1 Pseudo-code for hierarchical selection of data sources for influenza forecasting

S1 Algorithm. Hierarchical data source selection.

1. **Given** : Set of predictor data sources \(D \) and forecasting target \(G \)
2. \(D_{\text{chosen}} : \{D_1, D_2, D_3, \ldots, D_{n-1}\} \)
3. \(D_{\text{remaining}} : D \setminus D_{\text{chosen}} \)
4. To choose \(D_n \),
5. for \(q \in D_{\text{remaining}} \) do
6. Fit \(\Omega_q : G \sim D_1 + D_2 + \cdots + D_{n-1} + q \) on the full historical time series.
7. \(S \) : historical seasons of \(G \)
8. for \(s_i \in S \) do
9. for \(d \in D_{\text{chosen}} \cup q \) do
10. Make Bayes’ forecast of \(s_i \) for \(d \) from week \(w \), with \((S \setminus s_i) \) as priors.
11. Apply \(\Omega_q \) to forecast \(G \) for season \(s_i \) from forecasts generated in Step 10.
12. Score forecast from Step 11 by comparison to actual \(G \) (call this score \(\sigma(q, i) \)).
13. Calculate the grand score \(\sum_{s_i} \sigma(q, i) \).
14. Choose \(q \) that maximizes the grand score.
15. Set \(D_n = q \).