1 ExMISA Network

Two-gene network with Mutual Inhibition, Self-Activation, and exclusive transcription factor binding.

\[
\begin{align*}
A_{00} & + 2a \xrightarrow{h_x}{a} A_{10} \\
A_{00} & + 2b \xrightarrow{h_r}{a} A_{01} \\
B_{00} & + 2b \xrightarrow{h_s}{a} B_{10} \\
B_{00} & + 2a \xrightarrow{h_r}{a} B_{01} \\
A_{00} & \xrightarrow{g_0} A_{00} + a \\
B_{00} & \xrightarrow{g_0} B_{00} + b \\
A_{01} & \xrightarrow{g_0} A_{01} + a \\
B_{01} & \xrightarrow{g_0} B_{01} + b \\
A_{10} & \xrightarrow{g_1} A_{10} + a \\
B_{10} & \xrightarrow{g_1} B_{10} + b \\
a & \xrightarrow{k} 0 \\
b & \xrightarrow{k} 0
\end{align*}
\]

2 Pluripotency network

There are eight genes (encoding transcription factors) in the pluripotency network. Transcription factors bind as homodimers with the exception of the OCT4-SOX2 heterodimer. Only three transcription factors interact with their own gene, CDX2, NANOG, and GATA6. Transcription factors bind as dimers with the rate \(h \) and unbind with the rate \(f \). When a gene is bound by any activator and no repressors, it expresses at a rate \(g_{on} \), otherwise, it expresses at a rate \(g_{off} \). The only exception is NANOG, which must be bound by all three of its activators and no repressors to be activated.