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Abstract

An enduring challenge in computational biology is to balance data quality and quantity with

model complexity. Tools such as identifiability analysis and information criterion have

been developed to harmonise this juxtaposition, yet cannot always resolve the mismatch

between available data and the granularity required in mathematical models to answer

important biological questions. Often, it is only simple phenomenological models, such as

the logistic and Gompertz growth models, that are identifiable from standard experimental

measurements. To draw insights from complex, non-identifiable models that incorporate

key biological mechanisms of interest, we study the geometry of a map in parameter

space from the complex model to a simple, identifiable, surrogate model. By studying how

non-identifiable parameters in the complex model quantitatively relate to identifiable

parameters in surrogate, we introduce and exploit a layer of interpretation between the set

of non-identifiable parameters and the goodness-of-fit metric or likelihood studied in typi-

cal identifiability analysis. We demonstrate our approach by analysing a hierarchy of math-

ematical models for multicellular tumour spheroid growth experiments. Typical data from

tumour spheroid experiments are limited and noisy, and corresponding mathematical

models are very often made arbitrarily complex. Our geometric approach is able to predict

non-identifiabilities, classify non-identifiable parameter spaces into identifiable parameter

combinations that relate to features in the data characterised by parameters in a surrogate

model, and overall provide additional biological insight from complex non-identifiable

models.

Author summary

Mathematical models play important roles in the interpretation of biological data. These

models can be made arbitrarily complex, meaning issues related to parameter identifiabil-

ity are relatively common. However, complex models with non-identifiable parameters

can be useful to provide insight into the biological questions of interest, since they contain

parameters of direct biological interest. In contrast, simpler identifiable models lack
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biological granularity and comprise parameters that relate indirectly to the underlying

biology through data features. In this work, we study the interrelationship between the

non-identifiable parameters in a complex model and the identifiable parameters in a sim-

ple surrogate model. We aim to resolve the mismatch between model and data complexity

by utilising the simple surrogate model to provide insight in cases where the parameters

of interest cannot be determined from the available data. We demonstrate our approach

by analysing mathematical models of multicellular tumour spheroid growth, an experi-

mental model of cancerous tumour growth. Using the most fundamental and commonly

reported measurements, we predict non-identifiabilities arising from different data collec-

tion regimes, and draw additional insight from complex models with non-identifiable

parameters.

Introduction

Mathematical models play an important role in the interpretation of data and the design of

experiments. The complexity of many experiments and biological systems means that parame-

ters relating to key biological mechanisms cannot be directly measured, but are rather quanti-

fied through the calibration of mechanistic mathematical models to experimental observations

[1, 2]. Given that biological data are often limited and noisy, model parameters provide an

objective means of quantifying observations and comparing behaviours across different types

of experiments or different conditions within the same experiments [3, 4]. Minimising, or at

least quantifying, parameter uncertainties is, therefore, of paramount importance for effective

interpretation of experimental results.

A critical step in the application of mathematical models to interpret biological experi-

ments is that of model selection [5–7]. Complex models—traditionally associated with a large

number of unknown parameters—have potential to provide insights about a correspondingly

large number of biological mechanisms, but often result in large parameter uncertainties

when calibrated to typical experimental data [8–10]. Conversely, simpler models—including

canonical models such as the logistic and Gompertz growth models—typically involve

parameters that can be tightly constrained by data, but provide limited direct mechanistic

insight [11].

In practice, model selection is routinely guided by information criterion; statistical metrics

that quantify model parsimony, the trade-off between model fit and model complexity [7, 12].

One of many criteria used is the Akaike information criterion (AIC), given by

AIC ¼ 2k
|{z}

Complexity

� 2‘ðp̂Þ:
zfflffl}|fflffl{

Goodness� of � fit

ð1Þ

Here, p̂ 2 Rk is the maximum likelihood estimate (MLE), the k-dimensional parameter vector,

p, that produces the best model fit, and ‘ðp̂Þ is the maximum log-likelihood, a measure of

goodness-of-fit. In essence, AIC and other information criterion penalise complex models that

produce marginally better goodness-of-fit over simpler models. Typically, AIC is computed

for a range of candidate models that are ranked such that the model with the smallest AIC is

the most favourable. To demonstrate, we consider the growth of multicellular tumour spher-

oids (Fig 1A), a complex, spatially heterogeneous biological system where often only simple
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measurements, related to the overall size of radius of spheroids, are typically available through-

out an experiment. We generate synthetic radius measurements from a mathematical model of

intermediate complexity (the Greenspan model with k = 4 parameters) that was recently vali-

dated against experimental data for the first time [13, 14]. We corrupt measurements with nor-

mally distributed measurement noise with standard deviation σ and attempt to distinguish

between a range of spheroid growth models, with complexity ranging from the logistic growth

model (k = 2) [15] to the complex multiphase spatial model of Ward and King (k = 8) [16, 17].

