:89], g[90:91], g[92:93], g[94:95], g[96:97], g[98:99], g[100:101], g[102:103], g[104:105], g[106:107], g[110:111], g[112:113], g[114:115], g[116:117], g[118:119], g[120:121], g[122:123], g[124:125], g[128:129], g[130:131], g[134:135], g[136:137], g[138:139], g[140:141], g[142:143], g[144:145], g[146:147], g[148:149], g[152:153], g[154:155], g[158:159], g[160:161], g[164:165], g[166:167], g[170:171], g[172:173], g[174:175], g[178:179], g[180:181], g[182:183], g[184:185], g[186:187], g[188:189], g[190:191], g[192:193], g[194:195], g[196:197], g[198:199], g[200:201], g[202:203], g[204:205], g[206:207], g[210:211], g[214:215], g[216:217], g[218:219], g[220:221], g[222:223], g[226:227], g[228:229], g[230:231], g[232:233], g[234:235], g[236:237], g[238:239], g[240:241], g[242:243], g[244:245], g[248:249], g[250:251], g[254:255], g[256:257], g[260:261], g[262:263], g[264:265], g[266:267], g[268:269], g[270:271], g[272:273], g[274:275], g[276:277], g[278:279], g[280:281], g[282:283], g[284:285], g[286:287], g[288:289], g[290:291], g[292:293], g[294:296], g[298:299], g[300:301], g[302:303], g[304:305], g[306:307], g[310:311], g[312:313], g[314:315], g[316:317], g[318:319], g[320:321], g[322:323], g[324:325], g[326:327], g[328:329], g[334:335], g[336:337], g[338:339], g[340:341], g[342:343], g[346:347], g[352:353], g[354:355], g[358:359], g[360:361], g[362:363], g[366:367], g[368:369], g[370:371], g[372:373], g[374:375], g[378:379], g[380:381], g[382:383], g[386:387], g[388:389], g[390:391], g[392:393], g[394:395], g[396:397], g[398:399], g[400:401], g[402:403], g[406:407], g[408:409]);

