Calculating Φ

William G. P. Mayner1,2, William Marshall2, Larissa Albantakis2, Graham Findlay1,2, Robert Marchman2, Giulio Tononi2

1 Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI, USA

2 Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin–Madison, Madison, WI, USA
Outline

• Elements, states, and the TPM
• Background conditions
• Cause-effect repertoires
• Integrated mechanisms: φ
• Concepts and cause-effect structures
• Integrated systems: Φ
• Complexes
Outline

• Elements, states, and the TPM
 • Background conditions
 • Cause-effect repertoires
 • Integrated mechanisms: φ
 • Concepts and cause-effect structures
 • Integrated systems: Φ
 • Complexes
In integrated information theory, a physical system is represented as a network of interconnected elements.

- Elements are in one of at least two states.
- Each element receives input and provides output.
- Each element has an input-output function for transitioning from one state to another.

Introduction: Elements, states, and the TPM
Introduction:
Elements, states, and the TPM

- An element’s input-output function can be fully characterized by a **transition probability matrix (TPM)** that gives the probabilities of each possible state transition.
- The TPM can be calculated by perturbing the element’s inputs into all possible configurations and recording the results.
Introduction:
Elements, states, and the TPM

• We’ll do this for element C
• We start by setting A and B to their OFF state in the current timestep, t
We’ll do this for element C.
We start by setting A and B to their OFF state in the current timestep, t.

Introduction:
Elements, states, and the TPM
Introduction:
Elements, states, and the TPM

Current state

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next state

<table>
<thead>
<tr>
<th></th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current state

Next state

= ON = OFF = UNSPECIFIED
Introduction:
Elements, states, and the TPM

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>C 1 0</td>
</tr>
</tbody>
</table>

t \quad t + 1

= ON \quad = OFF \quad = UNSPECIFIED
Introduction:

Elements, states, and the TPM

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **C** = ON
- **= OFF**
- **UNSPECIFIED**
Introduction:
Elements, states, and the TPM

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>C</td>
</tr>
<tr>
<td>0 0</td>
<td>1 0</td>
</tr>
<tr>
<td>1 0</td>
<td>1 0</td>
</tr>
</tbody>
</table>

t $t+1$

= ON = OFF = UNSPECIFIED
Introduction: Elements, states, and the TPM

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

$=\text{ON}$ $\square=\text{OFF}$ $\blacksquare=\text{UNSPECIFIED}$
Introduction:

Elements, states, and the TPM

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>C</td>
</tr>
<tr>
<td>○ ○</td>
<td>1 0</td>
</tr>
<tr>
<td>○ ○</td>
<td>1 0</td>
</tr>
<tr>
<td>○ ○</td>
<td>1 0</td>
</tr>
</tbody>
</table>

Next state:

- A
- B

$$ t $$

$$ t + 1 $$

<table>
<thead>
<tr>
<th>= ON</th>
<th>= OFF</th>
<th>= UNSPECIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>yellow</td>
<td>white</td>
<td>gray</td>
</tr>
</tbody>
</table>
Introduction: Elements, states, and the TPM

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
</tbody>
</table>

- **ON** = Yellow
- **OFF** = White
- **UNSPECIFIED** = Grey
Introduction: Elements, states, and the TPM

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>C</td>
</tr>
<tr>
<td>○ ○</td>
<td>1 0</td>
</tr>
<tr>
<td>○ ○</td>
<td>1 0</td>
</tr>
<tr>
<td>○ ○</td>
<td>1 0</td>
</tr>
<tr>
<td>○ ○</td>
<td>0 1</td>
</tr>
</tbody>
</table>

$t \rightarrow t + 1$

= ON = OFF = UNSPECIFIED
Introduction:

Elements, states, and the TPM

<table>
<thead>
<tr>
<th>Current state</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 1</td>
</tr>
<tr>
<td>A B</td>
<td></td>
<td></td>
<td>0</td>
<td>1 0</td>
</tr>
<tr>
<td>A B</td>
<td></td>
<td></td>
<td>0</td>
<td>1 0</td>
</tr>
<tr>
<td>A B</td>
<td></td>
<td></td>
<td>0</td>
<td>1 0</td>
</tr>
<tr>
<td>A B</td>
<td></td>
<td></td>
<td>1</td>
<td>0 1</td>
</tr>
</tbody>
</table>

- Here we can see that C is in fact an AND gate
- It is on at $t + 1$ when its inputs are both on at t, and off otherwise
Introduction:
Nondeterministic mechanisms

• In general, input-output functions can be nondeterministic.
• For example, we could have an element with this TPM:

Here, C is a noisy AND gate; its next state is somewhat uncertain (so we repeat the perturbations many times).
An example network

Now let’s consider a larger network of interconnected elements.

Just as with a single element, we can determine the TPM of the network as a whole.

Again, to do so we perturb the system into each of its possible states and record the results.

Network with 4 binary elements

\(2^4 = 16\) possible states
An example network
An example network

Example perturbation
An example network

Example perturbation

Result of perturbation
An example network

- Note that in this example, we’re assuming that the structure of the network is as shown.
- In general, we don’t know the underlying structure.
- Perturbation and observation is what allows the experimenter to determine the TPM.
An example network

Network with 4 binary elements
($2^4 = 16$ possible states)

Deterministic network \Leftrightarrow single column with 1.0 probability in each row
Outline

• Elements, states, and the TPM
• Background conditions
• Cause-effect repertoires
• Integrated mechanisms: \(\varphi \)
• Concepts and cause-effect structures
• Integrated systems: \(\Phi \)
• Complexes
Candidate systems and background conditions

- Given a network in some state at some moment in time, we want to evaluate the integrated information of a subset of its elements, called a candidate system.

Candidate system ABC
Candidate systems and background conditions

- In order to do so, we use the TPM of those elements.
- Since the aim is to assess the integrated information of the candidate system when the network is in a particular state, we want to determine the TPM of the candidate system by perturbing it while the external elements are fixed in that state.
These fixed external elements constitute the background conditions for the candidate system.

Calculating the TPM of the candidate system given background conditions is a process called conditioning on the background conditions.

Candidate system ABC
Fixing background conditions

The state of D is a background condition

Candidate system ABC

Network TPM
Fixing background conditions

We fix the elements outside the candidate system

D is fixed into its current state (off)

This corresponds to **conditioning** the TPM on the current state of **D** (off)
Fixing background conditions

We **fix** the elements outside the candidate system

This corresponds to **conditioning** the TPM on the current state of D (off)
Fixing background conditions

To condition the TPM, we simply take the part of it that corresponds to the current state of \(D \) being off.
Fixing background conditions

To condition the TPM, we simply take the part of it that corresponds to the current state of D being off.
Fixing background conditions

- However, the states at $t + 1$ still include D, but we’re only interested in the probabilities of the states of the candidate system, ABC.
- We would like to ignore the future state of D.
- This is accomplished by marginalization.
- We marginalize-out element D by taking the sum of the probabilities of states that differ only by D’s state.
Fixing background conditions:
Marginalization

- Note that the first and ninth columns differ only by D’s state
Fixing background conditions:
Marginalization

- Note that the first and ninth columns differ only by D’s state.
- We sum those columns together to get the probabilities of transitioning to state \(ABC = (0, 0, 0) \), **ignoring the state of D**, from each previous state.
Fixing background conditions: **Marginalization**