In Fig 1B we set σ = 20 μm and in Fig 1C we vary σ. Once calibrated, all models lead to predic-

tions of the spheroid radius that are visually indistinguishable (Fig 1B), and all except for

Ward and King’s model are indistinguishable using AIC for a sufficiently large, and biologi-

cally realistic, noise standard deviation (Fig 1C). Full mathematical details of all models are

given in Models.
Aside from being unable to distinguish between models in the tumour spheroid example,

criterion-based choices cannot account for the biological question—or more specifically, the

biological mechanisms—of interest. For example, the logistic growth and Gompertz growth

models produce an excellent match to synthetic tumour spheroid data and quantify behaviour

in terms of a growth rate parameter and long-time limiting spheroid size. However, these

Fig 1. Mathematical models of tumour spheroid growth. (A) Microscopy images from tumour spheroid growth experiments. Spheroids are grown from WM983b

cells (a human melanoma cell line) [18], harvested, and imaged using confocal microscopy at various time points. Cells are transduced with fluorescent cell cycle

indicators, showing cells in gap 1 (purple) and gap 2 (green). From day 7, a necrotic core void of living cells is evident in the spheroid centre. (B) Synthetic spheroid data

generated from Greenspan’s model [13] (black discs) with additive normal noise with standard deviation σ = 20 μm (red diamonds). (B–C) Several mathematical

models, including the Greenspan model, are able to match synthetic data. (C) AIC results for the model fitting exercise in (B) repeated over several values of the noise

standard deviation. Shown is the mean and standard deviation from 100 repeats for each model. (D) Spectrum of the observed Fisher information matrix. Eigenvalues

are shown on the log-scale and scaled such that the spectral radius is unity.

https://doi.org/10.1371/journal.pcbi.1010844.g001
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models cannot provide information relating to the mechanisms that govern growth or deter-

mine the long-time limiting spheroid size; mechanisms such as sensitivity to and availability of

oxygen and other essential nutrients. More recently, the mathematical modelling literature has

moved toward tools such as parameter identifiability analysis to guide model selection [19–

21]. Identifiability analysis can determine if model parameters are identifiable and can be esti-

mated from data; both in a theoretical noise-free data limit (structural identifiability) [22–25],

and in the more realistic case of a finite amount of noisy data (practical identifiability) [19, 26].

In comparison to model selection criterion like AIC, identifiability analysis provides informa-

tion about the identifiability of individual model parameters. While a complex model may

have a large number of non-identifiable parameters and a high AIC value, it may still prove

useful provided the parameters of interest (for example, the oxygen sensitivity) are identifiable.

In the vicinity of the MLE, the identifiability of model parameters can be assessed using the

local curvature of the expected log-likelihood function, also known as the Fisher information

matrix (FIM), denoted Iðp̂Þ 2 Rk�k
. The FIM is a k × k positive semi-definite matrix that quan-

tifies the amount of information about the parameters contained in the data, and has both a

statistical and geometric interpretation. Statistically, the inverse of the FIM provides a lower-

bound on the covariance of parameter estimates. Therefore, a FIM that is singular corresponds

to at least one model parameter that can only be estimated with infinite variance and, there-

fore, cannot be determined from data. Geometrically, the FIM is related to the Hessian of the

log-likelihood function and therefore contains information about the directions in parameter

space in which the log-likelihood (and therefore the model) is sensitive and directions in

which the log-likelihood is insensitive [27]. Specifically, the eigenvalues of the FIM correspond

to the curvature in the direction of the corresponding eigenvectors; eigenvectors associated

with zero or near-zero eigenvalues correspond to directions in parameter space (also referred

to as eigenparameters) to which the model output is insensitive [28, 29]. Conversely, eigenvec-

tors associated with relatively large eigenvalues give informative directions; the directions to

which the model is most sensitive. So-called analysis of model sloppiness is concerned with

studying the spectrum of the FIM to determine the number of sloppy, or insensitive, eigenpara-

meters in a model [8, 30–32]. To demonstrate, in Fig 1D we show the spectrum of the FIM for

each tumour spheroid model. As the relative difference between eigenvalues is scale-depen-

dent, it is difficult to interpret results from the two parameter models. However, results for the

