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Abstract

Single-cell RNA sequencing (scRNA-seq) is a powerful technology to investigate the tran-

scriptional programs in stromal, immune, and disease cells, like tumor cells or neurons

within the Alzheimer’s Disease (AD) brain or tumor microenvironment (ME) or niche. Cell-

cell communications within ME play important roles in disease progression and immunother-

apy response and are novel and critical therapeutic targets. Though many tools of scRNA-

seq analysis have been developed to investigate the heterogeneity and sub-populations of

cells, few were designed for uncovering cell-cell communications of ME and predicting the

potentially effective drugs to inhibit the communications. Moreover, the data analysis pro-

cesses of discovering signaling communication networks and effective drugs using scRNA-

seq data are complex and involve a set of critical analysis processes and external supportive

data resources, which are difficult for researchers who have no strong computational back-

ground and training in scRNA-seq data analysis. To address these challenges, in this study,

we developed a novel open-source computational tool, sc2MeNetDrug (https://fuhaililab.

github.io/sc2MeNetDrug/). It was specifically designed using scRNA-seq data to identify cell

types within disease MEs, uncover the dysfunctional signaling pathways within individual

cell types and interactions among different cell types, and predict effective drugs that can

potentially disrupt cell-cell signaling communications. sc2MeNetDrug provided a user-

friendly graphical user interface to encapsulate the data analysis modules, which can facili-

tate the scRNA-seq data-based discovery of novel inter-cell signaling communications and

novel therapeutic regimens.
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Author summary

Single cell genomics data have been transforming our understanding of the diverse cell

types, and complex intra- and inter-cellular complex biological processes in disease

microenvironments (ME). It can guide the development of novel precise targeted and

immunotherapy treatments that can effectively perturb the complex multi-cell signaling

interactions within disease ME. However, it remains challenging and nontrivial to con-

duct complex single cell genomics data analysis tasks, which often consist of multiple

complex analysis modules and diverse supportive datasets. Herein, our goal is to facilitate

biomedical researchers conducting single cell genomics data-driven studies, by developing

a publicly accessible open-source tool, sc2MeNetDrug. It provides a user-friendly graphi-

cal interface, encapsulating step-wise analysis modules, diverse supportive datasets, visual-

ization functions, and novel analysis modules for identifying cell-cell communication

networks, and predicting effective drugs that can potentially perturb the multi-cell signal-

ing interactions within disease ME. It enables users to interactively conduct comprehen-

sive single cell RNA-seq data analysis tasks.

Introduction

Tumor-stroma communication within the tumor microenvironment (TME) plays an impor-

tant role in tumor development and responses to both conventional- and immune-based ther-

apies. For example, immunotherapy in pancreatic cancer treatment has not been successful

[1]. One possible cause of immunotherapy resistance is the abundance of stromal cells and

tumor signaling communications in Pancreatic ductal adenocarcinoma (PDAC) tumor micro-

environments [1]. Such immunosuppressive cells include tumor-associated macrophages

(TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), as well as can-

cer-associated fibroblasts (CAFs) [1–6]. Moreover, CAFs were recently reported to be able to

regulate the invasive epithelial-to-mesenchymal transition (EMT) and proliferative (PRO)

phenotypes of PDAC [7]. This indicates that stroma-tumor communication in PDAC tumor

microenvironments plays a critical role in immunotherapy resistance. Thus, stroma-tumor

signaling communications are potential targets to improve drug or immunotherapy response

in cancer treatment. The inhibition of signaling communication between TAMs and PDAC

cells via the Colony Stimulating Factor 1 (CSF1) (ligand secreted by PDAC) and CSF1R

(receptor on TAM) can reprogram TAMs, and the synergistic combination of TAM-tumor

signaling inhibition with the immune checkpoint blockade [8] can improve the immunother-

apy response. In another study, the inhibition of signaling communication between CAF and

PDAC via CXCL12 (ligand secreted by CAF) and CXCR4 (receptor on PDAC) was shown to

improve immunotherapy response [5]. Another example is AD, which is a complex disease

with altered inflammation and immune functions in AD brain ME [9–12]. However, the

detailed mechanism of how stroma and immune cells like astrocytes and microglia influence

the activity of each other and neurons remain unclear. Especially, which signaling pathways

and genes are dysfunctional or expressed abnormally. These impede the development of novel

drugs and drug combinations for the control and treatment of AD.

Recent advances in single-cell RNA sequencing (scRNA-seq) create a powerful technology

to analyze the genetic and functional heterogeneity of stromal and tumor cells (e.g., TAM,

CAF and T cells) within tumor microenvironments [7,13,14]. Similarly, studies have generated

scRNA-seq data of AD brain samples to investigate the dysfunctions of neurons, astrocytes,
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microglia cells and other cells in AD brain microenvironments [10–12,15]. Though many

tools and studies reported to have discovered the heterogeneity and sub-populations of cells,

few studies [16] have been designed to investigate cell-cell communication using sc-RNAseq

data. For example, the CCCExplorer [17,18] was first developed to uncover the potential

tumor and stroma cell communication using microarray and bulk RNA data on a small set of

curated ligand-receptor interactions. CellPhoneDB [19] provided a repository of ligands,

receptors, and their interactions using the novel computational ligand-receptor interaction

prediction approaches. NicheNet [20] was the latest software tool that integrates the large set

of ligand-receptor interactions from CellPhoneDB, and it supports the pre-analyzed scRNA-

seq data. However, the computational modules of inferring the dysfunctional signaling net-

works, and predicting potentially effective drugs inhibiting the dysfunctional signaling net-

works and cell-cell communications are not available in these tools.