- Note that the first and ninth columns differ only by D’s state
- We sum those columns together to get the probabilities of transitioning to state $ABC = (0, 0, 0)$, **ignoring the state of D**, from each previous state
- We repeat this for $ABC = (1, 0, 0)$…
Fixing background conditions:
Marginalization

- Note that the first and ninth columns differ only by D’s state
- We sum those columns together to get the probabilities of transitioning to state ABC = (0, 0, 0), **ignoring the state of D**, from each previous state
- We repeat this for ABC = (1, 0, 0)...
- And so on, until we’ve obtained a TPM for just the elements of the candidate system ABC
Fixing background conditions:
Marginalization

- Note that the first and ninth columns differ only by D’s state
- We sum those columns together to get the probabilities of transitioning to state \(\text{ABC} = (0, 0, 0) \), **ignoring the state of D**, from each previous state
- We repeat this for \(\text{ABC} = (1, 0, 0) \)...
- And so on, until we’ve obtained a TPM for just the elements of the candidate system \(\text{ABC} \)
- This TPM gives the probabilities of the state transitions of \(\text{ABC} \) when D is **fixed** in its off state in the current timestep and we **ignore** its state in the next timestep
Candidate system TPM conditioned on $D = \text{OFF}$

Network TPM

Fixing background conditions
Fixing background conditions:

Updated from IIT 3.0

- Note that the external elements are fixed in their *current* state throughout the analysis.
- This is an update to the formalism compared to IIT 3.0, where the previous state was used instead of the current state in certain parts of the analysis.
Outline

• Elements, states, and the TPM
• Background conditions
• Cause-effect repertoires
• Integrated mechanisms: φ
• Concepts and cause-effect structures
• Integrated systems: Φ
• Complexes
Cause-effect repertoires

• Having chosen a candidate system and conditioned on the state of external, background elements, we now consider all subsets of the candidate system.

• We call these subsets of elements *candidate mechanisms*.

• We would like to evaluate the causal properties of each candidate mechanism.

Candidate mechanism A
Cause-effect repertoires

- Having chosen a candidate system and conditioned on the state of external, background elements, we now consider all subsets of the candidate system.
- We call these subsets of elements **candidate mechanisms**.
- We would like to evaluate the causal properties of each candidate mechanism.
 Cause-effect repertoires

- Having chosen a candidate system and conditioned on the state of external, background elements, we now consider all subsets of the candidate system.

- We call these subsets of elements **candidate mechanisms**.

- We would like to evaluate the causal properties of each candidate mechanism.
Cause-effect repertoires

- Having chosen a candidate system and conditioned on the state of external, background elements, we now consider all subsets of the candidate system.
- We call these subsets of elements candidate mechanisms.
- We would like to evaluate the causal properties of each candidate mechanism.
Cause-effect repertoires

• Having chosen a candidate system and conditioned on the state of external, background elements, we now consider all subsets of the candidate system.

• We call these subsets of elements **candidate mechanisms**.

• We would like to evaluate the causal properties of each candidate mechanism.

Candidate mechanism AC
Cause-effect repertoires

• Having chosen a candidate system and conditioned on the state of external, background elements, we now consider all subsets of the candidate system.

• We call these subsets of elements **candidate mechanisms**.

• We would like to evaluate the causal properties of each candidate mechanism.
Cause-effect repertoires

• Having chosen a candidate system and conditioned on the state of external, background elements, we now consider all subsets of the candidate system.

• We call these subsets of elements candidate mechanisms.

• We would like to evaluate the causal properties of each candidate mechanism.
Cause-effect repertoires

• The notion of “causal properties” is made precise with the cause repertoire and effect repertoire of a candidate mechanism.

• These repertoires are probability distributions over states of the system at $t - 1$ and $t + 1$, respectively.

• They describe how the mechanism in its current state at t causally constrains the other elements.

• First we’ll focus on the effect repertoire.
Calculating an effect repertoire:
Conditioning on the mechanism ABC

For example, let’s calculate the effect repertoire of the candidate mechanism ABC.
Calculating an effect repertoire:
Conditioning on the mechanism ABC

We want to determine how the current state of ABC constrains the next state...
Calculating an effect repertoire: Conditioning on the mechanism ABC

We want to determine how the current state of ABC constrains the next state...

...so, as with background conditions, we condition on the current state by looking at the rows of the TPM that correspond to it
Calculating an effect repertoire: **Conditioning on the mechanism ABC**

We want to determine how the current state of **ABC** constrains the next state...

...so, as with background conditions, we condition on the current state by looking at the rows of the TPM that correspond to it.

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C</td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0 0 1</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

Diagram showing the transitions between states **A**, **B**, and **C** with arrows indicating the directions of transitions and a truth table for **ABC** states showing how they map to the next state.
Calculating an effect repertoire:

Conditioning on the mechanism ABC

We want to determine how the current state of **ABC** constrains the next state...

...so, as with background conditions, we condition on the current state by looking at the rows of the TPM that correspond to it.
Calculating an effect repertoire:

Conditioning on the mechanism ABC

We want to determine how the current state of **ABC** constrains the next state...

...so, as with background conditions, we condition on the current state by looking at the rows of the TPM that correspond to it.
Calculating an effect repertoire: **Conditioning on the mechanism ABC**

This row in the TPM is a distribution over the states at $t + 1$ (and since this is a deterministic system, the next state is fully specified by the current state)
Calculating an effect repertoire:
Conditioning on the mechanism ABC

This is the effect repertoire of **ABC** when the system is in state (1, 0, 0)
Calculating an effect repertoire:
Conditioning on the mechanism ABC

This is the effect repertoire of **ABC** when the system is in state $(1, 0, 0)$
Calculating an effect repertoire: **Purviews**

But in general, we can determine how knowing the current state constrains the next state of a *subset* of elements, rather than that of the whole system.
Calculating an effect repertoire: **Purviews**

The subset of elements whose next state we’re interested in is called the **purview**
Calculating an effect repertoire: **ABC over purview BC**

For example, let’s calculate how knowing the current state of **ABC** constrains the next state of the purview **BC**
Calculating an effect repertoire:

ABC over purview BC

Let’s unfold the graph in time between the current and next timestep.
Calculating an effect repertoire: ABC over purview BC

Since we’re only interested in the next state of the purview BC, we want to ignore the next state of A.
Calculating an effect repertoire: **ABC over purview BC**

So, we marginalize the next state of A out of the TPM
Calculating an effect repertoire: **ABC over purview BC**

So, we marginalize the next state of A out of the TPM
Calculating an effect repertoire:
ABC over purview BC

Now we have a TPM that just gives the probabilities of the next states of B and C.
Calculating an effect repertoire:
ABC over purview BC

So we can condition on the current state of the mechanism to get the effect repertoire of mechanism **ABC** over purview **BC** when the system is in state (1, 0, 0)
Calculating an effect repertoire:
ABC over purview BC

So we can condition on the current state of the mechanism to get the effect repertoire of mechanism **ABC** over purview **BC** when the system is in state (1, 0, 0).
Now let’s consider an example of both a limited mechanism and a limited purview: The effect repertoire of candidate mechanism C (red) over the purview BC (blue)
Calculating an effect repertoire:

Mechanism C over purview BC

The idea is to fix the current state of the mechanism C and perturb the other, unconstrained elements A and B into all their possible states (with equal likelihood) and observe the effects on the purview, B and C.
Calculating an effect repertoire:
Mechanism C over purview BC

However, note that the two purview elements **B** and **C** share common input from **A**

![Diagram of logic gates and truth tables](image-url)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 0 0 0 1 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 0 0 0 0 1 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 1 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 1 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 0 0 0 0 0 0 1 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 0 0 0 1 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 0 1 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 0 0 1 0 0 0 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Calculating an effect repertoire: **Mechanism C over purview BC**

This means that when we set \(A \)'s state during the perturbation, the observed effects on \(B \) and \(C \) might depend in part on correlations due to this common input, rather than depending only on the current state of the mechanism \(C \).
Calculating an effect repertoire: **Virtual elements**

To remove the unwanted effects of correlations due to common input, we introduce **virtual elements** that we can perturb independently.
Calculating an effect repertoire: Virtual elements

Let’s unfold the graph in time between t and $t + 1$ again.
Calculating an effect repertoire:

Virtual elements

Since A is outside the mechanism (and thus will be perturbed) and it outputs to more than one purview element, we introduce virtual elements A_B and A_C at time t that independently provide input to B and C.
Calculating an effect repertoire:

Virtual elements

Since A is outside the mechanism (and thus will be perturbed) and it outputs to more than one purview element, we introduce virtual elements A_B and A_C at time t that independently provide input to B and C.
Calculating an effect repertoire:

Virtual elements

We can now perturb the non-mechanism elements into all their possible states at t to get a “virtual TPM” that doesn’t contain correlations due to common input.
Calculating an effect repertoire:
Virtual elements

We can now perturb the non-mechanism elements into all their possible states at t to get a “virtual TPM” that doesn’t contain correlations due to common input.
Calculating an effect repertoire: Virtual elements

Now, since we’re only interested in how the current state of \(C \) constrains the next state of the purview \(BC \), rather than the whole system, we want to ignore the next state of \(A \).
Calculating an effect repertoire: Virtual elements

Now, since we’re only interested in how the current state of C constrains the next state of the purview BC, rather than the whole system, we want to ignore the next state of A.

[Diagram showing current state at t and next state at $t+1$ with A ignored at $t+1$.]
Calculating an effect repertoire:
Marginalizing-out non-purview elements

As usual, ignoring the next state of A corresponds to **marginalizing it out** of the TPM.
Calculating an effect repertoire:
Marginalizing-out non-purview elements

The process is the same as when we marginalized-out \(D \) as a background condition: We sum pairs of columns whose corresponding states differ only by \(A \)'s state.
Calculating an effect repertoire:
Marginalizing-out non-purview elements

The process is the same as when we marginalized-out \(D \) as a background condition:
We sum pairs of columns whose corresponding states differ only by \(A \)’s state.
Calculating an effect repertoire: **Marginalizing-out non-purview elements**

The process is the same as when we marginalized-out D as a background condition: We sum pairs of columns whose corresponding states differ only by A’s state.
Calculating an effect repertoire:
Marginalizing-out non-purview elements

The process is the same as when we marginalized-out D as a background condition: We sum pairs of columns whose corresponding states differ only by A’s state.
Calculating an effect repertoire:
Marginalizing-out non-purview elements

The process is the same as when we marginalized-out D as a background condition:
We sum pairs of columns whose corresponding states differ only by A’s state
Calculating an effect repertoire: *Marginalizing-out non-mechanism elements*

Now, to find the effect repertoire of the mechanism, C, as before, we want a TPM that gives the probabilities of next purview states given *only* the current state of C.

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_B</td>
<td>A_C</td>
</tr>
<tr>
<td>\circ</td>
<td>\circ</td>
</tr>
</tbody>
</table>
Calculating an effect repertoire: Marginalizing-out non-mechanism elements

In other words, we want to ignore the current state of the non-mechanism elements—so we marginalize them out of the TPM.
Calculating an effect repertoire: Marginalizing-out non-mechanism elements

As with the previous example, marginalizing over the current states of elements means we sum over rows, rather than columns (and renormalize the resulting rows)
Calculating an effect repertoire: Marginalizing-out non-mechanism elements

First we'll marginalize-out A_B
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

First we'll marginalize-out A_B

Current state

<table>
<thead>
<tr>
<th>A_B</th>
<th>A_C</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Next state

<table>
<thead>
<tr>
<th>A_B</th>
<th>A_C</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Calculating an effect repertoire: Marginalizing-out non-mechanism elements

First we'll marginalize-out A_B

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_B</td>
<td>A_C</td>
</tr>
<tr>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

First we’ll marginalize-out A_B
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

First we’ll marginalize-out A_B
Calculating an effect repertoire: *Marginalizing-out non-mechanism elements*

First we’ll marginalize-out A_B
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

Next state

<table>
<thead>
<tr>
<th>A_c</th>
<th>B</th>
<th>C</th>
<th>Current state</th>
<th>t</th>
<th>$t + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>○ ○ ○</td>
<td>1/2</td>
<td>1/2</td>
<td>0 0 0 0</td>
<td>○</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>○ ○ ○</td>
<td>0</td>
<td>0</td>
<td>0 0 1 0</td>
<td>○</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>○ ○ ○</td>
<td>0</td>
<td>0</td>
<td>0 0 1 0</td>
<td>○</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>○ ○ ○</td>
<td>1/2</td>
<td>1/2</td>
<td>0 0 0 0</td>
<td>○</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>○ ○ ○</td>
<td>0</td>
<td>0</td>
<td>1/2 1/2</td>
<td>○</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>○ ○ ○</td>
<td>0</td>
<td>0</td>
<td>1/2 1/2</td>
<td>○</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>○ ○ ○</td>
<td>1/2</td>
<td>1/2</td>
<td>0 0 0 0</td>
<td>○</td>
<td>○ ○ ○</td>
</tr>
</tbody>
</table>
Calculating an effect repertoire: **Marginalizing-out non-mechanism elements**

Now we’ll marginalize-out A_c
Calculating an effect repertoire: Marginalizing-out non-mechanism elements

Now we’ll marginalize-out A_c
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

Now we’ll marginalize-out A_c
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

Now we’ll marginalize-out A_C
Calculating an effect repertoire: *Marginalizing-out non-mechanism elements*

And finally we’ll marginalize-out B

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>B C</td>
<td>B C</td>
</tr>
<tr>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>1/2</td>
<td>1/4</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
</tr>
</tbody>
</table>
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

And finally we’ll marginalize-out B
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

And finally we’ll marginalize-out B
Calculating an effect repertoire: **Marginalizing-out non-mechanism elements**

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>1/4</td>
<td>1/4</td>
</tr>
</tbody>
</table>

And finally we’ll marginalize-out B
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

And finally we’ll marginalize-out B
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

And finally we’ll marginalize-out B
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

And finally we’ll marginalize-out B
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

Now we have a table of probabilities of next purview states given each possible current state of C.
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

With this TPM, we can now simply look up the effect repertoire, by conditioning on C’s current state (taking the row that corresponds to it)
Calculating an effect repertoire: **Marginalizing-out non-mechanism elements**

