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Abstract

Proximity sequencing (Prox-seq) simultaneously measures gene expression, protein expres-

sion and protein complexes on single cells. Using information from dual-antibody binding

events, Prox-seq infers surface protein dimers at the single-cell level. Prox-seq provides multi-

dimensional phenotyping of single cells in high throughput, and was recently used to track the

formation of receptor complexes during cell signaling and discovered a novel interaction

between CD9 and CD8 in naïve T cells. The distribution of protein abundance can affect iden-

tification of protein complexes in a complicated manner in dual-binding assays like Prox-seq.

These effects are difficult to explore with experiments, yet important for accurate quantification

of protein complexes. Here, we introduce a physical model of Prox-seq and computationally

evaluate several different methods for reducing background noise when quantifying protein

complexes. Furthermore, we developed an improved method for analysis of Prox-seq data,

which resulted in more accurate and robust quantification of protein complexes. Finally, our

Prox-seq model offers a simple way to investigate the behavior of Prox-seq data under various

biological conditions and guide users toward selecting the best analysis method for their data.

Author summary

We introduce a physical model for protein complexes at the cell membrane and report a

systematic study of statistical and computational methods for their measurements using

proximity sequencing.
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Introduction

Advances in single cell sequencing have enabled unprecedented analyses of cellular heteroge-

neity in complex biological systems [1,2]. Single-cell RNA sequencing [3] (scRNA-seq) is

among the most widely used methods. However, because proteins are the effector molecules

for the majority of biological functions, RNA data alone is not sufficient to investigate these

protein functions thoroughly. Signaling events, for example, typically begin with receptor clus-

tering, protein phosphorylation, and other protein-protein interactions, all of which occur

prior to transcription.

To investigate the roles of protein interactions in greater depth, we recently developed a

method called proximity sequencing (Prox-seq) for simultaneous quantification of mRNA,

surface proteins and protein complexes at the single-cell level [4] Prox-seq captures protein

complex information in barcoded DNA oligonucleotides (oligos) using a proximity ligation

assay [5,6] (PLA). Each protein in Prox-seq is targeted by two DNA-conjugated antibodies,

called Prox-seq probes A and B (Fig 1a). The DNA oligos on probes A and B are ligated only if

two protein molecules are sufficiently close to each other. The result of this ligation is referred

to as a “PLA product.” The ligation distance is expected to be 50-70nm [7]. In order to generate

a PLA product, the oligo belonging to a Prox-seq probe A must ligate to the oligo belonging to

a Prox-seq probe B. Importantly, unligated probes do not contribute to the signal because both

library preparation and sequence alignment require barcodes from both the A and B probe.

Upon sequencing, the number of PLA products can be determined by counting the number of

unique molecular identifiers (UMIs). Because of this design, the number of PLA products

measured for a protein is a reflection of both the abundance of that protein and the availability

of nearby Prox-seq probes. By combining Prox-seq with scRNA-seq, these PLA products can

be sequenced alongside complementary DNA (cDNA) libraries, providing information on

gene expression, protein abundances, and protein complex formation from single cells [4].

Prox-seq protein data contains a unique source of background noise, namely the ligation of

two protein molecules that do not functionally interact but are nevertheless sufficiently close

to each other by random chance. We call this effect “proximity noise” (Fig 1b). Proximity

noise exists because the average distance between probes on the cell surface decreases with

increasing protein abundance (see Methods). A previous study showed that proximity noise

Fig 1. Working principle of Prox-seq and identification of proximity noise. (a) Schematic showing the main steps of

Prox-seq. (b) Schematic showing the background in Prox-seq that is caused by proximity noise (random ligation of

non-interacting protein molecules). (c) Heatmap showing the expected amount of proximity noise created from

simulations of two protein molecules at varying expression levels. By modeling the mean amount of proximity noise

with a binomial distribution (see Methods), we found that it was proportional to the product of the abundances of the

two protein molecules.

https://doi.org/10.1371/journal.pcbi.1011915.g001
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led to false positive detection of protein interactions for in situ PLA [8]. A theoretical model

showed that the mean amount of proximity noise is proportional to the product of the expres-

sion levels of the two proteins that made up the PLA product (Fig 1c). In short, the presence of

PLA products for a specific pair of proteins does not guarantee that the two proteins function-

ally interact and form stable complexes.

To account for PLA products generated by proximity noise, we previously proposed and

used a statistical method, termed the iterative method, to differentiate protein complexes from

random ligation in PLA product counts [4]. Initially, this method establishes an "expected

value" for each PLA product, representing the number of PLA products that would exist if

Prox-seq probes were randomly distributed across the cell surface. Subsequently, the method

subtracts the expected background from the PLA product counts. If a PLA product’s count

exceeds its expected value, the difference between observed and expected PLA products is

attributed to non-random protein complexes. This procedure is iteratively executed for every

type of PLA product in each individual cell. Although this method successfully recovered posi-

tive controls of known protein complexes, assessing its performance on experimental data is

challenging, as Prox-seq datasets lack comprehensive knowledge of the entire set of protein

complexes and their expression levels.

In this study, we present a simulation model for single-cell proteomic data in proximity

sequencing experiments and use it to computationally benchmark the performance of several

new and existing protein complex prediction methods. After calibrating the model with exper-

imental data, the simulation model allowed us to quantitatively analyze the proximity noise

and its effects on the measured PLA product counts. We compare the performance of three

methods: the iterative method, a new linear regression-based method, and a new ensemble

method that combines the two. We find that, while both iterative and linear regression-based

methods perform well in several different scenarios, combining them into the ensemble

method yielded the most accurate and robust quantification of protein complexes. These

results shed insight onto how the co-localization of surface proteins translate into Prox-seq

data and provides guidelines for use of Prox-seq and related dual-binding technologies for

multi-omic analysis of single cells.