Greenspan and Ward and King models show two disparate clusters of eigenvalues, indicating

a group of informative directions (corresponding to eigenvalues that are relatively large), and a

group of uninformative or sloppy directions (corresponding to eigenvalues that are closer to

zero).

For the Greenspan model, the single insensitive direction identified from analysis of model

sloppiness corresponds to a one-dimensional manifold (i.e., a curve) in parameter space along

which the parameters can be identified. At the core of identifiability and sloppiness analysis is

that data are unable to constrain the model parameter space to a point estimate, but rather a

one- or higher-dimensional manifold [33]. Of practical application, analysis of this manifold

allows for model reduction, where the number of parameters in a model can be reduced by

pre-constraining or removing sloppy eigenparameters without significantly reducing the pre-

dictive power of a model [34, 35]. However, to date, analysis of the interrelationship between

models using the model parameter manifold has been constrained to simpler models nested
within a complex model; that is, where simpler models can be recovered by placing constraints

on the parameters in the complex model, for example by setting certain parameters to zero.

Examples of nested models include recovering the logistic growth model from the Fisher-Kol-

mogorov model by assuming the population is well mixed [36], and recovering the Gompertz
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or logistic growth models from Richards growth model by constraining the shape parameter

[21]. Moreover, the FIM is based on the expected log-likelihood, a one-dimensional measure

of overall model fit that determines manifolds in parameter space to which parameters are

constrained by data or to which the model output is insensitive. FIM-based tools cannot,

therefore, provide information about how features of the model output change with

parameters.

Our contribution is to study models with non-identifiable parameters using identifiable

models that produce quantitatively similar behaviour; models that may be indistinguishable

from information-criterion based analysis. To study the interrelationship between parameters

in any two models (nested or non-nested), we define model equivalence in the least-squares

sense, and study the associated map from the parameters in a complicated, possibly heavily-

parameterised and non-identifiable model, to parameters in a simpler, identifiable model (Fig

2B). For example, we study identifiability of mechanistic ordinary and partial differential equa-

tion (ODE and PDE) models of tumour spheroid growth—relatively complicated models con-

taining parameters quantifying nutrient sensitivities, oxygen diffusion, and oxygen

consumption—through simple models like the well known logistic and Gompertz growth

models that do not explicitly incorporate biophysical mechanisms that influence growth, but

rather describe behaviour with largely phenomenological parameters such as the early-time

growth rate and long-time limiting spheroid size.

We demonstrate our framework through identifiability analysis of tumour spheroid data.

Noisy measurements relating to the outer radius of tumour spheroids are collected (Fig 1A)

and quantified with models ranging from the phenomenological logistic growth model, to

detailed spatial models involving coupled nonlinear PDEs which require experimental mea-

surements in addition to spheroid radius to parameterise [14]. We work with synthetic data

generated from a model of intermediate complexity, the Greenspan model (Fig 1B), and pres-

ent a series of new and existing models from the literature that produce similar agreement

with the data. Initially, we focus on models with a small number of parameters so that model

Fig 2. Studying identifiability through between-model geometry. (A) Typically, model parameters, p ¼
½p1; p2; :::; pk�

⊺
are considered functions of the log-likelihood, ℓ(p), a one-dimensional metric of model fit. Non-

identifiability of model parameters is characterised by insensitivity of the likelihood to a parameter or a parameter

combination. (B) We consider a range of models, each parameterised by pi ¼ ½pi1; pi2; :::; piki
�
⊺
. We then study the

functional relationships between parameters of different models (grey lines).

https://doi.org/10.1371/journal.pcbi.1010844.g002
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equivalence manifolds can be visualised in R3
. Subsequently, we study Ward and King’s

model, a model with a large number of parameters for which we must rely on non-graphical

means, such as the sensitivity matrix and the Jacobian of the model link, for analysis. Aside

from the requirement that the Jacobian of model outputs with respect to parameters be avail-

able, which may limit our analysis to primarily to models that are deterministic, we expect our

methodology to generalise to any hierarchy of models in biology and systems biology.