Specifically, compared with the existing tools, novel computational models and tools that

solve the following challenges are in high demand to 1) provide an end-to-end model that can

take the raw scRNA-seq data as input, analyze, annotate and display the scRNA-seq data, 2)

uncover dysfunctional signaling network within individual cells, and uncover complex signal-

ing communications among multiple stromal and tumor cells; 3) identify effective drugs and

drug combinations that disrupt the cell-cell communications, like stroma-tumor, to improve

the targeted and immunotherapy response. Moreover, 4) a user-friendly interactive graphical

user interface (GUI) is helpful and critical for biomedical researchers because these analyses

are highly composite complex and involve a set of computational analysis processes and inte-

gration of external supportive data resources that require visualization by non-bioinformatics

experts to functionalize the complex data. To resolve the aforementioned challenges, in this

study, we developed a novel computational tool: sc2MeNetDrug (scRNA-seq based modeling

to discover disease microenvironment signaling communication networks and drugs targeting

the cell-cell signaling communications). sc2MeNetDrug provided a user-friendly graphical

user interface to encapsulate the data analysis modules, which can facilitate the scRNA-seq

data-based discovery of novel inter-cell signaling communications and novel therapeutic regi-

mens. The sc2MeNetDrug, source code, and detailed documentations are publicly available at:

https://fuhaililab.github.io/sc2MeNetDrug/.

Results

Overview of sc2MeNetDrug

Fig 1 summarizes the overall pipeline of the sc2MeNetDrug. The input of sc2MeNetDrug is

the raw counts of genes from single cell RNA-seq (scRNA-seq) data of different experimental

conditions or samples, e.g., normal tissues vs disease tissues. The output of the tool includes

the annotation of cell types, dysfunctional signaling networks within individual cells, intercel-

lular signaling communications, and drugs that can potentially inhibit dysfunctional signaling

pathways and intercellular signaling communications. Specifically, the pipeline can be divided

into several parts: First, users need to upload the raw data along with an optional design/group

file. Then, the raw data go through preprocessing, dimension reduction, clustering, and cell

annotation sequentially to obtain the cell annotation result for each cell (cell annotation results

can also be uploaded directly to the application to conduct the rest of analyses). Next, various

analysis can be performed based on the interest and requirement, including iCSC (inter-cell

signaling communication discovery) module that uncovers the activated signaling pathways

and gene ontology (GO) terms within individual cell types, and uncovers the cell-cell signaling

communications within the disease ME and dCSC (drug prediction for disrupting cell signal-

ing communication) module that identify and predict the potentially effective drugs, based on
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drug-target and revere gene signature, to disrupt the cell signaling communications. All the

data analyses and modeling were designed in the modular format, which can be upgraded or

replaced conveniently to select the best practice models. A detailed introduction to the down-

loading, installation, analysis modules, and examples, as well as the video tutorials for each

analysis module, were provided at: https://fuhaililab.github.io/sc2MeNetDrug/. We applied

the SC2MeNetDrug model to both a cohort of pancreatic ductal adenocarcinoma (PDAC) and

two cohorts of Alzheimer’s disease scRNA-seq data demonstrating the functionality and effec-

tiveness of the tool.

The scRNA-seq data pre-analysis module

Recently, there have been many great scRNA-seq tools publicly available [21] that integrate

many aspects of analyses of scRNA-seq data. For example, Seurat [22] in R and Scanpy [23] in

Python become very popular and be used as standard tools for analyzing scRNA-seq data.

They include most of the common pipeline that is needed in the scRNA-seq data analysis like

quality control, dimension reduction, cell clustering, differential gene expression analysis etc.

However, one drawback of such tools is that they always require advanced knowledge in pro-

gramming, which is not the case for many biomedical experts. Regarding this, sc2MeNetDrug

implements the scRNA-seq pre-analysis module, which is a pipeline that includes quality con-

trol, normalization, imputation dimension reduction, clustering, gene feature visualization

Fig 1. Overview of SC2MeNetDrug. (Left) Illustration of sc2MeNetDrug. (Right) The detailed data analysis pipeline of sc2MeNetDrug: (1) Raw data

uploading: Users need to first upload raw-count data along with an optional design file (cell group); (2) Preprocessing: Then, the preprocessing is applied on

the raw data to perform the quality control, normalization, and imputation; (3) Dimension reduction: the dimension reduction algorithm applied on the

normalized data; (4) Clustering: Cluster cell sample into different group based on dimension-reduced representation for each cell sample; (5) Cell annotation:

annotate each cell cluster with the best matching cell type given cell candidate and corresponding marker genes (The cell annotation result can also be uploaded

along with raw data to directly perform the following analyses); (6) Cell distribution: Visualize cell type distribution for each cell group; (7) GO enrichment

analysis: Gene ontology enrichment analysis to reveal the activated/inhibited GO process for selected cell type and test/control groups. (8) Proliferation and

EMT: Compute proliferation and EMT score for selected cell type (mainly used for cancer dataset); (9) Ligand & Receptor communication: Identify up-

regulated ligands and receptors for each cell type and potential ligand-receptor interactions between different cell types given the selected test/control groups;

(10) Dysfunctional signaling pathway: Identify dysfunctional cell-cell communication and signaling pathway between two cell types given the selected test/

control groups; (11) Drug discovery: Identify possible drugs to inhibit the discovered cell-cell communication network. Note that the steps of pre-analysis (1)-

(5) need to be done sequentially (indicated by blue color in the figure). All downstream analyses like (6)-(11) can be performed based on the interest after

sc2MeNetDrug obtain the cell annotation results (indicated by orange color in the figure).

https://doi.org/10.1371/journal.pcbi.1011785.g001
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and cell type annotation. The pre-analysis module is powered by Seurat and further adds

many useful functions for easy processing of the scRNA-seq data. Most importantly, all meth-

ods are encapsulated into modules with user-friendly interfaces (Fig 2A, 2C and 2D), which

make it easy for researchers to use even without programming skills.