With this TPM, we can now simply look up the effect repertoire, by conditioning on C’s current state (taking the row that corresponds to it)
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

And this is the effect repertoire of mechanism \(\textbf{C} \) over purview \(\textbf{BC} \) when the system is in state \((1, 0, 0)\)
Calculating an effect repertoire:
Marginalizing-out non-mechanism elements

And this is the effect repertoire of mechanism C over purview BC when the system is in state (1, 0, 0)
Calculating an effect repertoire:

Recap

We’ve shown how to determine the effect repertoire by:

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>TPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Introducing virtual elements to remove effects due to common input</td>
<td>• Finding the virtual TPM via perturbation</td>
</tr>
<tr>
<td>• Ignoring the elements outside the purview</td>
<td>• Marginalizing-out the elements outside the purview</td>
</tr>
<tr>
<td>• Ignoring the elements outside the mechanism</td>
<td>• Marginalizing-out the elements outside the mechanism</td>
</tr>
<tr>
<td>• Fixing the current state of the mechanism</td>
<td>• Conditioning the TPM on the state of the mechanism</td>
</tr>
</tbody>
</table>
Calculating an effect repertoire:
Expanding to the full state-space

Note that we can expand this repertoire into a distribution over states of the entire system by multiplying it by the **unconstrained distribution** over non-purview elements.
Calculating an effect repertoire:
Expanding to the full state-space

To calculate the **unconstrained distribution**, we use the same method that we just did but **without conditioning on any mechanism**.
Calculating an effect repertoire:
Expanding to the full state-space

\[t \quad t + 1 \]

To calculate the **unconstrained distribution**, we use the same method that we just did but **without conditioning on any mechanism**.
Calculating an effect repertoire:
Expanding to the full state-space

In this example, this is the unconstrained distribution over \(A \)'s next states (here this can be obtained immediately by observing that \(A \) is an OR gate)
Calculating an effect repertoire:
Expanding to the full state-space

Taking the tensor product yields the final effect repertoire over the whole system
Calculating an effect repertoire:
Expanding to the full state-space

Taking the tensor product yields the final effect repertoire over the whole system
Calculating an effect repertoire:

A more practical method

- In practice, calculations can be made simpler than described so far.
- One trick we can use to simplify things stems from the fact that in our model of physical systems, we rule out instantaneous causation.
- This is captured by the requirement that elements be conditionally independent.
- That is, each element’s state at $t + 1$ depends only on the system’s state at t and not on other elements’ states at $t + 1$.
Calculating an effect repertoire:

A more practical method

- Conditional independence implies that if p is a distribution over the states of an element X and q is the distribution over the states of Y, then the **joint distribution** of X and Y is the product pq.
- So, when we calculate an effect repertoire over some purview, we can simply take the product of all the purview elements’ individual effect repertoires.
- This holds for the cause repertoires as well, though in that case the repertoires are over the individual mechanism elements.
- This way we only ever need to calculate the effect repertoire over single-element purviews—so there can be no common input, and thus there’s no need to actually implement virtual elements.
Calculating a cause repertoire

• Now we’ll discuss the cause repertoire
• The goal is again to obtain a distribution over purview states given the mechanism’s current state
• Now, however, the distribution is over previous states of the purview
• The idea remains the same: use perturbation to determine how the mechanism in its current state constrains the purview
Calculating a cause repertoire

Now we'll calculate the cause repertoire of C over the purview BC in our example system.
Calculating a cause repertoire

We start by interpreting the TPM as giving the transition probabilities from the state at $t - 1$ to t
Calculating a cause repertoire

We start by interpreting the TPM as giving the transition probabilities from the state at $t - 1$ to t.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Calculating a cause repertoire

Now we’ll unfold the graph in time again
The first step is then to ignore the elements outside the purview (in this case A) and marginalize them out of the TPM.
Calculating a cause repertoire: **Marginalizing-out non-purview elements**

The first step is then to ignore the elements outside the purview (in this case A) and marginalize them out of the TPM.
Calculating a cause repertoire:
Marginalizing-out non-purview elements

Note that since the purview is now at $t - 1$, the roles of columns and rows in the TPM have switched.
Calculating a cause repertoire: Marginalizing-out non-purview elements

We now sum and renormalize pairs of rows corresponding to states at $t - 1$ that differ only by A’s state.
Calculating a cause repertoire: **Marginalizing-out non-purview elements**

At time t, we have:

- **A**: a cause node
- **B**: a non-purview node
- **C**: another non-purview node

The state transition can be represented as follows:

- A: OR
- B: AND
- C: XOR

We now sum and renormalize pairs of rows corresponding to states at $t - 1$ that differ only by A's state.
Calculating a cause repertoire: Marginalizing-out non-purview elements

We now sum and renormalize pairs of rows corresponding to states at $t - 1$ that differ only by A’s state.
Calculating a cause repertoire: **Marginalizing-out non-purview elements**

We now sum and renormalize pairs of **rows** corresponding to states at $t - 1$ that differ only by A’s state.
Calculating a cause repertoire: Marginalizing-out non-purview elements

We now sum and renormalize pairs of rows corresponding to states at $t - 1$ that differ only by A’s state.
Calculating a cause repertoire: **Marginalizing-out non-purview elements**

We now sum and renormalize pairs of rows corresponding to states at $t - 1$ that differ only by A's state.
Calculating a cause repertoire: **Marginalizing-out non-mechanism elements**

Now we marginalize over the current states of elements outside the mechanism (A and B)
Calculating a cause repertoire:

Marginalizing-out non-mechanism elements

Now we marginalize over the current states of elements outside the mechanism (A and B)
Calculating a cause repertoire: **Marginalizing-out non-mechanism elements**

Now we marginalize over the current states of elements outside the mechanism (A and B)
Calculating a cause repertoire:
Marginalizing-out non-mechanism elements

Now we marginalize over the current states of elements outside the mechanism (A and B)
Calculating a cause repertoire: **Marginalizing-out non-mechanism elements**

Now we marginalize over the current states of elements outside the mechanism (A and B)

<table>
<thead>
<tr>
<th>Previous state</th>
<th>Current state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>○</td>
</tr>
</tbody>
</table>

(\(A \text{ OR } C) \) \text{ XOR } B \) \text{ AND } \(B \text{ AND } C\)
Calculating a cause repertoire: **Marginalizing-out non-mechanism elements**

Now we marginalize over the current states of elements outside the mechanism (A and B)

<table>
<thead>
<tr>
<th>Previous state</th>
<th>Current state</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t - 1)</td>
<td>(t)</td>
</tr>
<tr>
<td>(B\ AND)</td>
<td>(B\ AND)</td>
</tr>
<tr>
<td>(C\ XOR)</td>
<td>(C\ XOR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>Current state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1/2)</td>
</tr>
<tr>
<td>(1/2)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>(1/2)</td>
<td></td>
<td>(1/2)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(1/2)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(1/2)</td>
<td>(1/2)</td>
</tr>
<tr>
<td>(1/2)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Calculating a cause repertoire:
Marginalizing-out non-mechanism elements

Now we marginalize over the current states of elements outside the mechanism (A and B)
Calculating a cause repertoire:
Marginalizing-out non-mechanism elements

Now we marginalize over the current states of elements outside the mechanism (A and B)
Calculating a cause repertoire:
Marginalizing-out non-mechanism elements