gene_vector2_neg = c(g[10:11], g[38:39], g[42:43], g[74:75], g[108:109], g[126:127], g[132:133], g[134:135], g[136:137], g[138:139], g[140:141], g[142:143], g[144:145], g[146:147], g[148:149], g[162:163], g[164:165], g[178:179], g[206:207], g[222:223], g[236:237], g[256:257], g[264:265], g[278:279], g[288:289], g[288:289], g[290:291], g[342:343], g[362:363], g[370:371], g[396:397], g[398:399], g[400:401], g[402:403], g[404:405]);
g[150:151], g[156:157], g[162:163], g[168:169],
g[176:177], g[208:209], g[212:213], g[224:225],
g[246:247], g[252:253], g[258:259], g[296:297],
g[308:309], g[330:331], g[332:333], g[344:345],
g[348:349], g[350:351], g[356:357], g[364:365],
g[376:377], g[384:385], g[404:405]);
genome_vector3_pos =c(g[0:1], g[2:3], g[4:5], g[6:7],
g[8:9], g[12:13], g[14:15], g[16:17], g[18:19],
g[20:21], g[22:23], g[24:25], g[26:27], g[30:31],
g[32:33], g[34:35], g[36:37], g[42:43], g[44:45],
g[46:47], g[50:51], g[54:55], g[56:57], g[88:89],
g[62:63], g[64:65], g[70:71], g[74:75], g[76:79],
g[80:81], g[82:83], g[84:85], g[86:87], g[88:89],
g[92:93], g[94:95], g[96:97], g[98:99], g[100:101],
g[102:103], g[106:107], g[112:113], g[114:115],
g[120:121], g[122:123], g[124:125], g[130:131],
g[132:133], g[136:137], g[138:139], g[140:141],
g[142:143], g[144:145], g[146:147], g[148:149],
[150:151], g[168:169], g[160:161], g[162:163],
g[164:165], g[166:167], g[168:169], g[170:171],
g[174:175], g[176:177], g[178:179], g[180:181],
g[182:183], g[188:189], g[190:191], g[194:195],
g[196:197], g[198:199], g[200:201], g[204:205],
g[206:207], g[208:209], g[210:211], g[214:215],
g[216:217], g[222:223], g[226:227], g[232:233],
g[234:235], g[236:237], g[238:239], g[242:243],
g[252:253], g[258:259], g[260:261], g[262:263],
g[264:265], g[268:269], g[270:271], g[272:273],
g[274:275], g[276:277], g[278:279], g[280:281],
g[282:283], g[284:285], g[290:291], g[292:293],
g[294:295], g[296:297], g[298:299], g[300:301],
g[302:303], g[304:305], g[308:309], g[310:311],
g[312:313], g[318:319], g[320:321], g[326:327],
g[328:329], g[330:331], g[332:333], g[334:335],
g[336:337], g[338:339], g[340:341], g[342:343],
g[346:347], g[348:349], g[352:353], g[356:357],
g[360:361], g[362:363], g[364:365], g[366:367],
g[370:371], g[372:373], g[374:375], g[376:377],
g[382:383], g[384:385], g[386:387], g[388:389],
g[390:391], g[392:393], g[394:395], g[396:397],
g[398:399], g[400:401], g[404:405], g[408:409]);
genome_vector3_neg =c(g[10:11], g[28:29], g[38:39],
g[40:41], g[48:49], g[52:53], g[60:61], g[66:67],
g[68:69], g[72:73], g[76:77], g[90:91], g[104:105],
g[108:109], g[110:111], g[116:117], g[118:119],
g[126:127], g[128:129], g[134:135], g[152:153],
g[154:155], g[156:157], g[172:173], g[184:185],
g[186:187], g[192:193], g[202:203], g[212:213],
g[218:219], g[220:221], g[224:225], g[228:229],
g[230:231], g[240:241], g[244:245], g[246:247],
g[248:249], g[250:251], g[254:255], g[256:257],
g[266:267], g[286:287], g[288:289], g[306:307],
g[314:315], g[318:317], g[322:323], g[324:325],
g[334:335], g[350:351], g[354:355], g[358:359],
g[368:369], g[378:379], g[380:381], g[402:403], g[406:407]);

17
genome_vector4_pos = c(g[0:1], g[2:3], g[4:5], g[6:7],
g[12:13], g[24:25], g[28:29], g[32:33], g[36:37],
g[38:39], g[44:45], g[46:47], g[48:49], g[52:53],
g[54:55], g[58:59], g[60:61], g[62:63], g[64:65],
g[66:67], g[68:69], g[70:71], g[72:73], g[76:77],
g[78:79], g[82:83], g[84:85], g[86:87], g[88:89],
g[90:91], g[92:93], g[96:97], g[100:101], g[106:107],
g[108:109], g[110:111], g[112:113], g[114:115],
g[118:119], g[122:123], g[124:125], g[128:129],
g[130:131], g[134:135], g[136:137], g[140:141],
g[144:145], g[146:147], g[148:149], g[150:151],
g[160:161], g[162:163], g[166:167], g[174:175],
g[176:177], g[180:181], g[188:189], g[190:191],
g[192:193], g[194:195], g[198:199], g[204:205],
g[206:207], g[208:209], g[210:211], g[212:213],
g[214:215], g[216:217], g[218:219], g[220:221],
g[222:223], g[228:229], g[230:231], g[232:233],
g[234:235], g[236:237], g[240:241], g[244:245],
g[246:247], g[250:251], g[252:253], g[258:259],
g[262:263], g[264:265], g[268:269], g[270:271],
g[272:273], g[278:279], g[280:281], g[282:283],
g[286:287], g[288:289], g[292:293], g[296:297],
g[298:299], g[300:301], g[302:303], g[304:305],
g[306:307], g[308:309], g[310:311], g[312:313],
g[320:321], g[328:329], g[332:333], g[336:337],
g[338:339], g[340:341], g[344:345], g[354:355],
g[364:365], g[368:369], g[372:373], g[386:387],
g[388:389], g[390:391], g[392:393], g[398:399],
g[400:401], g[402:403]);