Models

We study a hierarchy of mathematical models that describe the time-evolution of tumour

spheroid radius. Such models have a long history in the mathematical biology literature, and

range from simple sigmoid growth models [11], to models that describe the spatial distribution

of cells in spheroids and the eventual saturation of growth due to nutrient deprivation and

mass loss due to necrosis in the tumour core [17]. We generate synthetic data using the canon-

ical Greenspan model [13][14, 18]. Therefore, we treat the Greenspan model as the true model,

and the corresponding set of parameters as the true parameters. In this section, we present the

mathematical models we use for analysis.

For all models, we denote the spheroid radius by R(t), and fix the initial spheroid size R(0)

= R0 = 10 μm as a known parameter that can be directly measured from data. The choice of R0

= 10 μm� Rmax is made to ensure that the simple models we consider are identifiable. We

consider that data comprise of spheroid radius measurements at discrete observation times

T ¼ ½tð1Þ; tð2Þ; :::; tðnÞ�⊺ and denote predictions from model i by

miðpÞ ¼ ½Riðtð1Þ; pÞ;Riðtð2Þ; pÞ; :::;RiðtðnÞ; pÞ�
⊺
: ð2Þ

The formulation in Eq (2) is highly flexible: for example, we could incorporate model predic-

tions relating to the inner structure of the spheroid by appending elements to the end of mi(p).

In this work, we set T = [0, 1, 2, . . ., 21]⊺ d, as shown in Fig 1B, and denote Ri(t;p) predictions

of the spheroid radius at time t from model i. In this work we take great care to connect our

mathematical models with experimental data by working with a combination of dimensional

and non-dimensional quantities. We are motivated by experimental data of tumour spheroids

that comprise observations of spheroid radius over a period of approximately 16 days [14, 18].

However, standard imaging techniques do not provide measurements of cell densities or nutri-

ent concentrations. Therefore, we non-dimensionalise dependent variables relating to cell den-

sities and nutrient concentrations, and leave the independent variables related to measurable

time and space scales dimensional.

Model 1. Greenspan’s model (k = 4)

First, we consider the canonical Greenspan model [13] that describes spherically symmetric

spheroid growth due to cell proliferation dependent on a nutrient (such as oxygen) that dif-

fuses into the spheroid from the surrounding medium (Fig 3A). We have previously validated

the Greenspan model against experimental data [14]. Spheroid growth progresses through the

three phases observed in experimental data (Fig 1A; [18, 37, 38]).

First, if the initial spheroid size is sufficiently small, spheroids progress through an expo-

nential growth phase, where nutrient is available throughout the spheroid above the minimum

threshold concentration required for cell proliferation. We denote the critical concentration as

c1 = ω1/ω1, where ω1 mol μm−3 is the threshold concentration required for cell proliferation,

and ω1mol μm−3 is the concentration in the surrounding medium and at the spheroid

boundary. During this first phase, cells proliferate exponentially at a per-unit-volume rate of λ
d−1.
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Fluorescent cell cycle indicators indicate that spheroids eventually enter a second phase of

growth where cell proliferation in the centre of the spheroid is inhibited such that cells remain

viable but enter cell cycle arrest. We make the standard assumption that this is due to the nutri-

ent concentration falling below the relative concentration c1 at the spheroid centre, but

remaining above the relative concentration required for cell viability, denoted by c2 (Fig 3A).

During this second phase, cells located close to the spheroid periphery remain proliferative

since the nutrient density is sufficiently high in this region.

Finally, spheroids progress to a size such that the nutrient concentration at the centre of the

spheroid is lower than that required for viability. Cells in the centre of spheroids die, leading to

the formation of a necrotic core and resulting in a per-unit-volume mass loss of z d−1. This

phase is evident in experimental measurements from day 7 (Fig 1A). In summary, the Green-

span model predicts the eventual formation of a three-layered compound sphere with a central

necrotic core, an intermediate shell of living but non-proliferative cells, and an outer shell of

living proliferative cells (Fig 3A). This final structure is consistent with experimental observa-

tions of spheroid growth shown in Fig 1A [18].