Now we marginalize over the current states of elements outside the mechanism \((A \text{ and } B)\)

<table>
<thead>
<tr>
<th>Previous state</th>
<th>Current state</th>
</tr>
</thead>
<tbody>
<tr>
<td>B C</td>
<td></td>
</tr>
<tr>
<td>🔋 🔋 🍊 🍊</td>
<td>0 0 1/2 0</td>
</tr>
<tr>
<td>🔋 🔋 🍊</td>
<td>1/2 0 1/2 0</td>
</tr>
<tr>
<td>🔋 🔋 🔋</td>
<td>1/2 0 1/2 1/2</td>
</tr>
<tr>
<td>🔋 🔋 🔋</td>
<td>0 1/2 1/2 0</td>
</tr>
</tbody>
</table>
Calculating a cause repertoire:
Marginalizing-out non-mechanism elements

Now we marginalize over the current states of elements outside the mechanism (A and B)
Calculating a cause repertoire:

Marginalizing-out non-mechanism elements

Now we marginalize over the current states of elements outside the mechanism (A and B)
Calculating a cause repertoire: **Conditioning on the mechanism**

The next step is to condition on the current state of the mechanism, C

<table>
<thead>
<tr>
<th>Previous state</th>
<th>C</th>
<th>Current state</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bigcirc \bigcirc \bigcirc$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>
Calculating a cause repertoire:

Conditioning on the mechanism

This is done by simply taking the column corresponding to C’s current state.

<table>
<thead>
<tr>
<th>Previous state</th>
<th>B</th>
<th>C</th>
<th>Current state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>1/2 1/2</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
<td>0</td>
<td>1/2 1/2</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
<td>1</td>
<td>1/2 1/2</td>
</tr>
<tr>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1/2 1/2</td>
</tr>
</tbody>
</table>
Calculating a cause repertoire: **Conditioning on the mechanism**

This is done by simply taking the column corresponding to C’s current state.
Calculating a cause repertoire:

Conditioning on the mechanism

This is done by simply taking the column corresponding to C’s current state.
Calculating a cause repertoire: **Renormalizing**

And finally, we renormalize to obtain a proper distribution (not needed in this example, but required in general since columns of the TPM do not necessarily sum to 1)
Calculating a cause repertoire: Renormalizing

This is the cause repertoire of \(C \) over \(BC \) when the system is in state \((1, 0, 0)\)
Calculating a cause repertoire:

Renormalizing

This is the cause repertoire of \textbf{C} over \textbf{BC} when the system is in state \((1, 0, 0)\)
Calculating a cause repertoire: **Expanding to the full state-space**

Now, as with the effect repertoire, we can multiply this distribution by the unconstrained cause repertoire of the non-purview elements to get a distribution over the entire state space.
Calculating a cause repertoire:

Expanding to the full state-space

Recall that all previous states are equally likely in the perturbation, so the unconstrained cause repertoire of the non-mechanism elements is simply the uniform distribution.
Calculating a cause repertoire:

Expanding to the full state-space

Recall that all previous states are equally likely in the perturbation, so the unconstrained cause repertoire of the non-mechanism elements is simply the uniform distribution.
Calculating a cause repertoire:

Expanding to the full state-space

Recall that all previous states are equally likely in the perturbation, so the unconstrained cause repertoire of the non-mechanism elements is simply the uniform distribution.
Calculating a cause repertoire:
Expanding to the full state-space

Now we can multiply the cause repertoire over the purview by the unconstrained repertoire to get the cause repertoire over the whole system’s state at $t - 1$.
Calculating a cause repertoire:
Expanding to the full state-space

This is the expanded cause repertoire
Outline

- Elements, states, and the TPM
- Background conditions
- Cause-effect repertoires
- Integrated mechanisms: φ
- Concepts and cause-effect structures
- Integrated systems: Φ
- Complexes
Integration and irreducibility

- The cause and effect repertoires quantify to what extent a candidate mechanism has selective causes and effects within the system.
- Since IIT is concerned with the intrinsic perspective of the system, we are interested in whether or not a given candidate mechanism’s causes and effects are reducible to the causes and effects of its parts.
- If the candidate mechanism’s causes and effects reduce to those of its parts, then there is nothing gained in terms of information by grouping the parts together in the first place.
- The set of elements per se doesn’t make a difference to the system.
Integration and reducibility:

An example of a reducible candidate mechanism

• Consider the mechanism AC over the purview ABC
Integration and reducibility:

An example of a reducible candidate mechanism

- Consider the mechanism AC over the purview ABC
- It has the following effect repertoire:

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 0 1 1 0 1 0 1</td>
</tr>
<tr>
<td>B</td>
<td>0 1 1 0 0 1 1 1</td>
</tr>
<tr>
<td>C</td>
<td>0 0 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>$1/4$</th>
<th>$1/4$</th>
<th>0</th>
<th>0</th>
<th>$1/4$</th>
<th>$1/4$</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integration and reducibility:

An example of a reducible candidate mechanism

Now we can partition the purview into AB and C

Then we consider the effect repertoire of the mechanism AC over AB and the unconstrained repertoire of C

In other words, we can separate the repertoire $\frac{AC}{ABC}$ into $\frac{AC}{AB}$ and $\frac{\emptyset}{C}$
Integration and reducibility:
An example of a reducible mechanism

- We calculate the unconstrained repertoire of C:

- And the repertoire AC over AB:
Integration and reducibility:
An example of a reducible mechanism

• Now we take the tensor product to obtain a repertoire over the original purview, ABC:
Integration and reducibility:

An example of a reducible mechanism

- And we see that we’ve recovered the original effect repertoire of AC over ABC

- This means that the repertoire of $\frac{\text{AC}}{\text{ABC}}$ can be “factored” into $\frac{\text{AC}}{\text{AB}}$ and $\frac{\phi}{\text{C}}$

- In other words, the repertoire of AC over ABC is **reducible** to that of AC over AB

- There is no information gained by including C in the purview
Integration and reducibility:
Minimum information partition and “small-phi”

- However, note that we can try to factor the repertoire in many different ways:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\emptyset \times \frac{AC}{B}$</td>
<td>$\frac{A}{B} \times \frac{AC}{C}$</td>
</tr>
<tr>
<td>$\frac{\emptyset}{AB} \times \frac{AC}{C}$</td>
<td>$\frac{A}{C} \times \frac{C}{BC}$</td>
</tr>
<tr>
<td>$\frac{\emptyset}{ABC} \times \frac{AC}{\phi}$</td>
<td>$\frac{A}{AC} \times \frac{C}{B}$</td>
</tr>
<tr>
<td>$\frac{\emptyset}{ABC} \times \frac{AC}{\phi}$</td>
<td>$\frac{A}{AC} \times \frac{C}{B}$</td>
</tr>
<tr>
<td>$\emptyset \times \frac{AC}{BC}$</td>
<td>$\frac{A}{B} \times \frac{AC}{\phi}$</td>
</tr>
<tr>
<td>$\frac{\emptyset}{ABC} \times \frac{AC}{\phi}$</td>
<td>$\frac{A}{AC} \times \frac{C}{B}$</td>
</tr>
<tr>
<td>$\frac{\emptyset}{ABC} \times \frac{AC}{\phi}$</td>
<td>$\frac{A}{AC} \times \frac{C}{B}$</td>
</tr>
<tr>
<td>$\emptyset \times \frac{AC}{BC}$</td>
<td>$\frac{A}{B} \times \frac{AC}{\phi}$</td>
</tr>
<tr>
<td>$\frac{\emptyset}{ABC} \times \frac{AC}{\phi}$</td>
<td>$\frac{A}{AC} \times \frac{C}{B}$</td>
</tr>
<tr>
<td>$\frac{\emptyset}{ABC} \times \frac{AC}{\phi}$</td>
<td>$\frac{A}{AC} \times \frac{C}{B}$</td>
</tr>
</tbody>
</table>
Integration and reducibility:
Minimum information partition and “small-phi”