Results

Overview of the simulation model

Based on a physical model of how PLA products are formed in each single cell, we created a

simulation model of PLA product count data. We reasoned that proximity alone would deter-

mine if a Prox-seq probe A and a Prox-seq probe B ligate and produce a PLA product. We con-

structed the simulation model in a way that allowed us to simulate probes that bind to non-

interacting protein molecules (proteins that are not part of a complex) separately from probes

that bind to interacting molecules (proteins that are part of a complex). This procedure

enabled us to independently tune the abundance of proteins and protein complexes in the sim-

ulation, and to observe how these properties affected Prox-seq data.

First, we generated the non-interacting Prox-seq probes A as random points on a sphere

(Fig 2a). These points indicated that the protein molecules exist as monomers, that their com-

plex partners were not targeted by the Prox-seq probe panel, or that they were caused by non-

specific antibody binding. Further, we assumed such protein monomers were distributed ran-

domly on the cell surface. Then, we repeated the process to generate the non-interacting Prox-

seq probes B signal. Second, we generated the interacting Prox-seq probes A and B by generat-

ing a sphere of random points. These points corresponded to detectable protein complexes.

Because these two probes A and B both bound to the same protein complexes, the Prox-seq
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Fig 2. Overview and calibration of simulated Prox-seq data. (a) Schematic for the simulation model of PLA products. The simulation was

separately performed on a cell-by-cell basis. First, a number of non-interacting probes A and non-interacting probes B were added as random points

on a sphere. Next, a number of protein complexes were added as random points on a sphere. These points corresponded to probes A and B that

bound to interacting protein molecules. Finally, probes A and B that had a Euclidean distance lower than the ligation distance were ligated, thus

creating PLA products. (b) Histograms showing the UMI counts of three example PLA products in single Jurkat cells. (c) Histograms showing the

UMI counts of three example simulated PLA products with NB variance. (d) Scatter plots of mean-variance relationship show how negative

binomial variance captures overdispersion in PLA data, proximity noise data, protein complex data, and protein data. (e) The relationship between

proximity noise (measured as UMI counts) and protein abundance (top) or ligation distance (bottom). Please refer to the Methods section for

derivation of the binomial distribution approximation.

https://doi.org/10.1371/journal.pcbi.1011915.g002
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probe A points would necessarily be in proximity with their corresponding Prox-seq probe B

points. Finally, any pairs of probe A and B with Euclidean distances less than the ligation dis-

tance were considered ligated and produced PLA products (see Methods). If a probe A was

within the ligation distance with more than one probes B, one such probe B was chosen at ran-

dom to ligate with said probe A.

We next compared the simulated Prox-seq data to the experimental data. We analyzed T

cells (Jurkat cell line) and B cells (Raji cell line) with a panel of Prox-seq probes that targeted

both T cell and B cell markers from a previously reported study[4]. Simulated counts of PLA

product and protein expression followed the Poisson distribution, whereas the experimental

data exhibited overdispersion (S1a and S2a Figs). We found that adding variance in the form

of a negative binomial distribution (NB) for non-interacting probes and protein complexes

was sufficient to capture the overdispersion of the real data (NB variance, see Methods). With

the added NB variance, the simulated data, like the experimental data, had a right-skewed dis-

tribution across different PLA product abundances (Fig 2b and 2c). Notably, the simulation

model with added variance captured the positive correlation between observed PLA product

count and non-proximal probe count in real data (S1b–S1g Fig). The simulation model with

no variance, however, showed a negative correlation between PLA product count and non-

proximal probe count (S1d and S1e Fig). The NB variance model also produced non-proximal

probe counts with similar distributions to those observed in experimental data (S2 Fig).

We generated replicated datasets by sampling from the fitted model for posterior predictive

checks (PPCs) [9]. We then assessed how well these data samplings maintained the properties

of the observed data with two metrics. First, we measured the similarity between the coefficient

of variation per PLA product, proximity noise, protein complex and protein. This comparison

enables evaluation of how well the mean-variance relationship of real data is preserved (Fig 2d

& S3a Fig). Second, we perform Mann-Whitney U-test statistic to measure the extent to which

the replicated data and raw data come from the same distribution (S3b Fig). Finally, we charac-

terized the amount of proximity noise in the most basic scenario when there were no protein

complexes detectable by the Prox-seq probe panel. The simulation demonstrated that the

amount of PLA product produced by random ligation scales quadratically with both protein

abundance and ligation distance (Fig 2e). These results show that our model and simulations

faithfully capture key aspects of real Prox-seq data in single cells and reiterates the importance

of identifying and removing proximity noise, which can especially be large for highly expressed

proteins.

Simulation of non-specific antibody binding in Prox-seq and heterogenous

cell clustering by simulated PLA data

Nonspecific antibody binding occurs when an antibody binds to a cell that does not have an

epitope for that antibody. This is a potential problem encountered in every antibody-based

proteomics technology. The challenge of nonspecific staining becomes more complicated in

Prox-seq due to its reliance on dual-binding events. For a PLA product, it can be categorized

into three possible binding cases: nonspecific binding (both binding events of probe A and

probe B are nonspecific), one-specific binding (only one probe is bound to its target), and

both-specific binding (both probes are bound to their target). Clearly, we only desire both-spe-

cific binding PLA data for downstream analysis. To estimate nonspecific antibody binding

within experiments, we include isotype control antibodies with oligonucleotide conjugation in

both probe panels. This allows us to directly define the nonspecific binding distribution from

the observed data. Given a probability of nonspecific binding for each antibody, we can use the

simulation model to generate PLA data that recapitulates the properties of three binding cases
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in real data (S4 Fig). We found that the issue of nonspecific antibody binding is negligible in

current extracellular Prox-seq assays and is much less important than proximity noise. For

example, for a highly abundant PLA product CD147:CD147 in Jurkat cells, nonspecific PLA

counts constitute less than one percent of both-specific binding PLA counts (S4 Fig). However,

we anticipate that the significance of nonspecific antibody binding may escalate in intracellular

Prox-seq experiments [10], which necessitate the analysis of denoising nonspecific binding

before reliably predicting protein interactions. While our current extracellular assays are not

heavily impacted by nonspecific binding, the potential challenges posed in intracellular experi-

ments underscore the importance of refining and validating denoising methods for compre-

hensive and accurate analysis in future studies. Given the limited data availability of PLA

datasets, our simulation model and synthetic datasets can be served as crucial tools to bench-

mark background staining denoise models for Prox-seq.