While the Greenspan model explicitly incorporates a proliferation and death process

dependent upon a spatially diffusive nutrient, the assumption that the nutrient-related depen-

dencies are Heaviside functions yields a series of implicit analytical expressions for the radius

of the inhibited region, Ri(t), and radius of the necrotic region, Rn(t), in terms of the overall

spheroid radius (Fig 3A) [13]. We define three composite parameters

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � c1

1 � c2

r

2 ð0; 1Þ; Rd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Dcðo1 � o2Þ

a

r

> 0; g ¼
z

l
> 0; ð3Þ

where α mol d−1 and Dc μm2 d−1 is the nutrient consumption rate and diffusivity, respectively.

Fig 3. Schematic of the spatial spheroid models considered. (A) The Greenspan model describes nutrient-limited growth, where cell proliferation is

dependent upon the relative availability of a diffusive nutrient. Cells proliferate in regions of the spheroid where the nutrient concentration is

sufficiently high; enter cell-cycle arrest, but do not die, in regions where the nutrient concentration is too low for growth, but above the threshold for

life; and die in regions where the nutrient concentration is sufficiently low. (B) The radial-death model describes an implicitly modelled diffusive

nutrient, which is assumed to drop below the threshold required for cell proliferation at a constant distance from the spheroid periphery. (C) Ward and

King’s model describes both cell proliferation and death as dependent on a diffusive nutrient that is explicitly modelled as a function of space.

https://doi.org/10.1371/journal.pcbi.1010844.g003
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Therefore, Ri(t) and Rn(t) are given by the solution of the following algebraic equations [13]

RnðtÞ ¼ 0;

RiðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðtÞ � Q2R2

d

p
;

ð4Þ

and

0 ¼ R3ðtÞ � R2
dRðtÞ � 3RðtÞR2

nðtÞ � 2R3
nðtÞ;

0 ¼ Q2R2
dRðtÞRiðtÞ þ RðtÞR3

i ðtÞ þ 2RðtÞR3
nðtÞ � R3ðtÞRiðtÞ � 2RiðtÞR3

nðtÞ;
ð5Þ

during phases two and three, respectively. During the first phase, Ri = Rn = 0. Greenspan [13]

also showed that the first phase applies for R(t)< QRd, the second for QRd� R(t)< Rd and

the third for R(t)� Rd.

Overall, the time-evolution of the spheroid radius is governed by the ODE

dRðtÞ
dt
¼
l

3
RðtÞ 1 �

R3

i ðtÞ
R3ðtÞ

� g
R3

nðtÞ
R3ðtÞ

� �

: ð6Þ

Here, we have expressed dR(t)/dt in the form of a generalised logistic growth model

dRðtÞ
dt
¼
l

3
RðtÞf ðRðtÞÞ; ð7Þ

where λ is the volumetric growth rate for f(R(t)) = 1 (the factor of 1/3 arises from applying the

chain rule to convert from working in terms of spheroid volume to spheroid radius). f(R) is

sometimes referred to as a crowding function, defined such that f(R)! 0 for R sufficiently

large. We show the solution to the Greenspan model and the corresponding crowding func-

tion in Fig 4 using parameters given in Table 1. The Greenspan model depends on four

unknown parameters p1 = [Q, Rd, γ, λ]⊺.

Model 2. Logistic model (k = 2)

The logistic model is used widely throughout biology and ecology as, for example, a model of

in vitro cell growth [11, 15, 39–41] and coral regrowth [21, 41]. Whereas in the Greenspan

Fig 4. Model solutions and crowding functions. (A) We show the outer radius, R(t), predicted by each model using parameters

chosen to match the solution of the Greenspan model. (B) The corresponding crowding function for each model when expressed as

a generalised logistic growth equation (Eq (7)).

https://doi.org/10.1371/journal.pcbi.1010844.g004
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model assumptions relating cell proliferation to the local density of a diffusive nutrient yield a

crowding function that eventually caused overall growth to cease, in the logistic model we

make the simplistic assumption that spheroid growth eventually ceases when the size reaches a

maximum radius, Rmax μm [42]. The logistic model and generalisations thereof (including the

Gompertz and Richards models [42]) are phenomenological in the context of tumour spheroid

models; they are not explicitly constructed from biological mechanisms by which overall

growth is inhibited and eventually ceases.