• However, note that we can try to factor the repertoire in many different ways:
• We calculate the repertoire for each of these possible partitions
• Then we compare each of the partitioned repertoires to the original repertoire by calculating the distance between them
• PyPhi supports various distance measures, but we’ll explore the Earth Mover’s Distance (EMD) used in IIT 3.0
Integration and reducibility:
The Earth Mover’s Distance

The EMD is the minimum cost of transforming one pile of “dirt” into the other, where the cost is the amount of dirt moved multiplied by the distance it travels.
Integration and reducibility:

Minimum information partition and “small-phi”

- The partition corresponding to the minimal distance from the original repertoire is the **minimum information partition**
- It’s the partition that results in the smallest loss of information
- The EMD between the unpartitioned repertoire and the repertoire of the MIP quantifies **how irreducible** the unpartitioned repertoire is
- This quantity is called **integrated information**, denoted φ (“small-phi”), because it’s the information that is contained in the repertoire by virtue of considering the mechanism as an integrated whole
Outline

• Elements, states, and the TPM
• Background conditions
• Cause-effect repertoires
• Integrated mechanisms: \(\varphi \)
• Concepts and cause-effect structures
• Integrated systems: \(\Phi \)
• Complexes
Integration and reducibility:

Maximally-irreducible cause-effect repertoire of mechanism ABC

For a given candidate mechanism, we can find the cause and effect repertoires over all possible purviews (the power set of the system)
For a given candidate mechanism, we can find the cause and effect repertoires over all possible purviews (the power set of the system)
Integration and reducibility:

Maximally-irreducible cause-effect repertoire of mechanism ABC

Then we can find the MIP and φ value for each repertoire
Integration and reducibility:

Maximally-irreducible cause-effect repertoire of mechanism ABC

The repertoire whose MIP has the highest φ value (φ^{max}) is the maximally-irreducible effect repertoire for mechanism ABC (the maximally-irreducible cause repertoire is defined similarly)
Integration and reducibility:

Concepts

- The maximally-irreducible cause and effect repertoires of \(\text{ABC} \), and their \(\varphi_{\text{cause}} \) and \(\varphi_{\text{effect}} \) values, together form the **concept** specified by \(\text{ABC} \).

- The irreducibility of the concept as a whole is the minimum of its maximally-irreducible cause and effect:

\[
\varphi = \min(\varphi_{\text{cause}}, \varphi_{\text{effect}})
\]
Integration and reducibility:

Cause-effect structures

- In this way we can calculate the concept specified by every candidate mechanism.
- The collection of all the concepts with nonzero φ is the system’s *cause-effect structure*:
Outline

• Elements, states, and the TPM
• Background conditions
• Cause-effect repertoires
• Integrated mechanisms: \(\varphi \)
• Concepts and cause-effect structures
• Integrated systems: \(\Phi \)
• Complexes
Integration and reducibility:

System-level irreducibility and system cuts

- At this point, we have assessed which subsets of elements of the candidate system exist intrinsically as integrated mechanisms with irreducible cause-effect power
- But what about the system as a whole?
- We can determine whether our candidate system is an integrated, irreducible entity using the same general scheme as when calculating φ
Integration and reducibility:
System-level irreducibility and system cuts

• The idea is to cut the system into two groups of elements, and remove the causal link from the first group to the second (a unidirectional cut)
• Then we can see whether the cut “makes a difference”
• If it doesn’t, then the system reduces to the two parts separated by the cut
Integration and reducibility:

System-level irreducibility and system cuts

- Here, we can see immediately that the cut makes no difference to the system.
- The cause-effect structure is unchanged by the cut.
- \(WXYZ\) reduces to \(WX\) and \(YZ\).
Integration and reducibility:

System-level irreducibility and system cuts

• But what is the proper way to “remove the causal link” from one group of elements to the other when there are connections between them?

• The right way to cut a connection is to **inject noise** into it, rather than simply removing it.

• In this example, the outgoing connections from A *independently* provide random input to elements B and C.
Integration and reducibility:
System-level irreducibility and system cuts

- We find the TPM for each individual mechanism, and combine them to get the full TPM (again, this works because of conditional independence)
- This makes the virtual elements implicit, as usual

CUT: A→BC
We start by finding the TPM for just A, which takes input from B and C.

<table>
<thead>
<tr>
<th>Current state</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next state</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\bigcirc</td>
<td>\bigcirc</td>
<td>\bigcirc</td>
</tr>
</tbody>
</table>
We start by finding the TPM for just A, which takes input from B and C.

Current state

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Next state

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

t

$t + 1$
Integration and reducibility:

System-level irreducibility and system cuts

We start by finding the TPM for just A, which takes input from B and C.

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Diagram:

- A: OR
- B: AND
- C: XOR

t

System cuts are indicated by scissors.
Integration and reducibility:

System-level irreducibility and system cuts

We start by finding the TPM for just A, which takes input from B and C.
Integration and reducibility: System-level irreducibility and system cuts

We start by finding the TPM for just A, which takes input from B and C.
Integration and reducibility: System-level irreducibility and system cuts

<table>
<thead>
<tr>
<th>Current state</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

We start by finding the TPM for just A, which takes input from B and C.
Integration and reducibility:
System-level irreducibility and system cuts

We start by finding the TPM for just A, which takes input from B and C.

<table>
<thead>
<tr>
<th>Current state</th>
<th>Next state</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset \emptyset</td>
<td>1 0</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>\emptyset \bullet</td>
<td>0 1</td>
<td>\bullet</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>\bullet \emptyset</td>
<td>0 1</td>
<td>\emptyset</td>
<td>\bullet</td>
<td></td>
</tr>
<tr>
<td>\bullet \bullet</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

Diagram:
- A OR
- B AND
- C XOR

System cuts are shown with scissors.
We start by finding the TPM for just A, which takes input from B and C.
Integration and reducibility:

System-level irreducibility and system cuts

- Next we find the TPM for B, which takes input from C and *noised* input from A
- We account for A’s noisy output by computing the TPM as if the output were not noised, then marginalizing A out
Integration and reducibility:

System-level irreducibility and system cuts

- Next we find the TPM for B, which takes input from C and *noised* input from A.
- We account for A’s noisy output by computing the TPM as if the output were not noised, then marginalizing A out.
Integration and reducibility:

System-level irreducibility and system cuts

- Next we find the TPM for B, which takes input from C and *noised* input from A.
- We account for A’s noisy output by computing the TPM as if the output were not noised, then marginalizing A out.
Integration and reducibility: System-level irreducibility and system cuts