In sc2MeNetDrug, both mice and human scRNA-seq data can be analyzed (mice gene sym-

bols will be converted to corresponding human gene symbols). The quality control and data

normalization will be computed automatically after the user uploads raw data. For pre-analy-

sis, users can then do the dimension reduction and clustering analysis in order to perform cell

annotation. Important parameters for each analysis can be adjusted directly in the app (Fig

2C). A large set of biomarker genes were collected [10,14,24,25] to support different research

projects, like cancer cells, immune cells, AD neuron cells (see Fig 2B). We will keep updating

the marker gene sets. Moreover, we provided a function to enable users to upload new or user-

defined marker gene sets. Once the users have decided on the final cell type candidates and

their corresponding biomarker genes, the annotation classifiers based on these selected cell

types and corresponding marker gene sets will be built automatically for the cell type annota-

tion analysis. Also, the distribution (percentage) of individual cell types in each sample will be

displayed, and the Epithelial–mesenchymal transition (EMT) and PRO (proliferation) scores

of each sample can be calculated. Using the sc2MeNetDrug, we process and analyze the PDAC

cohort from scratch. We can see sc2MeNetDrug successfully annotates each cell type in the

dataset (Fig 3A). From the cell population result, we can verify the correctness of the annota-

tion result, as Ductal 2 cells only exist in tumor groups (patients T1-T24) (Fig 3B). Ductal 2

cells are a well-known cell type related to tumor growth [14]. We also plot the EMT-PRO

score for one tumor patient. We can see this patient has a high EMT score, which may indicate

the high activity level of the metastatic expansion and the generation of tumor cells (Fig 3B).

Identifying key biomarkers in Alzheimer’s disease using the iCSC module

Uncovering the dysfunctional signaling pathways within individual cell types, and cell-cell sig-

naling communications, as novel therapeutic targets, are the highly needed functions. The

SC2MeNetDrug provided functions to facilitate the pathway and network analysis. Specifi-

cally, after the cell type annotation, the differentially expressed genes in each cell type between

two different experimental conditions, for example, the immunotherapy responder vs. non-

responder, male vs. female, or tumor cells co-cultured with macrophage vs. no macrophages,

can be calculated. A function was developed to enable the selection of samples and conditions

of interest for the differential gene expression analysis. Based on the differentially expressed

genes within individual cell types, gene ontology (GO) enrichment analysis can be identified.

Further ligand-receptor interaction, activated signaling pathway, and cell-cell communication

among two cell types can be computed accordingly.

To illustrate the functionality of sc2MeNetDrug for pathway and network analysis, we

apply the sc2MeNetDrug on two AD cohorts, one from mice [12] and another from human

[10]. The mice cohort collected single-cell data from normal mice (TE3, TE4), mice with tau

pathology and APOE3/APOE4 marker genes (TAFE3_oil and TAFE4_oil respectively), and

mice with APOE3/APOE4 knock-out (TAFE3_tam and TAFE4_tam respectively). The human

cohort was collected from 48 patients with 24 patients, 15 patients, and 9 patients classified as

having No AD pathology, AD early-stage, and AD late-stage respectively. For the mice cohort,

we apply the sc2MeNetDrug and use the tool to do the pre-analysis to obtain the cell annota-

tion results. We can see sc2MeNetDrug clearly identifies marker genes for each cluster in the

cohort (Fig 4A and 4B) and annotates each cell type in the dataset (Fig 4C). For the human

cohort, we directly use the cell annotation result from the original source in order to validate
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the functionality of the downstream analysis part in sc2MeNetDrug. For mice dataset, we use

TE4 as the control group and TAFE4_oil as the test group. For the human dataset, we use No

AD pathology as the group of control and late-stage as the group of test. Next, we conduct the

GO enrichment analysis on both mice and human cohorts using the sc2MeNetDrug to com-

pare the difference of neurons between normal and AD pathology. We further conduct the

Fig 2. The interface of some pre-analysis modules in sc2MeNetDrug. (a) The menu bar of sc2MeNetDrug. (b)

Biomarker gene database in sc2MeNetDrug. (c) The cell clustering section in sc2MeNetDrug. User can easily adjust

parameters used in the algorithm. (d) The gene feature exploration section in sc2MeNetDrug used to identify

biomarker genes.

https://doi.org/10.1371/journal.pcbi.1011785.g002
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KEGG pathway enrichment analysis company with the GO enrichment analysis to provide a

complete view (Fig 4E). From the result of the mice dataset, we have the following observa-

tions: First, the neuron autophagy and degeneration-related processes are highly activated in

neurons with AD pathology, like Pathway of neuron degeneration–multiple disease, Apoptosis
in KEGG results and Neuron apoptotic process, Autophagy in GO results. Autophagy is a

Fig 3. Analysis result of PDAC cancer using sc2MeNetDrug. (a) Cell annotation results. Sc2MeNetDrug clearly identify the cell type of

each cluster. The cluster with negative enrichment score on all cell types is labeled with unknown to avoid noise. (b) Cell distribution in

each group, which will be automatically plot after cell annotation. Tumor groups (T1-T24) have high population of Ductal 2 cell. Instead,

normal groups only have Ductal1 cell. (c) EMT-PRO score of Fibroblast cells in one tumor patient.

https://doi.org/10.1371/journal.pcbi.1011785.g003
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Fig 4. Cell annotation and pathway analysis result of AD (mice) dataset using sc2MeNetDrug. (a-b) The expressive

pattern of selected maker genes. These genes are highly expressed in some cluster and can be used as biomarker genes for cell

annotation. (c) The cell annotation result output from sc2MeNetDrug. (d) The cell distribution for each group. (e) The KEGG

and GO enrichment analysis results for AD pathology. The color indicate the p-value of pathways and count (KEGG pathway)

indicate the number of genes that are activated in the pathway. The log fold-change threshold is set as 0.08 and p-value

threshold is set as 0.05. (f) Expressed genes correlated to GO terms GO:0150076 neuroinflammatory response and