While the logistic growth model is commonly used to describe the time-evolution of spher-

oid volume [11], we find that the time-evolution of spheroid radius in our synthetic data is

more consistent with logistic growth (Fig 1B). The logistic model for spheroid radius is given

by

dRðtÞ
dt
¼
l

3
RðtÞ 1 �

RðtÞ
Rmax

� �

: ð8Þ

Here, the factor of 1/3 arises from working in terms of spheroid radius instead of spheroid vol-

ume. Both the Greenspan and logistic models describe exponential growth at the per-volume

rate of λ d−1 for sufficiently small spheroids, R(t)/Rmax� 1. However, the logistic model differs

in that it does not include an initial period of time where growth is exponential. We demon-

strate this by comparing the crowding function for the logistic model to that of the Greenspan

model in Fig 4; in the logistic model, f(R) is a linearly decreasing function of R. Therefore, in

the logistic model, the overall growth rate of the spheroid is never equal to the maximum

growth rate of λ/3. Rather, it is always less than this maximum for R(t)> 0. The logistic model

depends on two unknown parameters p2 = [λ, Rmax]⊺.

Table 1. Summary of model parameters. Synthetic data are generated using the Greenspan model, with parameters λ, Rd, Q, and γ. Parameters in all other models are

chosen as the parameter set that gives the closest match to synthetic data from the Greenspan model.

Parameter Description Value Units Models

R0 Initial spheroid radius. 10 μm [1]–[6]

λ Maximum volumetric growth rate. 1 d−1 [1]–[6]

Rd Spheroid radius before necrosis. 150 μm [1], [5]

Q Eq (3). 0.8 – [1]

γ z/λ. 1 – [1]

Rmax Maximum spheroid radius. – μm [2]–[4]

β Shape parameter in Richards model. – – [4]

z Necrotic material loss rate. – d−1 [5]

δ Maximum volumetric death rate. – d−1 [5]

c1 Relative nutrient concentration for median growth. – – [6]

c2 Relative nutrient concentration for median death. – – [6]

α Relative nutrient consumption rate. – – [6]

Dp Cellular material diffusivity. – μm2 d−1 [6]

Qp Rate of cellular material inflow at spheroid boundary. – μm d−1 [6]

p0 Cellular material concentration in medium. – – [6]

n0 Initial spheroid density. – – [6]

https://doi.org/10.1371/journal.pcbi.1010844.t001
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Model 3. Bounded Gompertz model (k = 2)

Gompertz’s growth model has been used since the 1960s to describe the growth of solid

tumours [11, 43, 44], and is given by

dRðtÞ
dt
¼
l

3
RðtÞlog

Rmax

RðtÞ

� �

: ð9Þ

One feature of the Gompertz model is that the growth rate is unbounded for R(t)/Rmax� 1.

As we do not see this in the experiments or the Greenspan model, we consider a bounded
Gompertz model by setting

dRðtÞ
dt
¼
l

3
RðtÞmin log

Rmax

RðtÞ

� �

; 1

� �

: ð10Þ

Therefore, the bounded Gompertz model undergoes a period of exponential growth for R(t)<
Rmax/exp(1) before growth becomes inhibited, which is similar to the first phase of growth

described by the Greenspan model. The solution of the bounded Gompertz model and the cor-

responding crowding function is shown in Fig 4. The bounded Gompertz model depends on

two unknown parameters p3 = [λ, Rmax]⊺ each with the same interpretation as those in the

logistic model.

Model 4. Richards’ model (k = 3)

Richards’ model interpolates between the logistic and standard Gompertz models by introduc-

ing an additional shape parameter into the crowding function, β, that alters the shape of the

solution [21, 42, 45]. The Richards model is given by

dRðtÞ
dt
¼
l

3
RðtÞ 1 �

RðtÞ
Rmax

� �b
 !

: ð11Þ

The logistic model can be recovered by setting β = 1, and the standard formulation of the

Gompertz model in the limit β! 0+. The solution to the Richards model and the correspond-

ing crowding function is shown in Fig 4. The Richards model has three unknown parameters

p4 = [λ, Rmax, β]⊺.