PLA data from Prox-seq introduces a new modality to single-cell omics research. In our

simulation, we generated three distinct PLA datasets, each representing a unique cell type

characterized by same protein expressions but different protein complex expressions. All three

cell types express same abundance of proteins 1, 2, and 3. In specific details, cell type 1 exhibits

the presence of the protein 1:2 heterodimer and the protein 1 homodimer. Conversely, cell

type 2 exclusively expresses the protein 2:3 heterodimer. Lastly, cell type 3 features the protein

1:3 heterodimer along with the protein 1 homodimer. Through unsupervised clustering based

on PLA features, we observed a high correlation with the known characteristics of the cell

types (S5 Fig). This simple simulation study underscores the potential of utilizing PLA data to

identify cell types by their protein complex arrangement.

Iterative prediction of protein complex abundance

An iterative method was used to previously identify the existence of stable protein complexes

in Prox-seq measurements. This method proposed that when there were no protein com-

plexes, the observed count of a PLA product i:j could be calculated from the abundance of the

probe A targeting protein i, and the probe B targeting protein j (see Methods). This calculation

resulted in an expected random count for PLA products that represents the PLA count caused

by proximity noise. We reasoned that if the observed count of PLA product i:j was higher than

the calculated expected random count, then i:j indicated a non-random protein interaction.

To quantify the protein complexes on each single cell, we calculated the difference between the

observed and expected random PLA product count (Fig 3a). This method was called the itera-

tive method, because it involved solving a system of quadratic equations (describing all possi-

ble protein dimers) iteratively (see Methods) [4]. This method relied on the fact that Prox-seq

can measure protein abundance, similar to flow cytometry and CITE-seq [11]. The abundance

of a protein was the amount of protein molecules that were present on the cell surface, and

therefore included both molecules in monomeric and complex forms. In our previous study

[4], we proposed that the protein abundance could be estimated from Prox-seq data by sum-

ming the appearances of each protein across its associated PLA products (see Methods). Here,

we find by using our simulated data that such an estimate is a good approximation of the true

protein abundance, as they are strongly correlated (S6 Fig).

To further examine the assumptions underlying the iterative method, we now construct the

following simulation scenario: The simulation had three protein targets, called protein 1, pro-

tein 2 and protein 3. These proteins did not interact with themselves, nor with any other pro-

teins. Furthermore, protein 3 had a lower non-interacting probe count (mean of 100 UMIs/

cell compared to 1000 UMIs/cell for proteins 1 and 2, S1 Table). Simulated data showed that

our assumptions behind the iterative method were correct. When there were no interactions
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between the proteins, the observed PLA product counts were similar to the expected random

count (S7a Fig). When we introduced the protein complex 1:1 to the simulation while keeping

the other parameters the same, the observed counts of the PLA product 1:1 was higher than its

expected random count (S7b Fig).

One weakness of the iterative method is complexity of hyper-parameter tuning, which can

result in sub-optimal convergence. They key parameter is the initialization setting, which are

the initial estimates of protein complex abundances. By default, the algorithm assigns and ini-

tial value of 0 to all protein complexes. However, different initialization settings will influence

iterative behaviors to convergence, as well as tolerance (S8a Fig). Unsensible initialization

tends to generate nonsensical predictive outputs (S8b Fig). This led us to consider more robust

methods for protein complex quantification.

Fig 3. Comparison between the iterative and linear regression (LR) methods for protein complex prediction in

simulated data. (a, b) Schematics showing the working principle of (a) the iterative method and (b) the LR method. In

the iterative method, the protein complex count is the difference between the observed and expected PLA product

count. In the LR method, the protein complex count is the difference between the observed PLA product count and its

expected amount of random ligation, which is calculated from the non-proximal probe count. In (a), the red line

indicates y = x. In (b), the orange line indicates the linear regression fit. (c) Heatmap showing the mean complex count

of simulated data, and of the iterative and LR methods’ prediction results. (d) Heatmap showing the fraction of cells

expressing a protein complex, as predicted by the iterative method, the LR method, and Fisher’s exact test. In (c, d), the

true count represents the ground truth of protein complex count in the simulation. (e, f) Scatter plots showing the

simulated and predicted count of protein complex 1:1 using (e) the iterative and (f) the LR method. (g) Scatter plot

comparing the predicted count of protein complex 1:1 from the iterative and the LR methods. In (e-g), the red lines

indicate y = x, and each dot represents a single cell.

https://doi.org/10.1371/journal.pcbi.1011915.g003
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Prediction of protein complex abundance using linear regression

To address the limitations of the iterative method we developed a new approach (the linear

regression—LR method). This method uses an experimentally modified Prox-seq procedure

that enables direct measurement of Prox-seq probes that were not ligated because they were

not proximal to another Prox-seq probe (we refer to these as non-proximal probes) [4]. The

proximity noise for a PLA product i:j should be proportional to the product of the non-proxi-

mal probe A targeting protein i, and the non-proximal probe B targeting protein j. We rea-

soned that if linear regression is used to model the observed PLA product count onto the

estimated proximity noise amount, true protein complexes would have positive intercepts (see

Methods). The slope was then used to estimate the amount of proximity noise, and the count

of a protein complex was calculated by subtracting the estimated proximity noise from the

observed PLA product count (Fig 3b). Experimentally, we observed strong heteroscedasticity

in the PLA product count when regressed on to the proximity noise amount (S9 Fig). There-

fore, we performed linear regression using weighted least squares instead of ordinary least

squares (see Methods).

We created a new simulation to directly compare the iterative and LR methods. The simula-

tion’s parameters were set to approximate the experimental data. More specifically, the simula-

tion had three protein targets: protein 1, protein 2 and protein 3. Proteins 1 and 2 interacted

both with themselves and each other (Fig 3c, S1 Table). Protein 3 did not interact with itself,

nor with protein 1 or protein 2. Furthermore, protein 3 had very low non-interacting protein

count (mean of 2 UMIs/cell compared to 20 and 15 for proteins 1 and 2, respectively). We

found that the iterative method correctly identified protein complexes 1:1, 1:2, 2:1 and 2:2

(Fig 3c).