- Next we find the TPM for B, which takes input from C and noised input from A
- We account for A’s noisy output by computing the TPM as if the output were not noised, then marginalizing A out
Integration and reducibility:
System-level irreducibility and system cuts

- Next we find the TPM for B, which takes input from C and *noised* input from A
- We account for A’s noisy output by computing the TPM as if the output were not noised, then marginalizing A out
Integration and reducibility:
System-level irreducibility and system cuts

- Next we find the TPM for B, which takes input from C and *noised* input from A
- We account for A’s noisy output by computing the TPM as if the output were not noised, then marginalizing A out
Integration and reducibility:

System-level irreducibility and system cuts

- Finally we do the same procedure for C, (which only gets input from B after the cut), which results in this TPM:
Integration and reducibility:

System-level irreducibility and system cuts

Then we expand these TPMs to the full state space so they can be combined:

\[
\begin{array}{c|c|c}
\text{B} & \text{C} & \text{A} \\
\hline
\text{0} & \text{0} & \text{0} \\
\hline
\text{0} & \text{1} & \text{1} \\
\hline
\text{1} & \text{0} & \text{1} \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{A} & \text{B} & \text{C} \\
\hline
\text{0} & \text{0} & \text{0} \\
\hline
\text{0} & \text{0} & \text{1} \\
\hline
\text{1} & \text{0} & \text{1} \\
\hline
\end{array}
\]
Integration and reducibility:
System-level irreducibility and system cuts

Then we expand these TPMs to the full state space so they can be combined:
Integration and reducibility:
System-level irreducibility and system cuts

Then we expand these TPMs to the full state space so they can be combined:
Integration and reducibility:
System-level irreducibility and system cuts

Now we can get the full TPM of the cut system by taking the tensor product of the individual TPMs.
Integration and reducibility:
System-level irreducibility and system cuts

In sum: this is how the system cut $A \not\Rightarrow BC$ changes the TPM
Integration and reducibility:

System-level irreducibility and system cuts

- Now that we’ve recalculated the TPM, we can calculate the cut system’s cause-effect structure.
- We need to determine if the cut “makes a difference” from the intrinsic perspective of the system.
- This will tell us whether the system reduces to the parts separated by the cut.
- We do this by comparing the cause-effect structure of the uncut system to that of the cut system.
Integration and reducibility: System-level irreducibility and system cuts

Here, we see that all the concepts except the one specified by B have been destroyed by the cut
Integration and reducibility:
Extended earth mover’s distance

\[
\begin{align*}
\text{WHOLE SYSTEM:} & \\
A & \\
\frac{A}{BC} & \varphi = 0.17 \\
\frac{A}{B} & \varphi = 0.25 \\
\frac{B}{AC} & \varphi = 0.17 \\
B & \\
\frac{B}{C} & \varphi = 0.17 \\
\frac{B}{A} & \varphi = 0.25 \\
C & \\
\frac{C}{AB} & \varphi = 0.50 \\
\frac{A}{AB} & \varphi = 0.25 \\
\frac{B}{AB} & \varphi = 0.25 \\
AB & \\
\frac{AB}{C} & \varphi = 0.25 \\
\frac{AB}{A} & \varphi = 0.25 \\
\frac{BC}{AB} & \varphi = 0.33 \\
\frac{BC}{A} & \varphi = 0.50 \\
\frac{ABC}{AB} & \varphi = 0.50 \\
\frac{ABC}{AC} & \varphi = 0.50
\end{align*}
\]

• So, we can see that this cut “makes a difference” (from the system’s intrinsic perspective), but how do we quantify that difference?

• As with calculating the φ of a repertoire, we can use the Earth Mover’s Distance to measure the difference between the unpartitioned and partitioned cause-effect structures.
Integration and reducibility:

Extended earth mover’s distance

- In this case, the “earth” that we’re moving is the φ-value of each concept.
- The cost of transporting φ from one concept to another is the concept distance.
- This is the sum of the EMD between their cause repertoires and the EMD between their effect repertoires.
Integration and reducibility:
Extended earth mover’s distance

\[\text{Concept distance} = \begin{cases} \sum (B_{\text{whole}}) + \sum (B_{\text{cut}}) \end{cases} = 0.17 \]
Integration and reducibility:

Extended earth mover’s distance

\[
\begin{align*}
\varphi &= 0.17 \\
\varphi &= 0.25 \\
\varphi &= 0.17 \\
\varphi &= 0.25 \\
\varphi &= 0.25 \\
\varphi &= 0.50 \\
\varphi &= 0.33 \\
\varphi &= 0.50 \\
\varphi &= 0.50
\end{align*}
\]

\[
\begin{align*}
&0.17 \times 0.17 = 0.0289 \\
&\text{Concept distance} \\
&\varphi \text{ of } B_{\text{whole}} \text{ to } B_{\text{cut}}
\end{align*}
\]
Integration and reducibility:
Extended earth mover’s distance

<table>
<thead>
<tr>
<th>Whole</th>
<th>(\frac{A}{B})</th>
<th>(\frac{B}{C})</th>
<th>(\frac{C}{A})</th>
<th>(\frac{A}{BC})</th>
<th>(\frac{B}{AC})</th>
<th>(\frac{C}{AB})</th>
<th>(\frac{AB}{BC})</th>
<th>(\frac{AC}{AB})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\varphi = 0.17)</td>
<td>(\varphi = 0.17)</td>
<td>(\varphi = 0.25)</td>
<td>(\varphi = 0.17)</td>
<td>(\varphi = 0.17)</td>
<td>(\varphi = 0.25)</td>
<td>(\varphi = 0.25)</td>
<td>(\varphi = 0.50)</td>
</tr>
</tbody>
</table>

- At this point, we’ve accounted for all the \(\varphi \) present in the partitioned cause-effect structure
- But we also have to account for the \(\varphi \) that disappeared when the other concepts were destroyed

\[0.0289 \]
Integration and reducibility: Extended earth mover’s distance

• To do this, we transport all the “extra” φ to the \textbf{null concept}

• This is the concept that is specified by no mechanism (strictly speaking, it’s not a concept since it has $\varphi = 0$)
Integration and reducibility:
Extended earth mover’s distance

- Since the null concept’s mechanism is empty, its cause and effect repertoires are simply the unconstrained repertoires over the entire system.
- So, the distance to the null concept is the sum of the distances to the unconstrained cause and effect repertoires.

\[
\begin{align*}
\text{A} & \quad \varphi = 0.17 \\
\text{B} & \quad \varphi = 0.25 \\
\text{C} & \quad \varphi = 0.25 \\
\text{AB} & \quad \varphi = 0.25 \\
\text{BC} & \quad \varphi = 0.33 \\
\text{ABC} & \quad \varphi = 0.50
\end{align*}
\]
Integration and reducibility:

Extended earth mover’s distance

\[
\begin{align*}
\text{A} & \quad \frac{A}{BC} & \varphi = 0.17 \\
& \quad \frac{A}{B} & \varphi = 0.25 \\
& \quad \frac{B}{A} & \varphi = 0.17 \\
\text{B} & \quad \frac{B}{AC} & \varphi = 0.25 \\
& \quad \frac{B}{A} & \varphi = 0.17 \\
\text{C} & \quad \frac{C}{AB} & \varphi = 0.50 \\
& \quad \frac{C}{AC} & \varphi = 0.25 \\
\text{AB} & \quad \frac{AB}{ABC} & \varphi = 0.25 \\
& \quad \frac{AB}{A} & \varphi = 0.25 \\
\text{BC} & \quad \frac{BC}{ABC} & \varphi = 0.33 \\
& \quad \frac{BC}{A} & \varphi = 0.50 \\
\text{ABC} & \quad \frac{ABC}{ABC} & \varphi = 0.50 \\
\end{align*}
\]

\[
0.583 \times \varphi_A + 1 \times \varphi_C + 1 \times \varphi_{AB} + 1.25 \times \varphi_{BC} + 2 \times \varphi_{ABC} = 0.0289
\]
Integration and reducibility:

Extended earth mover’s distance

\[
\begin{align*}
A & \\
\frac{A}{BC} & \varphi = 0.17 \\
\frac{A}{B} & \varphi = 0.25 \\
\frac{B}{A} & \varphi = 0.17 \\
\end{align*}
\]

\[
\begin{align*}
B & \\
\frac{B}{AC} & \varphi = 0.17 \\
\frac{B}{A} & \varphi = 0.25 \\
\frac{C}{AB} & \varphi = 0.50 \\
\frac{AB}{C} & \varphi = 0.25 \\
\frac{BC}{A} & \varphi = 0.50 \\
\frac{ABC}{AC} & \varphi = 0.50 \\
\end{align*}
\]

\[
\begin{align*}
C & \\
\frac{C}{AB} & \varphi = 0.25 \\
\frac{AB}{C} & \varphi = 0.25 \\
\frac{BC}{A} & \varphi = 0.33 \\
\frac{ABC}{AC} & \varphi = 0.50 \\
\end{align*}
\]

\[
\begin{align*}
AB & \\
\frac{AB}{ABC} & \varphi = 0.25 \\
\frac{AB}{C} & \varphi = 0.25 \\
\frac{BC}{A} & \varphi = 0.33 \\
\frac{ABC}{AC} & \varphi = 0.50 \\
\end{align*}
\]

\[
\begin{align*}
BC & \\
\frac{BC}{A} & \varphi = 0.50 \\
\frac{BC}{C} & \varphi = 0.50 \\
\frac{ABC}{AC} & \varphi = 0.50 \\
\end{align*}
\]

\[
\begin{align*}
ABC & \\
\frac{ABC}{A} & \varphi = 0.50 \\
\frac{ABC}{B} & \varphi = 0.50 \\
\frac{ABC}{C} & \varphi = 0.50 \\
\end{align*}
\]

0.583 × \(\varphi_A\)

1 × \(\varphi_C\)

1 × \(\varphi_{AB}\)

1.25 × \(\varphi_{BC}\)

2 × \(\varphi_{ABC}\)

• Now we can sum everything up to get the extended EMD between the unpartitioned and partitioned cause-effect structures
Integration and reducibility:
Extended earth mover’s distance

\[
\begin{align*}
A & \quad B \\
\frac{A}{BC} & \quad \varphi = 0.17 \\
\frac{A}{B} & \quad \varphi = 0.25 \\
\frac{B}{A} & \quad \varphi = 0.17 \\
\frac{C}{AB} & \quad \varphi = 0.50 \\
\frac{AB}{BC} & \quad \varphi = 0.25 \\
\frac{AB}{AC} & \quad \varphi = 0.25 \\
\frac{ABC}{AC} & \quad \varphi = 0.50 \\
\end{align*}
\]

\[
0.583 \times \varphi_A + 1 \times \varphi_C + 1 \times \varphi_{AB} + 1.25 \times \varphi_{BC} + 2 \times \varphi_{ABC}
\]

\[= 0.097 + 0.0289 + 0.25 + 0.25 + 0.4125 + 1\]

\[= 2.0416\]
Integration and reducibility:
Extended earth mover’s distance

<table>
<thead>
<tr>
<th>WHOLE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>AB</th>
<th>BC</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This quantity is called **integrated conceptual information**, and is denoted \(\Phi \) (“big-phi”)
- It captures how irreducible the cause-effect structure of the system is, with respect to this particular cut
Integration and reducibility:

System-level minimum information partition

• However, as with partitioning mechanisms, there are different ways to cut the system in two:
Integration and reducibility:

System-level minimum information partition

- So, we perform every possible cut, determine the cause-effect structure for each of the cut systems, and calculate the Φ-value associated with each.

- The cut that yields the minimal Φ-value is again called the **minimum information partition** (MIP) for the system.

$$
\Phi = 2.042 \\
\Phi = 1.924 \\
\Phi = 1.924 \\
\Phi = 1.972 \\
\Phi = 1.917
$$
Integration and reducibility:

Integrated information

- The minimal Φ-value, Φ^{MIP}, is the Φ of the whole candidate system.
- As with mechanisms, the cut that makes the *least difference* to the candidate system captures how intrinsically irreducible it is.

Candidate system ABC

$\Phi = 1.917$
Outline

• Elements, states, and the TPM
• Background conditions
• Cause-effect repertoires
• Integrated mechanisms: φ
• Concepts and cause-effect structures
• Integrated systems: Φ
• Complexes
Integration and reducibility:

Complexes

- Now, recall that we began the analysis by choosing a candidate system to evaluate.
- Φ is evaluated for each possible candidate system, and the candidate system with the maximal value, Φ_{max}, is called a complex.
- For brevity we don’t consider all candidate systems that include D, since the cut $ABC \not\to D$ will trivially have $\Phi = 0$.
Integration and reducibility:

Complexes

- Now, recall that we began the analysis by choosing a candidate system to evaluate.
- Φ is evaluated for each possible candidate system, and the candidate system with the maximal value, Φ_{max}, is called a complex.
- For brevity we don’t consider all candidate systems that include D, since the cut $ABC \not\Rightarrow D$ will trivially have $\Phi = 0$.

Candidate system AB: $\Phi = 0$
Integration and reducibility:

Complexes

- Now, recall that we began the analysis by choosing a candidate system to evaluate.
- Φ is evaluated for each possible candidate system, and the candidate system with the maximal value, Φ_{max}, is called a complex.
- For brevity we don’t consider all candidate systems that include D, since the cut $ABC \not\Rightarrow D$ will trivially have $\Phi = 0$.

Candidate system BC

$$\Phi = 1.0$$
Integration and reducibility:

Complexes

- Now, recall that we began the analysis by choosing a subset of the network to evaluate as a candidate system.
- The next step is to evaluate Φ for every candidate system.
- The system with the maximal value, Φ^{max}, is called a complex.
- For brevity, we don’t consider all candidate systems that include D, since the cut $\text{ABC} \not\Rightarrow \text{D}$ will trivially have $\Phi = 0$.

Candidate system AC

$$\Phi = 1.0$$
Integration and reducibility: Complexes

• The exclusion postulate of IIT dictates that only a complex exists as an integrated entity with a subjective experience.

• This defines the “borders” of the physical substrate of consciousness (e.g. the brain, without the sensory or motor neurons).
Integration and reducibility: Complexes

- Finally, note that in general, the search for the system with Φ^{max} must also be carried out over all spatiotemporal groupings of elements.