GO:0051402 neuron apoptotic process for AD pathology output by sc2MeNetDrug. The log-fold change threshold is set as

0.08.

https://doi.org/10.1371/journal.pcbi.1011785.g004
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lysosome-dependent, homeostatic process, in which organelles and proteins are degraded and

recycled into energy. Autophagy has been linked to Alzheimer’s disease pathogenesis through

its merger with the endosomal-lysosomal system, which has been shown to play a role in the

formation of the latter amyloid-β plaques [26]. In the prediction of sc2MeNetDrug, we also

identified several important genes related to autophagy (Fig 4F). Some have already been

shown to be related to neuron degeneration and autophagy in AD like FAIM2 [27], BCL2 [28],

and PRNP [29]. One hypothesis is that irregular autophagy stimulation results in increased

amyloid-β production [30]. Our result also identified the highly up-regulated GO term Positive
regulation of amyloid-beta formation, which further supports it. Secondly, neuron inflamma-

tion is prevalent in AD pathology. Numerous studies have shown that inflammation is highly

activated and plays a key role in the progress of AD [10,31–33]. Our results further verify this

claim. We can see that neuroinflammatory response, cytokine-mediated signaling pathway are

all up-regulated GO terms discovered by sc2MeNetDrug. This result aligns with the previous

studies and further confirms that the existence of APOE4 in the astrocyte stimulates the

inflammatory response. Inflammation-related genes are also identified (Fig 4F) like TREM2,

CLU, and ADCY1. We further use sc2MeNetDrug to compute the activated KEGG signaling

pathway network for excitatory neurons using mice cohort (S1 Fig). The result points out

additional pathways like Estrogen signaling pathway, HIF-1 signaling pathway, and MAPK sig-
naling pathway that are activated in the AD neurons. Some works have pointed out that the

dysfunction of the estrogen signaling pathway also contributes to the production of amyloid-

beta and the progress of AD [34]. Particularly, gene CTSD is Highly expressed in neurons, sug-

gesting its center role in producing amyloid precursor (APP) and tau. MAPK signaling path-

way regulates a variety of cellular activities including proliferation, differentiation, survival,

and death. Some studies report that Amyloid-beta-induced activation of p38 MAPK and

NFkB signaling can result in upregulation of proinflammatory gene transcription and cause

neuronal death [35].

To further investigate the signaling pathway and disease mechanism of AD, we apply

sc2MeNetDrug on two cohorts to analyze both the ligand-receptor interaction and inter-cell

communication patterns. First, we use sc2MeNetDrug to compute the up-regulated ligands

and receptors for both mice and human cohorts (Fig 5A). For excitatory neurons, PCSK1N,

ALDOA, CLU, PRNP, and LINGO1 are highly up-regulated in both mice and human cohorts.

For astrocytes, PTGDS and CLU are activated in mice and humans commonly. For microglia,

we found that APOE is highly up-regulated in both mice and human cohorts, even though the

APOE is normally expressed in astrocytes. This may indicate the APOE in the microglia may

also be a critical factor for the development of AD pathology. Besides that, RPS19, SPP1 are

also highly expressed in AD pathology. The differential gene analysis result confirms the dis-

covery of sc2MeNetDrug (Fig 5C and 5D).

Finally, we use sc2MeNetDrug to discover the up-regulated-ligand to up-regulated-receptor

interaction and cell-cell communication networks among excitatory neurons, astrocytes, and

microglia (Fig 5B and Fig 6A). The results strengthen the understanding of AD development

and neuron change. First, COL1A1, COL6A1, COL16A1 are differentially expressed in astrocytes

of AD pathology. It all connects to the common receptor ITGAV in neuron cell and further con-

nect to genes like PIK3CA, ACTG1, and ACTB. The collagen gene family serves to mediate cell

attachment and maintains the integrity of the extracellular matrix (ECM). It has been reported

that there are significant changes in ECM during the early stages of Alzheimer’s disease [36] and

also associated with amyloid plaque production [37]. ACTG1 and ACTB are actin proteins,

which are highly related to actin cytoskeleton and spine shaping in the brain. The abnormal

expression of actin-related genes can cause synaptic plasticity and failure, which are one of the

major biomarkers of AD. Our finding may suggest that the activity of collagen genes in astrocytes
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may trigger the abnormal activity of actin-related genes and thus contribute to the development

of AD pathology. Further, our identified cell-cell communication network contains many genes

in the activated pathways, like Apoptosis, HIF-1 signaling pathway, Necroptosis, and neuroin-

flammatory response. The results further highlight the significance of these pathways and pro-

cesses in the progress of AD pathology. Meanwhile, these findings are consistent with results

from the pathway enrichment analysis, further validating our iCSC module.

Fig 5. Ligand-receptor analysis results on AD cohorts. (a) Up-regulated ligands and receptors discovered by sc2MeNetDrug on two AD

cohorts. Only genes that appear in the results on both mice and human cohorts are selected. The log-fold-change threshold is set as 0.08 and p

value threshold is set as 0.05. The size of the dot indicates the fold log-fold-change level in the human cohort and the color indicate the level in

the mice cohort. (b) ligand-receptor interaction discovered by sc2MeNetDrug on mice cohort. Only ligands and receptors with log-fold-change

great than 0.08 were selected. (c-d) Differentially expressed genes results using Seurat.

https://doi.org/10.1371/journal.pcbi.1011785.g005
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Fig 6. Cell-cell communication result from astrocytes to excitatory neurons and corresponding drug discovering result (mice cohort) using

sc2MeNetDrug. (a) Cell-cell communication result with several important pathways appended. The KEGG database was used and the log-fold-

change and p-value threshold are set as 0.08 and 0.05 respectively. (b) Signature drug discovering result. Only top 30 drugs are displayed. The higher

the negative enrichment score, the higher chance the drug can be used to inhibit the corresponding dysfunctional network. (c) Drug clustering result

based on SMILE finger-print to identify structure similar drug clusters among all top drugs.