To determine if we can statistically infer the enrichment of PLA products, we performed a

one-sided Fisher’s exact test on the counts of PLA products (Fig 3d, see Methods). This analy-

sis correctly identified the four protein complexes present in the sample, independently con-

firming that the generated protein complexes occur at a higher frequency than random and

can be statistically inferred (Fig 3d, see Methods). With regards to quantification of protein

complexes on single cells, we observed that the iterative method consistently underestimated

the true protein complex count (Fig 3c and 3e). Conversely, the LR method not only correctly

identified the four true protein complexes (complexes 1:1, 1:2, 2:1 and 2:2), but also produced

much more accurate counts for them (Fig 3c, 3d and 3f). Overall, the results of the two meth-

ods were correlated on the single-cell level (Fig 3g).

Ensemble method that combines both the LR and iterative methods for

analysis of Prox-seq data

We next chose to explore a method that had the potential to outperform both the LR and itera-

tive methods. As shown previously, the major weakness of the iterative method is its sensitivity

to initialization conditions. We reasoned that the output from the LR method could be used as

a sensible initialization for the iterative method (Fig 4a). Starting the iteration close to the cor-

rect result would make it less likely that the method would fall into a spurious local optimiza-

tion. The performance of all three methods was compared in two simulations: one in which a

high percentage of proteins were in complex with other proteins (high signal-to-noise) and

one in which a low percentage of proteins were in complex (low signal-to-noise) (S1 Table).

The iterative method performed well when signal was high, but generated false positives

when signal was low (Fig 4b and 4c). The LR method performed better in the low signal-to-

noise simulation but suffered from false positives when noise was low (Fig 4c). This is not

surprising because LR method depends on performing regression with product of non-
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Fig 4. The ensemble method for improved analysis of Prox-seq data. We combine the iterative and LR methods for

better prediction of protein complexes. (a) Schematic showing how all three methods arrive at protein complex

estimation. The iterative method combines raw data and an initialization with an all-zeroes matrix to quantify protein

complexes. The LR method uses raw data and free-oligo data to construct a linear regression model that quantifies

protein complexes. The ensemble method begins with applying the LR workflow and uses the output of it to initialize

the iterative method. (b) Comparison of all three methods in a regime of high signal and low noise, compared to the

true counts. (c) Comparison of all three methods in a regime of low signal and high noise, compared to the true counts.

(d) The Pearson’s correlation between true counts and the outputs for each method across single cells. Each example

shows complex 3:3 from the low signal/high noise regime.

https://doi.org/10.1371/journal.pcbi.1011915.g004
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proximal probes as the explanatory variable, and the LR method will become unstable if

there are few non-proximal probes across all single cells (or low noise in our simulation).

Both methods consistently underestimated the abundance of protein complexes. For the iter-

ative method, this is partly because expected PLA count we assumed is the maximal proxim-

ity noise it might have. The slope we use to quantify protein complexes from LR method

tends to be larger than correct one because counts of non-proximal probes we can measure

are inevitably lower than real counts both in experiment and simulation, which would give

us a smaller positive intercept and protein complex count. In contrast, the ensemble method

was able to maintain strong performance in both scenarios. It was less likely to produce a

false positive, assigned fewer reads to false positives than other methods, and was closer to

the true count for most of the protein complexes (Fig 4b and 4c). Finally, for a given PLA

product, the ensemble method was more accurate in quantifying the abundance of true-posi-

tive complexes in single cells (Fig 4d).

A quantitative scoring strategy to comprehensively evaluate prediction

methods

To evaluate the predictive performance of these methods more comprehensively, we further

propose a quantitative scoring strategy to assign a prediction score for every prediction (S10a

Fig). We simulate different biological scenarios with our model and score the overall predic-

tion performance of each method by considering sum of absolute deviation between mean

true counts and predicted counts (∑Meandeviation), sum of Pearson correlation coefficient

(∑Pearson) across singles cells (S10b Fig), and sum of ratios of false positive prediction

(∑FPrate) across single cells (S10c Fig) (see Methods). Comparing the methods across all sce-

narios showed that the ensemble method had the highest average prediction score and the low-

est variance (S10d Fig & S2 Table). To further benchmark the performance of the three

methods, we expanded our test cases to eight hundred. These tests are categorized into eight

biological scenarios, mirroring the structure of the previous simulation. The scenarios include

cases of only heterodimer, only homodimer, one overabundant protein, and multiple protein

dimer situations. Each scenario is further divided into binary cases, featuring both high signal-

to-noise ratios (complex abundance to monomer abundance is 10:1) and low signal-to-noise

ratios (complex abundance to monomer abundance is 1:10). The input for the simulation is

randomly sampled from a generator under a specific distribution, repeated 100 times within

each scenario (S11e and S11f Fig). The results strongly support our earlier conclusion that the

LR method excels in low signal-to-noise situations, whereas the iterative method exhibits

unstable performance. The iterative method performs better in predicting only heterodimer or

homodimer situations, while LR demonstrates greater robustness in handling more complex

scenarios involving multiple protein dimers or overabundant proteins. While the iterative and

LR methods each had regimes where they underperformed, the ensemble method consistently

performs well across each scenario, making it a reliable choice for typical situations in which

the true biological conditions are uncertain (S11a, S11b, S11c and S11d Fig).

Comparison of all three analytical methods to real data and performance

evaluations

Next, we evaluated the concordance between all three methods on experimental data from sin-

gle Jurkat and Raji cells. Overall, we found that each method largely agreed on which PLA

products were predicted to be protein complexes (Fig 5a–5f). While the bulk measurements of

protein complexes showed good agreement between methods, the three methods had varying
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levels of correlation for single cells (Fig 5g and 5h). In addition, we observed all three methods,

along with the Fisher’s Exact test, largely identified the same protein complexes (S9 Fig).

