Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering

Maryam M. Shanechi1,2,\#,*, Amy L. Orsborn3,4,\#, Jose M. Carmena2,4,*

1Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
2Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
3Helen Willis Neuroscience Institute, University of California, Berkeley, CA, USA
4University of California, Berkeley–University of California, San Francisco Graduate Group in Bioengineering

\#These authors contributed equally to this work.
* shanechi@usc.edu, carmena@eecs.berkeley.edu

S1 Table

Performance Improvement Using Instant-OFC Method of Intention Estimation. Note that a positive improvement in reach time and movement error means a shorter reach time and a smaller movement error.

\begin{tabular}{l|c|c}
 & instant-OFC vs. N-OFC (%) & instant-OFC vs. CursorGoal (%) \\
\hline
Success Rate & 21\% & 26\% \\
Reach Time & 15\% & 24\% \\
Movement Error & 6\% & not significantly different \\
\end{tabular}