https://doi.org/10.1371/journal.pcbi.1011785.g006
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Moreover, we evaluated the reliability of the iCSC module. Specifically, we evaluated the

reliability of iCSC module by randomly removing a certain percentage of cells and evaluating

changes of identified genes in the cell-cell communication networks using the AD mice

scRNA-seq data. As seen in S2A Fig, the iCSC module remains reliable when a portion of cells

are removed for each cell type. In addition, we evaluated the reliability by testing different log-

fold-change thresholds and evaluating the variation of identified genes in the cell-cell commu-

nication networks. As seen in S2B Fig, the network nodes decreased with reduced (smaller)

fold change thresholds, which is as expected. Also, the networks with higher log-fold-change

thresholds are subsets of networks with smaller thresholds. The results indicate the proposed

model is reliable. Based on the reliable gene identification of the iCSC module, the dCSC mod-

ule is reliable because it straightforwardly associates drugs with the identified genes.

Predict drugs inhibiting signaling communications using the dCSC model

To identify drugs that can potentially inhibit the down-stream signaling pathways, the compu-

tational model, the dCSC model was developed, which is designed to integrate the down-

stream signaling network, drug-target interaction (derived from DrugBank [38] database), and

reverse gene signature data available from the connectivity map (CMAP) database [39]. It is

relatively straightforward to identify drugs with targets on the downstream signaling network

based on the drug-target information. For the CMAP data [39], the uncovered cell-cell com-

munication signaling network will be used as a signature of the Gene set enrichment analysis

(GSEA) to identify drugs that can potentially inhibit the expression of genes in the network.

To further understand the relationship of the selected drugs, drug clustering based on chemical

structures was conducted to identify therapeutics with similar targets or mechanisms of action.

To demonstrate the functionality and effectiveness of the dCSC module in sc2MeNetDrug, we

perform the analysis using the AD mice dataset. Specifically, we compute the signature drug

discovering analysis using connectivity map data upon the cell-cell communication network

from astrocytes to neurons. The discovered top 30 drugs can be found in Fig 6B. The drug

clustering result for all top drugs can be found in Fig 6C.

Among all the top drugs, Nifedipine achieved the best enrichment score. Nifedipine is a

dihydropyridine calcium channel blocker indicated for the management of several subtypes

of angina pectoris, and hypertension. Nifedipine is primarily used for reducing blood pres-

sure and increasing oxygen supply to the heart. However, results have shown that calcium

channel blockers like Nifedipine or Nimodipine (also shown in the top drugs) led to a sig-

nificant decrease in the level of amyloid beta peptide, with no significant decrease in cell via-

bility [40].

The second drug Hydralazine, which is a smooth muscle relaxant, also shows potential for

being an effective drug for reducing lipid oxidative damage and amyloid beta folding [41].

Interestingly, another drug PD-0325901 from the same cluster, has been shown to be effective

in inhibiting MAPK/ERK kinase which prevents activation of the mitogen-activated protein

kinase (MAPK) [42]. As we discussed above, MAPK signaling pathway is dysfunctional in AD

pathology. The inhibition of MAPK pathway can provide neuronal protection from the amy-

loid beta burden by increasing autophagic lysosomal activity, suggesting a synergic effect along

with Hydralazine that is worth for further investigation. Another type of drug mainly targets

neuronal inflammation or neuronal disorders like carbidopa, Diclofenac, and paroxetine. Rel-

evant research already pointed out its potential functionality in reducing inflammation and

pathology of AD [43–45]. Together, our results provide several drugs that could be effective in

reducing the pathology of AD from different levels. It further valid the performance of

sc2MeNetDrug.
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Discussion

Single cell RNA sequencing (scRNA-seq) is a powerful technology to investigate the transcrip-

tional programs in stromal, immune, and tumor cells or neuron cells within tumor or brain

microenvironment (ME) or niche. Cell-cell interactions and communications within ME play

important roles in disease progression and immunotherapy response and are novel and critical

therapeutic targets. However, it is challenging, for many researchers without solid training in

computational data analysis and scRNA-seq data analysis, because the data analysis pipelines

usually consist of diverse and complex analysis modules, and the integrative analysis of diverse

and heterogenous external data resources. There is a lack of easy-use tools with complete and

integrative computational modules for uncovering cell-cell communications of ME and pre-

dict the potentially effective drugs to inhibit the communications, although many tools of

scRNA-seq analysis have been developed to investigate the heterogeneity and sub-populations

of cells. In this study, we developed a novel, open-source computational tool, SC2MeNetDrug

(https://fuhaililab.github.io/sc2MeNetDrug/) to address these challenges. Specifically, the

advantages of the tool are as follows. First, it is a tool specifically designed for scRNA-seq data

analysis to identify cell types within MEs, uncover the dysfunctional signaling pathways within

individual cell types, inter-cell signaling communications, and predict effective drugs that can

potentially disrupt cell-cell signaling communications. Second, the analysis modules in the

analysis pipelines were separated with pre-designed interfaces. Users can develop and update

novel data analysis modules, and easily replace the updated modules back to the data analysis

pipeline. In another word, users or scientists with different expertise can conveniently replace

user-specific data analysis modules just by following the input and output of individual mod-

ules, like network inference, cell type identification, cell clustering, drug prediction, in the data

analysis pipeline. Third, it provides a user-friendly graphical user interface (GUI), encapsulat-

ing the data analysis modules, which requires no coding and programming and can facilitate

the scRNA-seq data analysis in an interactive manner.