All methods predicted protein complexes CD3:CD3 and CD28:CD28 in Jurkat cells, both

of which are known protein complexes[12,13]. All three methods also predicted protein com-

plex ICAM1:ICAM1 in Raji cells, which was shown to dimerize on the cell surface [14]. We

also evaluated our methods against a simulation designed to more closely represent the experi-

mental data. Protein expression levels were estimated from the experimental data and used to

create simulation models for Jurkat and Raji cells (S1 Table). Then, protein complexes corre-

sponding to CD3:CD3, CD28:CD28, and CD3:CD28 were added to Jurkat cells, whereas

HLADA:HLADR and PDL1:PDL1 were added to Raji cells. Once again, we observe largely

similar performance for all methods (S10 Fig).

Fig 5. Comparison between the iterative and LR methods on experimental data. (a-c) Heatmaps showing the average of protein complex count,

predicted by (a) the iterative method, (b) the LR method, and (c) the ensemble method in Jurkat cells. (d-f) Heatmaps showing the average of protein

complex count, predicted by (a) the iterative method, (b) the LR method, and (c) the ensemble method in Raji cells. (g) Comparison of methods for

predicting counts of protein complexes of CD28:CD28 and in Jurkat cells. (h) Comparison of methods for predicting counts of protein complexes of

ICAM1:ICAM1 and in Raji cells. In (g, h), the red lines indicate y = x, and r indicates the Pearson’s correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1011915.g005
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Discussion

Here, we presented a comprehensive computational framework for simulating Prox-seq data,

and for predicting protein complex count from Prox-seq data. We studied how the quantifica-

tion of protein complexes was affected by proximity noise, which is caused by proteins that are

not functionally interacting but are sufficiently close to each other by random chance to pro-

duce valid ligation products. Our simulation model showed that the amount of proximity

noise is strongly depended on the protein abundance. Similar results have been observed in

commercial in situ PLA [8].

We showed that with respect to protein complex prediction, the iterative method, LR

method, and ensemble method largely agree on real experimental data. Therefore, we propose

that each of these methods could be used for protein complex detection and quantification,

and any protein complexes that were predicted by these methods were highly likely to be true

protein complexes. However, in head-to-head comparisons using simulated data, the ensemble

method performed well over a larger range of data types than the other methods (Table 1).

Our simulation model had some limitations. First, it did not consider interactions higher

than dimers, diffusion of the protein molecules, their physical sizes, and the technical variabil-

ity of the Prox-seq assay. It is important to note that our model will consider two proteins to

have interaction if they are a part of a higher-order protein complex, even in the absence of

direct physical contact, since they need only be within the designated interaction range deter-

mined by the proximity ligation distance. Second, the simulation model requires the user to

independently select the abundance of a protein complex and its constituents’ non-interacting

counterpart. In real cells, these abundances are likely highly correlated. Finally, it assumed that

the protein complexes and the non-interacting proteins were uniformly distributed on the cell

surface. Despite these limitations, we showed that the overall structure of simulated Prox-seq

data is very similar to real Prox-seq data.

Currently, application of each method requires a relatively homogeneous population of sin-

gle cells. In practice, this requires that simultaneously acquired mRNA data is first used to clus-

ter cell types, and then either method can be applied to individual clusters. This requirement is

Table 1. Comparison of features between three predictive methods.

Iterative method LR method Ensemble method

Mechanism Approximate the count of protein complexes by

iteratively solving multiple quadratic equations.

Protein complex count is the difference between

observed PLA counts and expected PLA counts.

Construct a weighted least square model with

non-proximal probes as independent variables

and observed PLA count as response.

Extrapolate the protein complex count based on

the difference between observed PLA count and

predicted proximity noise.

Bridge the iterative method and LR method by

transferring the output of LR as the initial values

into iterative method. This can make iteration go

in a sensible part of the space that is likely to

produce a good solution.

Features Expected PLA count is calculated by multiplying

the joint probability of simultaneously observing

specific antibodies from two probes with total

observed PLA counts. No additional experiments

and information needed.

Predicted proximity noise or random ligation

counts of PLA is calculated by multiplying the

fitted slope coefficient with the product of non-

proximal probe counts.

Free oligo modification [4] to experiment is

required to measure non-proximal probe count.

A combination of iterative method and LR

method. LR method should be applied in

advance to perform ensemble method. Free oligo

modification [4] to experiment is required.

The ensemble approach effectively enhances the

generalization of the iterative method and LR

method across different biological scenarios.

Applicable

situations

Simpler biological scenarios where there are only

homodimers or only heterodimers.

Low signal-to-noise situation and more

complicated scenarios where there are multiple

protein dimers or overabundant proteins.

Robust and consistent across various biological

scenarios.

Limitations Can be very unstable when applied to

complicated scenarios where there are multiple

protein dimers or overabundant proteins.

Not optimal for scenarios of high signal-to-

noise, only homodimers, and only

heterodimers.

Additional experimental procedure is required

to measure non-proximal probe count.

Additional experimental procedure is required to

measure non-proximal probe count.

https://doi.org/10.1371/journal.pcbi.1011915.t001
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because each method relied on a statistic of the whole population (the difference between

observed and expected random PLA product count for the iterative method, and the linear

regression’s intercept and slope coefficient for the LR method) and having different complex

expression levels would lower the power the methods. Further study is required to extend

these methods to a population of heterogeneous cell types without the use of mRNA data.

We envision that the Ensemble method will be particularly useful when Prox-seq is

extended to intracellular proteins. Indeed, since non-specific antibody binding is much more

severe in intracellular staining than extracellular staining, random ligation is an even more

important source of noise given common macromolecular crowding effect within cells. The

simulation model can also be further extended to model Prox-seq data of intracellular proteins.

In short, we have validated the protein complex prediction algorithm that was proposed previ-

ously [4], proposed two additional independent methods for protein complex prediction, and

introduced a model for simulating Prox-seq data.

Methods

Theoretical calculation of proximity noise

Suppose there are Ai probes A and Bj probes B on the cell surface. Assume that the probes are

random points on a spherical surface, and proteins i and j do not interact. Because the ligation

distance is significantly shorter than the cell’s radius, we assume that a probe A and a probe B

can be ligated if and only if the Euclidean distance between them, L, is less than or equal to the

ligation distance, dligation. The Euclidean distance L between any pair of random points has the

following probability distribution[15]:

P Lð Þ ¼
L

2R2

where R is the cell radius.