genome_vector4_neg = c(g[8:9], g[10:11], g[14:15], g[16:17],
g[18:19], g[20:21], g[22:23], g[26:27], g[30:31],
g[34:35], g[40:41], g[42:43], g[50:51], g[56:57],
g[74:75], g[80:81], g[94:95], g[98:99], g[102:103],
g[104:105], g[116:117], g[120:121], g[126:127],
g[132:133], g[138:139], g[142:143], g[152:153],
g[154:155], g[156:157], g[158:159], g[164:165],
g[168:169], g[170:171], g[172:173], g[178:179],
g[182:183], g[184:185], g[186:187], g[196:197],
g[200:201], g[202:203], g[224:225], g[226:227],
g[238:239], g[242:243], g[248:249], g[254:255],
g[256:257], g[260:261], g[266:267], g[274:275],
g[276:277], g[284:285], g[290:291], g[294:295],
g[314:315], g[316:317], g[318:319], g[322:323],
g[324:325], g[326:327], g[330:331], g[334:335],
g[342:343], g[346:347], g[348:349], g[350:351],
g[352:353], g[356:357], g[358:359], g[360:361],
g[362:363], g[366:367], g[370:371], g[374:375],
g[376:377], g[378:379], g[380:381], g[382:383],
g[384:385], g[394:395], g[396:397], g[404:405],
g[406:407], g[408:409]);

// estimate phenotypic values of individuals
genome_vector1_pos.addNewMutation(m2, 1.3, Q2L);
genome_vector1_neg.addNewMutation(m2, -1.3, Q2L);
genome_vector2_pos.addNewMutation(m2, 0.78, Q3L);
geno_meme_vector2_neg.addNewMutation(m2, -0.78, Q3L);

genome_vector3_pos.addNewMutation(m2, 0.32, Q3R);
geno_meme_vector3_neg.addNewMutation(m2, -0.32, Q3R);

 genome_vector4_pos.addNewMutation(m2, 0.25, QX);
geno_meme_vector4_neg.addNewMutation(m2, -0.25, QX);
}

fitness(m2){
return 1.0;
}

late(){
inds = sim.subpopulations.individuals;
phenotypes = inds.sumOfMutationsOfType(m2);
inds.tag = 1;
x=order(phenotypes);
tokill=x[0:40];
inds[tokill].tag = 0;
}

// perform truncation selection

fitness(NULL) {
// individuals tagged for death die here
if (individual.tag == 1)
return 1.0;
else
return 0.0;
}

// return output after 40 generations
1 late() {
cat("---------------
");
cat("Generation 1, Frequencies and positions of mutations of type m1:

");
cat(sim.mutationFrequencies(p1, sim.mutationsOfType(m1))+
\t+sim.mutationsOfType(m1).position+"n");
print(\n');
cat("Generation 1, Frequencies and positions of mutations of type m2:

");
cat(sim.mutationFrequencies(p1, sim.mutationsOfType(m2))+
\t+sim.mutationsOfType(m2).position+"n");
print(\n');
cat("Generation 1 is finished");
print(\n');
print('
');
}

40 late()
 cat("Generation 40, Frequencies of mutations of type m1:\n\n");
 cat(sim.mutationFrequencies(p1,sim.mutationsOfType(m1)) +
 "\t"+sim.mutationsOfType(m1).position+"\n");
 print('
');
 cat("Generation 40, Frequencies of mutations of type m2: \\
\n");
 cat(sim.mutationFrequencies(p1,sim.mutationsOfType(m2)) +
 "\t"+sim.mutationsOfType(m2).position+"\n");
 print('
');
 cat("Generation 40 is finished");
 print('
');
}

FFPopSim

A Python script was used to generate 410 haploid individuals and 3954651 SNPs which then used as input to perform truncation selection simulations with FFPopSim. Time estimates were obtained only for one run and then multiplied by the number of replicates (10). In the final time estimation we did not take into account the time required to generate the new haplotypes but rather only the actual running time of the simulator. Notice that after running the script the number of generations returned from the simulator will be 121. Actually the real number is 40, as the number of generations increases every time we update the genotypes of the population. Here we simulate truncation selection, and we update the population genotypes 3 times per generation (120/3=40).