Conclusion

In this study, we developed a novel open-source tool, SC2MeNetDrug (https://fuhaililab.github.

io/sc2MeNetDrug/), which is specifically designed, with user-friendly GUI for interactive scRNA-

seq data analysis for the purpose of uncovering cell-cell communications of ME, and predicting

the potentially effective drugs to perturb the cell-cell communications within disease ME.

Methodology

Data sets of case studies. The data of PDAC was downloaded from Genome Sequence

Archive under project PRJCA001063 [14]. There are a total of 57530 cell samples and 24003

genes. The data was generated from 24 PDAC tumor samples and 11 control, untreated pan-

creas samples. The data of Alzheimer’s disease of human [10] was downloaded from Synapse

website. The DOI for the dataset is 10.7303/syn18485175. The data was generated from 48

patients, with 24 individuals presenting no or very low AD pathologies and the rest of 24 indi-

viduals exhibiting clear AD pathologies. There are a total of 75060 cell samples and 17926

genes. The data on Alzheimer’s disease in mice [12] was obtained from the Gene Expression

Omnibus (GEO) database with accession number GSE164507. There are a total of 96252 cell

samples and 33457 genes.

Quality control. Quality control is done in several steps. Initially, cells with a detected

gene count of less than 200 or more than 7500 are removed. Subsequently, cells with abnormal

mitochondrial gene expression (cells with > 10% mitochondrial counts) are also eliminated.

Finally, if the dataset is from mice, we collect a database for converting all mic gene symbols in

PLOS COMPUTATIONAL BIOLOGY sc2MeNetDrug

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011785 January 5, 2024 13 / 22

https://fuhaililab.github.io/sc2MeNetDrug/
https://fuhaililab.github.io/sc2MeNetDrug/
https://fuhaililab.github.io/sc2MeNetDrug/
https://doi.org/10.1371/journal.pcbi.1011785


the dataset to the human gene symbol. All genes that don’t exist in the database will be

removed.

Normalization. The normalization and variance stabilization of scRNA-seq data in

sc2MeNetDrug is done by the regularized negative binomial regression [46]. With this

method, there is no need for heuristic steps including pseudocount addition or log-transfor-

mation and improves common downstream tasks. The method is implemented using

SCTtransform function with method = glmGamPoi in Seurat package [47].

Imputation. Imputation is done by the runALRA function in the Seurat package with

default parameters. The method [48] is to compute the K-rank approximation to A_norm and

adjust it according to the error distribution learned from the negative values.

Dimension reduction

Dimension reduction analysis in sc2MeNetDrug involves several steps. First, select the top

3000 variable genes across the dataset. To identify these genes, local polynomial regression fits

the relationship between log variance and log mean. Subsequently, gene expression values are

standardized using the observed mean and the expected variance (determined by the fitted

line). The variance of gene expression is calculated on the standardized values after clipping.

This procedure is automatically executed by the SCTransform function in Seurat package.

Next, Principal Components Analysis (PCA) is applied to these 3000 variable genes. These

genes are then projected into 50 dimensions in order served as 50 different principal compo-

nents (PCs). This is implemented using the RunPCA function in Seurat package. Finally, the

UMAP method will be used on the first x PCs selected by the user (range from 10 to 50). This

is implemented using the RunUMAP function in Seurat package [47].

Cell clustering

For clustering analysis of scRNA-seq data, the application follows these steps. First, it com-

putes a low-dimensional representation for each cell using PCA. This is done during the

dimension reduction analysis. Next, to identify the neighbors of each cell, the clustering analy-

sis applies the K-Nearest-Neighbor (KNN) algorithm to the results of the PCA analysis. Users

can choose the number of principal components to use (range from 10 to 50) when performing

the KNN algorithm. This step is implemented using FindNeighbors function in Seurat package.

Finally, the clustering analysis applies the Louvain algorithm to the results of the KNN algo-

rithm to compute the final clustering results for each cell. Users can also choose the resolution

of the clustering, with options ranging from 0.1 to 2. A lower resolution result in fewer clusters

in the results, while a higher resolution produces more clusters. This step is implemented

using FindClusters function in Seurat package.

Gene feature exploration

In gene feature exploration section, user can select any gene exists in the dataset, then sc2MeNet-

Drug will generate two plots for each gene. The first plot is the expression distribution violin plot,

which plot the expression distribution of the selected gene in each cluster. The second plot is the

scatter plot to indicate the expression of the gene in each cell. A deeper color means a higher expres-

sion. These two types of plots are drawn using VlnPlot and FeaturePlot function in Seurat package.

Biomarker gene sets

In total, we collected 56 cell type and biomarker genes from several sources [10,14,24,25]. The

biomarker gene database is displayed in a table with a cell marker gene manner, where each
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row in the table has two columns with the first column indicating the name of cell type and the

second column indicate the corresponding gene symbol. If there is more than one biomarker

genes for one cell type, each gene will be displayed in one row (the cell type name will be cop-

ied for each row, see Fig 7A). We also specified classical cell type sets for Alzheimer’s disease

and Pancreatic Cancer based on published articles [10, 14]. The user could easily select these

cell types by clicking the corresponding button. We also provide the user with the ability to

modify and add their own marker genes for better analysis; the user can add, delete and modify

existing marker gene tables. To delete an existing cell-marker gene pair, user can do it by first

clicking the corresponding row in the marker gene table. Then, click the “Delete selected

gene” button to delete this row (see Fig 7B). To add a new cell-marker gene pair, users can use

the bottom right panel in the biomarker gene section (Fig 7C). Begin by entering the cell type

name in the first input box. Next, select the marker genes you wish to add in the second input

box. Users can choose multiple genes simultaneously. Lastly, click “add new gene” to incorpo-

rate them into the marker gene database. Finally, users can directly double-click the table cell

in the marker gene table to modify an existing cell-marker gene pairs.