Then, the probability of ligation between two random points on the cell surface is:

P L � dligation

� �
¼

d2
ligation

4R2

Assume that each probe could be ligated as many times as possible, the mean counts of

ligated PLA product i:j, Xi,j, follow a binomial distribution:

Xi;jeBinomial n ¼ Ai � Bj; p ¼ P L � dligation

� �� �

The expected count of PLA product that is created from random ligation of non-interacting

probes is:

E Xi;j

� �
¼

d2
ligation

4R2
AiBj

Note that this approximation assumes that each probe can be ligated many times, while the

simulation model assumes that each probe can only be ligated at most once. Experimentally,

each probe can only be ligated 3–7 times, depending on the number of DNA oligomers per

probe. As a result, this estimate represents the upper limit of the random ligation amount.

Simulation model

Assume that each protein molecule and the Prox-seq probe that binds to it are point particles.

Let there be n protein targets. Let A1, A2,. . ., An be the simulation parameters that represent
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the count of probe A that targets proteins 1, 2,. . ., n. Let B1, B2,. . ., Bn be the simulation param-

eters that represent the count of probe B that targets proteins 1, 2,. . ., n. Let c1,1, c1,2,. . ., c1,n,

c2,1, c2,2,. . ., cn,n be the simulation parameters that represent the counts of protein complexes

1:1, 1:2,. . ., 1:n, 2:1, 2:2,. . ., n:n.

The simulation is performed separately on each single cell. For the single cell t, we first gen-

erate AðtÞi number of random points on a sphere surface, which correspond to the number of

detected probe A that targets protein i on cell t. The coordinates of each point are [16]:

x ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2
p

cos y

y ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2
p

sin y

z ¼ Ru

where R is the radius of the sphere (taken to be 5 μm, or 5000 units, in our study), u is uni-

formly distributed over [-1,1), and θ is uniformly distributed over [0,2π).

Without added variance, AðtÞi ¼ Ai. With added negative binomial variance:

A tð Þ
i eNegativeBinomial nNB; pNBð Þ

where nNB = 1.5 in our study, and pNB ¼ 1þ
Ai
nNB

� �� 1

. The negative binomial distribution for-

mulated this way provides the probability of getting AðtÞi failures, given nNB successes and pNB

is the probability of success. nNB is used to control the variance of the probe count, and pNB is

calculated such that the mean of AðtÞi is equal to Ai. The choice of nNB value here is based on

observation of experimental data. While different PLA products have different best-fitted nNB

values, we take the mean value of nNB fitted for various PLA products on either Jurakt T cells

or Raji B cells for our standard simulation (S3c Fig). nNB is a flexible parameter to change in

the simulation.

Second, we randomly generate BðtÞi number of points on a surface of a sphere, which corre-

spond to the number of detected probe B that targets protein i on cell t. The coordinates of

each point are generated identically to above.

Without added variance, BðtÞi ¼ Bi. With added variance:

B tð Þ
i ¼

Bi

Ai
� A tð Þ

i

This is to ensure that the counts of detected probe A and probe B that target the same pro-

tein are proportional to each other.

Third, we randomly generate cðtÞi;j number of points on a surface of a sphere, which corre-

spond to the count of protein complex i:j on cell t. Then, these cðtÞi;j points are added to the pre-

viously generated probe A points targeting protein i AðtÞi , and also to the previously generated

probe B targeting protein j BðtÞj .

Without added variance, cðtÞi;j ¼ ci;j. With added variance:

c tð Þ
i;j eNegativeBinomial nNB; pNBð Þ

where nNB = 1.5 in our study, and pNB ¼ 1þ
ci;j
nNB

� �� 1

.

Fourth, we calculated the pairwise Euclidean distances between all generated probe A

points and all generated probe B points. Finally, we randomly go through the pairs of points
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that are within a ligation distance threshold (chosen to be 50 nm, or 50 units, in our study),

and add the corresponding PLA product to the simulated count matrix. Any probe A and

probe B points that are chosen are excluded from future PLA products. In other words, each

probe A and each probe B can only be ligated at most once.

The number of probe A and probe B points that are not ligated are returned as the simu-

lated non-proximal probe count that is measured by the free oligo modification.

The simulation is repeated 100 times to simulate PLA product counts of 100 single cells.

The parameters for all simulations are listed in S1 Table. All simulations include negative bino-

mial variance, unless stated otherwise.

Calculation of protein count and expected PLA product count

The count of a protein i in a single cell is equal to the total number of detected PLA products

that are related to the protein i:

Protein i ¼
Xn

l¼1

Xi;l þ

Xn

k¼1

Xk;i

where Xi,l and Xk,i indicate the observed (i.e., measured) counts of PLA products i:l and k:i,

respectively. The PLA product i:i is counted twice to the protein count to account for the fact

that two molecules are present in a homodimer.

The expected count of a PLA product i:j is:

Ei;j ¼

Xn

l¼1
Xi;l �

Xn

k¼1
Xk;j

Xn

k¼1

Xn

l¼1
Xk;l

Protein complex prediction: iterative method

The count of protein complex i:j is calculated iteratively using the following equation:

Y mþ1ð Þ

i;j ¼ Xi;j �

Xn

l¼1
Xi;l �

Xn

l¼1
Y mð Þ

i;l

� �
�

Xn

k¼1
Xk;j �

Xn

k¼1
Y mð Þ

k;j

� �

Xn

k¼1

Xn

l¼1
Xk;l �

Xn

k¼1

Xn

l¼1
Y mð Þ

k;l

where Y ðmÞi;j is the predicted count of protein complex i:j at the mth iteration. The initial values

for all protein complexes are 0.

The second term of the right hand side represents the count of PLA product i:j that is

caused by random ligation.