Model 5. Radial-death model (k = 3)

We introduce the radial-death model, a simplistic compartment model that captures the key

elements of Greenspan’s model, namely that the inhibition of overall growth is caused by the

nutrient deprivation in the spheroid core. Due to consumption by cells, the nutrient concen-

tration is a decreasing function of the distance to the spheroid periphary, so we assume that

nutrients (such as oxygen) can diffuse into the spheroid up to a distance Rd μm from the spher-

oid periphery before reaching a critically low concentration where cell proliferation ceases and

cell death begins (Fig 3B). While R(t)� Rd, the spheroid is composed proliferative cells, and

for R(t)> Rd of an expanding annulus of constant density with thickness Rd, and a necrotic

core of radius R(t) − Rd. We assume that living cells proliferate at per-volume rate λ d−1, and

necrotic material is lost at per-volume rate z d−1.
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Denoting the volume of living and necrotic cells V1(t) and N(t), respectively, the dynamics

are governed by

dV1ðtÞ
dt

¼ lV1ðtÞ � gðV1ðtÞÞ;

dNðtÞ
dt

¼ gðV1ðtÞÞ � zNðtÞ:

ð12Þ

Here, g(V1(t)) represents the transfer of living cells in the periphery annulus to the necrotic

core at the spheroid centre to maintain an annulus width less than Rd (Fig 3B). Note that g
(V1(t)) = 0 for R(t) < Rd. Denoting the total spheroid volume V(t) = V1(t) + N(t) = 4πR3(t)/3,

we see that

dVðtÞ
dt
¼ lV1ðtÞ � zNðtÞ; ð13Þ

or equivalently

dRðtÞ
dt
¼
l

3
RðtÞ 1 � max 0;

ðRðtÞ � RdÞ
3

R3ðtÞ
�
z

l

ðRðtÞ � RdÞ
3

R3ðtÞ

� �� �

: ð14Þ

Therefore, the radial-death model is fully described by a single independent variable R(t) (or

equivalently V(t)).
We show the solution to the radial-death model and the corresponding crowding function

in Fig 4. The radial-death model has three unknown parameters, p5 = [λ, z, Rd]⊺. All three

parameters have an equivalent interpretation in the Greenspan model, and λ has an equivalent

interpretation in all other models.

Model 6. Ward and King’s multiphase model (k = 8)

Lastly, we consider the growth-saturation spheroid model of Ward and King [16, 17], a

moving boundary PDE model that explicitly incorporates the cell density, cellular material

density (i.e., the DNA, lipids, proteins, and other material that living cells are composed

of), and nutrient density, as functions of space and time (Fig 3C). By assuming that spher-

oid growth is spherically symmetric, we end up working with a system of three time-depen-

dent PDEs with one spatial coordinate. Full details are available in [17], however we

apply several simplifications and so now provide a summary of the key mechanics in the

model.

We denote the relative density of living cells n(r, t), that of cellular material p(r, t), and that

of nutrient (i.e., oxygen) c(r, t). Here, 0� r� R(t) is the spatial variable describing the distance

from the spheroid centre to the moving spheroid boundary at r = R(t). We assume that the

spheroid contains no voids so that 1 = n(r, t) + p(r, t), and that living cells and cellular material

are incompressible and are transported throughout the spheroid with velocity v(r, t). Cells are

subject to a maximum per-unit-volume growth rate of λ d−1, which is a increasing function of

nutrient concentration, specified by the Hill function,

kmðCÞ ¼
lcm1

cm1
1 þ cm1

: ð15Þ

We fix the Hill exponent m1 = 10 to capture the Heaviside-like switch behaviour in Green-

span’s model, and c1 is the nutrient concentration at which the proliferation rate is half of the

maximum. Similarly, cells are subject to the nutrient-dependent death rate, where the death
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rate is a decreasing function of nutrient concentration,

kdðCÞ ¼ d 1 �
cm2

cm2
2 þ cm2

� �

: ð16Þ

Again, we fix m2 = 10 and c2 is the nutrient concentration for which the death rate is half of the

maximum rate, denoted by δ d−1. We assume that nutrient is consumed at rate k(C) = αkm(C).

Cellular material, p(r, t) is assumed to have the same density as living cells, is consumed during

mitosis, diffuses freely throughout the spheroid with diffusivity Dp μm2 d−1, is available in the

surrounding media at relative density p0, and enters the spheroid from the surrounding media

at the spheroid boundary at flux Qp μm d−1.