Cell type annotation

The cell annotation is done in two steps. In the first step, the Gene Set Enrichment Analysis

(GSEA) [49] is applied to annotate cell types for every cluster. First, users should select candi-

date cell types and corresponding marker genes in the Biomarker gene section. Then, for every

cluster, the application computes log fold change for cluster N by:

log fold change for cluster N ¼ mean expression for cluster N � mean expression for other cells

Then we rank the genes based on fold change and calculate the enrichment score of marker

gene sets for every cell type the user selected. Finally, the cell type with the largest enrichment

score will be selected as the type of this group. However, if none of the cell types have a positive

enrichment score, the cluster will be annotated as unknown. In the second step, sc2MeNet-

Drug introduces a manual label correction panel such that the user can manually modify the

cell annotation result obtained from the first step.

Fig 7. Panel shortcut for modifying biomarker gene database in sc2MeNetDrug. (a) Biomarker gene table display all existing cell-marker gene

pairs. (b) The panel used to delete an existing cell-marker gene pair (“Delete selected gene” button), reset the biomarker gene database (“Original

marker gene table” button), and save the modified marker gene database for future use (“Save current marker gene table” button). (c) Panel used to

add new cell-marker gene pair into current biomarker gene table.

https://doi.org/10.1371/journal.pcbi.1011785.g007
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Cell distribution plots

Once users obtain classification results or upload gene expression data, the application can calculate

the percentage of each cell type in each sample group. If users don’t provide sample group informa-

tion, the application will simply calculate the percentage of each cell type in the whole dataset.

Epithelial-mesenchymal transition (EMT) and proliferation (PRO) analysis

EMT-PRO analysis in SC2NetDrug was analyzed by computing mean expressions for the

selected design and cell type of EMT and PRO-related genes. The HALLMARK_EPITHE-

LIAL_MESENCHYMAL_TRANSITION database was chosen for EMT-related marker genes

and the HALLMARK_E2F_TARGETS database was chosen for PRO-related marker genes.

After users select the design and cell type, min-max normalization is used to normalize the

whole dataset based on the genes. Then the intersecting genes in the EMT and PRO-related

marker gene sets are selected and a mean score of all EMT and PRO-related genes are calcu-

lated and labeled as the EMT and PRO scores, respectively.

Ligands and receptors data resources

We collected ligand-receptor data from several sources: (1) Database of Ligand-Receptor Part-

ners (DLRP) [50] with 175 unique ligands, 133 unique receptors, and 470 unique interactions

(2) Ligand-receptor interaction data sources in NicheNet[20] with 1737 unique ligands, 1925

unique receptors and 12659 unique interactions (3) cell-cell interactions database in baderLab.

We selected all the proteins to be annotated as ligands named “Ligand” or “ECM/Ligand” and

all the proteins to be annotated as receptors named “Receptor” or “ECM/Receptor”. Then we

selected all the interactions including the chosen ligands and receptors. There are 1104 unique

ligands, 924 unique receptors, and 16833 unique interactions. In total, there are 1424 unique

ligands, 1214 unique receptors, and 27291 unique interactions.

Ligand-receptor mediated signaling interactions (Upstream Network)

Upstream network analysis is used to discover up-regulated ligands, receptors, and potential

ligand-receptor signaling interactions. First, users need to specify the log fold change thresh-

old, p value threshold, and the group or design the user wants to analyze. The up-regulated

ligands and receptors are discovered using the following steps. First, the differential expression

genes are calculated based on two tests, the first being the Wilcoxon rank sum test and the sec-

ond being the Likelihood-ratio test[51]. The genes that have log fold changes larger than the

threshold and adjusted p-values (from the two tests) less than the threshold will be selected as

differentially expressed genes. The test is done by the FindMarkers function in the Seurat pack-

age with parameters set as test.use = wilcox and test.use = bimod for the two tests respectively.

After the differentially expressed genes for all cell types in the dataset designed by the user are

identified, the ligands and receptors are found by searching for all differentially expressed

genes in our ligands-receptors database. Finally, upstream interaction networks are generated

by searching for all the discovered ligand-receptor interactions in our ligands-receptors data-

base. To be specific, four networks will be generated: the up-regulated ligands to expressed

receptors network, expressed ligands to up-regulated receptors network, up-regulated ligands

to up-regulated receptors network, and the combined network. Up-regulated ligands and

receptors are ligands and receptors that have log fold changes and adjusted p-values for two

tests that satisfy the user’s settings. Expressed ligands and receptors are ligands and receptors

that have log fold changes larger than 0. The combined network is then combined with the up-

regulated and the expressed ligands and receptors.
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Gene ontology (GO) term enrichment analysis

To obtain the gene-gene ontology (GO) [52] term information, the R libraries, org.Hs.eg.db

and GO.db were used. The Fisher’s exact test was used to identify the statistically activated/

enriched GOs based on the up-regulated genes and the genes in each GO term.

Inter-Cell Communication (Downstream Network) analysis

The inter-cell communication analysis in SC2NetDrug is done by several steps. First, differen-

tial genes in each cell type are discovered using the Wilcoxon rank sum test and the Likeli-

hood-ratio test [51]. The genes that have log fold changes larger than the threshold and

adjusted p-values (for both tests) less than the threshold will be selected as differentially

expressed genes. The tests are done by the FindMarkers function in the Seurat package with

parameters set as test.use = wilcox and test.use = bimod for the two tests, respectively. Next,

ligands, receptors and transcript factors are discovered using the ligands-receptors interaction

database and the transcript factor-target interaction database.

To uncover the down-stream signaling of ligand-receptor of interest, a computational

model, iCSC (inter-cell signaling communication discovery using scRNA-seq), was developed.