After each iteration, a one-sided t-test is performed on the values of Y ðmþ1Þ

i;j across all single

cells. The alternative hypothesis is that the mean of Yðmþ1Þ

i;j is greater than 1. Next, any Y ðmþ1Þ

i;j

with Benjamini-Hochberg-corrected P-values above 0.05 are set to 0. In other words, any such

PLA products were determined to not represent true protein interactions.

There is also a symmetry condition, such that if i:j is a protein complex, then j:i should also

be a protein complex, even if Y ðmþ1Þ

j;i fails the t-test. This is done by setting Y ðmþ1Þ

j;i as a fraction

of Yðmþ1Þ

i;jj :

Y mþ1ð Þ

j;i ¼ sym weight � Y mþ1ð Þ

i;j

where sym_weight is arbitrarily chosen to be 1 in our study.
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Protein complex prediction: linear regression (LR) method

For each PLA product i:j, its observed count is regressed onto the product of its correspond-

ing non-proximal probe A count and non-proximal probe B count, using weighted least

squares:

Xi;jeb0 þ b1A
0

iB
0

j

where A0i and B0j are the count of non-proximal probe A targeting protein i, and non-

proximal probe B targeting protein j, respectively. The weight for a sample (ie, a single cell)

p is:

wp ¼
1

A0iB0j

For simulated data, we also scale the interaction term by 106 whenever necessary, such that

it is close to the orders of magnitude of Xi,j. A
0

i and B0j are obtained from PLA products that

contain the added free oligos. For example, the count of non-proximal CD3 probe A is equal

to the count of PLA product CD3:free_oligo_B, and the count of non-proximal CD28 probe B

is equal to the count of PLA product free_oligo_A:CD28.

Next, we performed a one-sided t-test on the intercept coefficient, and the alternative

hypothesis is that β0 > βcutoff. For simulated data, βcutoff = 1. For experimental data βcutoff = 10.

All PLA products with Benjamini-Hochberg-corrected P-values below 0.05 are considered to

be true protein complexes. The protein complex count, Yi,j, is calculated as the difference

between the observed PLA product count and the interaction term:

Yi;j ¼ Xi;j � b1A
0

iB
0

j

The LR method is related to the binomial approximation of the random ligation signal

above. If the counts of non-proximal probes are perfect proxies for the count of non-interact-

ing probes, then we have the following relationship:

b1 ¼
d2
ligation

4R2

Protein complex prediction: Ensemble method

The ensemble method relies on solving same quadratic equations as iterative method to

approximate counts of protein complex. The only difference is that it takes protein complex

matrix calculated from LR method as initial values. There is an argument called df_guess

embedded in predictive function which is set to be all zeros by default. Note that LR method

should be applied in advance in order to perform ensemble method.

Protein complex prediction: Fisher’s exact test

A one-sided Fisher’s exact test is conducted on the table below (Table 2). The alternative

hypothesis being tested is whether Xi,j (the observed value) is significantly greater than what

would be expected by chance. Following this, Benjamini-Hochberg correction is applied to

the P-values obtained from all PLA products, for each individual cell. We assume there is a

protein-protein interaction on a given cell if the corrected P-value falls below the threshold

of 0.05.
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Prediction score mechanism

Score ¼ w1 ∗
X

Pearson � w2 ∗
X

Meandeviation � w3 ∗
X

FPrate

where w1, w2, w3 are chosen to be 0.5, 0.4, 0.1 in our study. ∑Pearson equals to the sum of Pear-

son correlation coefficients for every real protein complex between true complex counts and

predicted complex counts across all singles cells. ∑Meandeviation equals to the sum of absolute

difference between mean true counts and predicted counts for every PLA product:

Meandeviation ¼
jMeanpred � Meantruej

Meantrue

∑FPrate equals to the sum of ratios of false positive prediction across single cells for every non-

existing PLA product.

For quantification accuracy evaluation where there are true protein complex counts, we

consider parameters ∑Pearson and ∑Meandeviation. Pearson correlation coefficient takes single

cells into consideration while means counts can give us information about bulk abundance of

different PLA products. We found that poor prediction of PLA counts in single cells might still

contribute to seemingly good mean counts estimation, which shed lights on us that Pearson

correlation should be a more important and robust parameter than mean counts. For ∑FPrate
evaluation where there is no true complex, we use fraction of complex-positive cells to repre-

sent how many ratios of single cells are wrongly assigned at least a complex count. According

to our multiple tests, each method tends to assign only few false positive reads, mostly only

one in some single cells to PLA products. So that we assume false positive rate a minor metric

to be considered in our scoring strategy. In conclusion, we arbitrarily choose effector weight

for each parameter given relative importance discussed above.

Supporting information

S1 Fig. Comparison of real and simulated data for protein count and non-proximal probe

count. (a) Scatter plot showing the mean-variance relationship in real and simulated protein

count. (b, c) Scatter plots showing the relationship between observed CD3:CD3 PLA product

and (b) non-proximal CD3 probe A or (c) non-proximal CD3 probe B in Jurkat cells. (d, e)

Scatter plots showing the relationship between observed 1:1 PLA product and (d) non-proxi-

mal protein 1 probe A or (e) non-proximal protein 1 probe B in simulated data without vari-

ance. (f, g) Scatter plots showing the relationship between observed 1:1 PLA product and (f)

non-proximal protein 1 probe A or (g) non-proximal protein 1 probe B in simulated data with

negative binomial variance.

(TIF)

Table 2. A 2 by 2 contingency table is first constructed for each PLA product i:j.

Probe B = j Probe B 6¼ j

Probe A = i Xi,j Xn

l ¼ 1

l 6¼ j

Xi;l

Probe A 6¼ i Xn

k ¼ 1

k 6¼ i

Xk;j

Xn

k ¼ 1

k 6¼ i

Xn

l ¼ 1

l 6¼ j

Xk;l

https://doi.org/10.1371/journal.pcbi.1011915.t002
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S2 Fig. Distribution of non-proximal probe counts in Jurkat cells and simulated data. (a)

Scatter plot showing the mean-variance relationship in experimental (Jurkat cells) and simu-

lated non-proximal probe count. (b, c) Violin plots showing the experimental and simulated

count of (b) non-proximal probe A and (c) non-proximal probe B for CD3 protein. (d, e) Vio-

lin plots showing the experimental and simulated count of (d) non-proximal probe A and (e)

non-proximal probe B for PD1 protein. (f, g) Violin plots showing the experimental and simu-

lated count of (f) non-proximal probe A and (g) non-proximal probe B for PDL1 protein.

non-proximal probe counts for CD3, PD1 and PDL1 proteins were simulated by using the

mean non-proximal probe counts in experimental data. Note that Jurkat cells expressed CD3

and PD1 proteins, but not PDL1 protein. P-values are calculated using KS test.