import numpy as np
from matplotlib import pyplot as plt
import FFPopSim as h

from optparse import OptionParser, OptionGroup
import random
import timeit
from itertools import chain

start=timeit.default_timer()

parser = OptionParser()
parser.add_option("--haps", dest="haps", help="Number of random haps")
parser.add_option("--snps", dest="snps", help="Number of random snps")
(options, args) = parser.parse_args()

haps=[]
total_haps=[]
counts=[]
truncated_genotypes=[]
for i in range(0, int(options.haps)):
 for j in range(0, int(options.snps)):
 number = random.random()
 if number <= 0.50:
 haps.append(0)
 else:
 haps.append(1)
 total_haps.append(haps)
haps=[]
counts.append(1)

stop = timeit.default_timer()
print "Elapsed time (sec):", (stop - start)

print total_haps
print counts

L=int(options.snps)
N=int(options.haps)
pop=h.haploid_highd(L)
pop.carrying_capacity = int(options.haps)
pop.crossover_rate = 0.05
pop.outcrossing_rate = 0

print pop.generation

pop.set_genotypes(total_haps, counts)

print "Generation:", pop.generation

maxgen=121
print pop.status()
print

print "BASE POPULATION"
selection_coefficients = 0.0*np.ones(pop.L)
sc=[1000000,400000,1900000,3000000]
tp = [pop.generation]
for i in sc:
 selection_coefficients[i] = 0.1
pop.set_trait_additive(selection_coefficients,0)
print pop.get_genotypes()
print pop.get_fitnesses()
print "\n"

print "TRUNCATED BASE POPULATION"
base population
sorted_fitness = sorted((round(num,4),ind) for ind,num in enumerate(pop.get_fitnesses()))
truncated_fitness = sorted_fitness[82:len(sorted_fitness)]

for i,n in enumerate(truncated_fitness):
 index_to_keep = n[1]
 truncated_genotypes.append(pop.get_genotype(index_to_keep)*1)
pop.set_genotypes(truncated_genotypes,[1]*len(truncated_fitness))
print pop.get_genotypes()
print pop.get_fitnesses()
base population

print pop.generation

while pop.generation<maxgen:
 for i in sc:
 selection_coefficients[i] = 0.0
 pop.set_trait_additive(selection_coefficients,0)

print "##########"
ind_fit=[]
genos=[]
ind_genotype=[]
truncated_genotypes=[]

print pop.get_genotypes()
print pop.get_fitnesses()
print pop.get_clone_sizes()
print "##########"

pop.evolve(1)
print "Evolution function is called here"

for i in sc:
 selection_coefficients[i] = 0.1

pop.set_trait_additive(selection_coefficients,0)
print "\n"
print pop.get_genotypes()
print pop.get_fitnesses()
print pop.get_clone_sizes()

for i in range(0, len(pop.get_fitnesses())):
 fitness = pop.get_fitness(i)
 ind_fit.append([fitness]*pop.get_clone_size(i))
 genotypes=[pop.get_genotype(i)]*pop.get_clone_size(i)
 ind_genotype.append(genotypes)

ind_fit= list(chain.from_iterable(ind_fit))

for i in range(0, len(ind_genotype)):
 for j in ind_genotype[i]:
 genos.append(j*1)

pop.set_genotypes(genos,[1]*pop.population_size)

print pop.get_genotypes()
print pop.get_fitnesses()
print pop.get_clone_sizes()

sorted_fitness=sorted((round(num,4),ind) for ind,num in enumerate(pop.get_fitnesses()))
truncated_fitness=sorted_fitness[82:len(sorted_fitness)]

for i,n in enumerate(truncated_fitness):
 index_to_keep=n[1]
 truncated_genotypes.append(pop.get_genotype(index_to_keep)*1)

pop.set_genotypes(truncated_genotypes,[1]*len(truncated_fitness))

print sorted_fitness
print pop.get_genotypes()
print pop.get_fitnesses()
print pop.get_clone_sizes()

tp.append(pop.generation)
print "\n"
print "\n"
print pop.generation

23
print "\n"
pop.status()

stop2 = timeit.default_timer()
print "Elapsed time (sec):", (stop2 - stop)
References