Specifically, 2 background signaling resources were used: KEGG [53] signaling pathways

(curated) and STRING [54] (general protein-protein interactions). For KEGG signaling path-

ways, the shortest paths starting from the given receptors to all the target genes (without out-

signaling) were identified, denoted as pi,j = (gi, gk1, gk2, . . ., gj), where gi is the receptor, gj is the

target gene, and gkm, m = 1, 2, . . ., are the genes on the shortest paths between gi and gj on the

KEGG signaling pathways. Then an activation score for each path, pi,j, was defined as:

sij ¼
P

gm2pij fcðgmÞ
�

n

, where fc(.) is the fold change calculator, and n is the number of genes

on the signaling path. Then signaling paths with activation scores greater than a given thresh-

old will be selected to generate the inter-cell communication network of the ligand-receptor of

interest.

For STRING background signaling network, there are much more genes (nodes) and inter-

actions (edges) than KEGG signaling. Thus, the above model for KEGG does not work for

STRING. Herein, we proposed a novel down-stream signaling network discovery model. Spe-

cifically, let Gi
0
¼ hRi; ;i denote the initialized down-stream signaling network of receptor Ri.

The update of the down-stream signaling is defined as: Gi
tþ1
¼ f ðGi

t;GB;Vk1; k2Þ, where Gi
t and

GB is the current down-stream and background (STRING) signaling networks respectively.

The edge, eij (protein interactions between gi and gj) of background signaling network, GB, is

weighted as: w eij
� �

¼ 1

absðfcðgiÞ
þ 1

absðfcðgjÞ
. Vk1 is a vector including k1 candidate genes (based on

the absolute fold change in the decreasing order) to be investigated and added to the down-

stream signaling network. For any gene, gk 2 nodeðGi
tÞ, the shortest paths from gk to the k1

candidate genes in Vk1, will be calculated. Then, an activation score for each path, pk,j, was

defined as: skj ¼
P

gm2pij fcðgmÞ
�

n

, where fc(.) is the fold change calculator and n is the number

of genes on the signaling path. If n>k2, the signaling paths will be discarded. In another word,

the parameters k1 and k2 decide the search width and depth. Finally, the signaling path with

highest activation score will be added to the down-stream signaling network. The process will

be conducted iteratively until it reaches a network size limit, e.g., N nodes. The down-stream

signaling network is generated by combining the down-stream signaling networks of all recep-

tors: G1 ¼ [iGi
t .
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Drug-target information derived from DrugBank

We collected 6650 drugs from the drug bank database and corresponding target genes. After

the down-stream signaling network is generated, the drugs for genes in the network is discov-

ered by looking through each gene in the network and searching for drugs that target this gene

in drug bank database.

Connectivity Map data

Drug discovery based on signaling signatures using Connectivity Map data, which seeks to

enable the discovery of functional connections between drugs, genes, and diseases through

analysis of patterns induced by common gene-expression changes. Users can find CMAP data

in National Center for Biotechnology Information database under dataset GSE92742. Before

doing the analysis, users need to download corresponding data from the website and we pro-

vide the function to generate the drug rank matrix based on data.

Drug discovery based on signaling signatures

The procedure of drug discovering is following: After the up-regulated genes for each cell

group in the cell-cell communication part are obtained, the application will use GSEA and the

drug rank matrix to discover potential drugs for each group. First, the application will calculate

the enrichment score of up-regulated gene sets for each drug in each group. Then, the top K

drugs with the lowest enrichment scores will be selected as potential drugs, where K is the

number of top drugs selected by user.

Drug clustering based on GSEA scores in CMAP

After the top drug is identified, Affinity Propagation Clustering [55] will be used to cluster top

drugs. First, a similarity matrix will be constructed for the top drugs. Given that the number of

top drugs is K, the dimensions of the matrix will be K*K. The similarity score for drug i to

drug j will be computed by the following process: select the top 150 up-regulated genes and

top 150 down-regulated genes for drug i to use as the gene set. Then, compute the GSEA score

for drug j using the drug rank matrix and the gene set from drug i. The enrichment score will

be used as the similarity score for drug i to drug j. After the similarity matrix is constructed, it

will be used to do AP clustering, which is done using the R package apcluster.

Drug clustering based on chemical structures

To clustering drugs discovered by targets, we use the chemical structure of each drugs [56].

First, the SMILES information of drugs is used to generate drug object for each drug, this is

done by parse.smiles function in rcdk R package. Next, the fingerprint of drug is computed

using get.fingerprint function in fingerprint R package. Based on fingerprint of drugs, the simi-

larity between drugs is computed using Tanimoto index. The formulation of Tanimoto index

is follow:

SA;B ¼
c

aþ b � c

Where SA,B is the similarity between drug A and drug B. a is number of bits in drug A and b is

number of bits in drug B. c is number of bits in both two drugs. This is done by fp.sim.matrix
function in R package fingerprint and set parameter method as tanimoto.
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Supporting information

S1 Fig. Activated KEGG pathway networks of AD pathology for excitatory neurons identi-

fied by sc2MeNetDrug (mice cohort).

(TIFF)

S2 Fig. iCSC module reliability evaluation. (a) Cell type sub-population effects. Specifically,

we evaluated the reliability (robustness) of iCSC module by randomly removing a certain per-

centage of cells and evaluating changes of identified genes in the cell-cell communication net-

works. The overlapping ratio is measured by the number of shared genes divided by the union

of both the output networks. (b) Fold-change effects. we evaluated the reliability by testing dif-

ferent log-fold-change thresholds to pick the important genes. We selected 4 different thresh-

olds 0.04, 0.06, 0.08, and 0.10 respectively, and counted the number of identified genes in the

networks. As seen, the number of network nodes decreased with reduced (smaller) fold change

thresholds, which is as expected. Also, the networks with higher log-fold-change thresholds

are subsets of networks with smaller thresholds. The results indicate the proposed model is

reliable.

(TIFF)
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