(TIF)

S3 Fig. Negative binomial variance causes the simulation to produce distributions that

closely match real data (a) The simulation with NB variance outperforms Poisson variance

for both the mean-variance relationship (top) and proportion of zeroes (bottom). (b) For each

observed PLA, protein complex, proximity noise and protein, the Mann-Whitney U statistic

between posterior predictive samples and observed data averaged over samples. Box plots indi-

cate the median (center line), interquartile range (hinges), and whiskers at 1.5x interquartile

range. Higher is better. (c) Scatter plot of fitted nNB value versus mean value of PLA products

on Jurkat and Raji cells. PLA product count is fit with a negative binomial distribution model

across single cells. Different PLA products have different best-fit nNB values. As shown by the

dashed blue horizontal line, the mean value of nNB is close to 1.5 for PLA products of different

mean values. Thus, nNB = 1.5 is used as default value in the simulation model.

(TIF)

S4 Fig. Histogram showing the distribution of three binding cases of PLA product. (a) Sim-

ulation data where nonspecific binding probability of antibody 1, 2, 3 is set to 0.2, 0.1, and

0.05, respectively. (b) Experimental data where isotype control antibody is used to estimate the

probability of nonspecific binding.

(TIF)

S5 Fig. Heterogeneous cell clustering based on simulated PLA data. (a) Single cell uniform

manifold approximation and projection (UMAP) plot of three cell types. Clustering of cells is

computationally determined by unsupervised learning. Cell types are ground truth for com-

parison. (b) Dot plot showing that differential expression analysis of each cluster caputures the

featured PLA product of each cell type. (c) UMAP plot showing the relative expression

(log2FC) of all PLA products in each cell cluster.

(TIF)

S6 Fig. Comparison between true and calculated protein expression. Scatter plots showing

the correlation between true and calculated protein expression in simulated data. The protein

expression is equal to the UMI count of each protein per single cell. Each panel also displays

the corresponding Spearman’s correlation coefficient, ρ.

(TIF)

S7 Fig. Comparison between observed and expected PLA product count in simulated data.

(a, b) Scatter plots showing the observed and expected random count of each PLA product in

the scenario when (a) no protein complex, and when (b) 1:1 is the only protein complex. The

red lines indicate y = x.

(TIF)
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S8 Fig. The iterative method is sensitive to initial values. (a) The change in output for each

iteration (tolerance) changes depending on the initial values given to the algorithm. (b) The

resulting protein complex estimates for each initialization, compared to the true complex val-

ues (left panel).

(TIF)

S9 Fig. Heteroscedasticity in PLA product count. (a) Scatter plot showing the relationship

between observed count of PLA product PD1:PD1 and the measured random ligation amount

in Jurkat cells, and the corresponding weighted least squares (WLS) and ordinary least squares

(OLS) regression lines. (b) Residual plot of ordinary least squares regression for PLA product

PD1:PD1 in Jurkat cells. (c) Scatter plot showing the relationship between observed count of

PLA product HLADR:HLADR and the measured random ligation amount in Raji cells, and

the corresponding WLS and OLS regression lines. (d) Residual plot of ordinary least squares

regression for PLA product HLADR:HLADR in Raji cells.

(TIF)

S10 Fig. Overview of the prediction score. (a) Scheme of using simulation model to evaluate

prediction algorithms with a quantitative scoring strategy. (b) The Pearson’s correlation coeffi-

cient between true and predicted complex counts for each method. (c) The percent of cells

called to have a protein complex for each method, along with the true counts. (d) The median

prediction score of the ensemble method is higher than both the LR and iterative when com-

paring across all scenarios. Ensemble also displays a lower variance than LR.

(TIF)

S11 Fig. Benchmarking of three methods in eight hundred randomized input tests. (a-d)

Violin plot showing the prediction score of three methods under different simulation scenario

with either high signal-to-noise or low signal-to-noise cases. (e) Distribution of input from

random generator under high signal-to-noise ratio. Single probe and homodimer pair follow a

uniform distribution while heterodimer pair follows a triangular distribution. (f) Distribution

of input from random generator under low signal-to-noise ratio. Single probe and homodimer

pair follow uniform distribution while heterodimer pair follows triangular distribution.

(TIF)

S12 Fig. Comparison between the iterative method, the LR method, Ensemble, and Fisher’s

exact test for protein complex detection in real data. (a-d) Heatmaps showing the fraction of

Jurkat cells that express a protein complex, as predicted by (a) the iterative method, (b) the LR

method, (c) the Ensemble method, and (d) the Fisher’s exact test. (e-h) Heatmaps showing the

fraction of Raji cells that express a protein complex, as predicted by (e) the iterative method,

(f) the LR method, (g) the Ensemble method, and (h) the Fisher’s exact test.

(TIF)

S13 Fig. Simulation of T cells’ and B cells’ experimental data. (a-d) Heatmaps of (a) true

protein complex counts, and protein complex counts predicted by (b) iterative method, (c) LR

method, and (d) Ensemble method in T cell simulation. (e-h) Heatmaps of (e) true protein

complex counts, and protein complex counts predicted by (f) iterative method (g) LR method,

and (h) the Ensemble method in B cell simulation. Here, the simulation parameters were cho-

sen such that the total protein abundance was similar to experimental data. T cells were simu-

lated to only express the protein complexes CD3:CD3, CD28:CD28, CD3:CD28 and CD28:

CD3. B cells were simulated to only express the protein complexes PDL1:PDL1 and HLADR:

HLADR.

(TIF)
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