Since the nutrients diffuse faster that cells proliferate, we assume that the nutrient is in dif-

fusive equilibrium. These assumptions give rise to the coupled system of PDEs

@n
@t
þ v

@n
@r

¼ n
Dp

r2

@

@r
r2 @n
@r

� �

þ ðkmðCÞ � kdðCÞÞn; t > 0; 0 < r < RðtÞ;

0 ¼
1

r2

@

@r
r2 @c
@r

� �

� kðCÞn; t > 0; 0 < r < RðtÞ;

0 ¼
Dp

r2

@

@r
r2
@n
@r

� �

þ
1

r2

@ðr2vÞ
@r

t > 0; 0 < r < RðtÞ;

nðr; tÞ ¼ n0; rðtÞ ¼ R0; t ¼ 0; 0 < r < RðtÞ;

@n
@r

¼ 0;
@c
@r
¼ 0; v ¼ 0; t > 0; r ¼ 0;

c ¼ 1; � Dp
@n
@r

¼ � Qpð1 � p0 � nÞ;
dRðtÞ
dt
¼ v; t > 0; r ¼ RðtÞ:

ð17Þ

The moving boundary r = R(t) corresponds to the outer radius of the spheroid. Here, v(r, t)
denotes the velocity of material throughout the spheroid, describes the movement of both cells

and cellular material. Therefore, the velocity at the spheroid boundary, v(R(t), t), corresponds

to the growth rate of the spheroid outer radius. In contrast to the other models considered in

this work, overall spheroid growth in the Ward and King model is driven explicitly by the spa-

tial structure and composition of material inside the spheroid.

While the Ward and King model cannot be expressed in the form of Eq 7 generalised logis-

tic as a generalised logistic growth model, we can calculate a crowding function empirically

f ðRÞ ¼
3

lRðtÞ
dR
dt
: ð18Þ

In Fig 4, we show the solution to the Ward and King model and the corresponding empirical

crowding function. Details of the numerical algorithm used to solve the Ward and King model

are given as supplementary material (S1 File).

The Ward and King model has eight unknown parameters, p6 = [λ, δ, c1, c2, α, Dp, Qp, p0]⊺.

Only the per-unit-volume proliferation rate, λ, shares an interpretation with all of the other

models. The remaining seven parameters relate to the mechanics of spheroid growth.

Results

There are two main components to our analysis. First, we apply standard approaches to deter-

mine the practical identifiability of the Greenspan model and two simplistic models in one
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hierarchy using synthetically generated, noisy data. Second, we develop our novel geometric

approach to study non-identifiabilities in the Greenspan model using the geometric relation-

ship between models in this hierarchy. As this geometric analysis considers features of the

model outputs, which are deterministic and do not depend on data, this analysis is akin to

both structural identifiability and sensitivity analysis. However, as the models are not nested,

model outputs do not become identical in the no-noise limit, and so our analysis implicitly

incorporates modelling bias which is a feature of analysis of most experimental data, where

every mathematical model is an abstraction.

Identifiability analysis

We make the standard assumption that observations, denoted y = [y(1), y(2), . . ., y(n)]⊺, are sub-

ject to independent additive normal noise [46, 47], such that

yðkÞ ¼ mðkÞi ðpiÞ þ ε ð19Þ

where ε* N(0, σ2) and mðkÞi ð�Þ denotes the kth element of mi(�). In our case, mi(p) = R(t(k);p).

Therefore, the log-likelihood function is given by

‘iðpiÞ ¼ � logðs
ffiffiffiffiffiffi
2p
p
Þ �

1

2s2
ky � miðpiÞk

2
: ð20Þ

The maximum likelihood estimate (MLE) is the parameter vector that maximises the log-

likelihood function, or equivalently, minimises the error term or loss function

eiðpiÞ ¼ ky � miðpiÞk
2
¼
Xn

k¼1

yðkÞ � mðkÞi ðpiÞ
� �2

: ð21Þ

Therefore, the MLE is equivalent to the least-squares estimate. We calculate the MLE for each

model using synthetic data generated from the Greenspan model with a pre-specified constant

noise with standard deviation σ = 20 μm in Fig 1B, demonstrating that all models are capable

of producing an excellent fit to the synthetic data.

Profile likelihood. To establish the identifiability of individual model parameters, we

apply the profile likelihood method [19, 48, 49]. The profile likelihood method profiles the log-

likelihood function by finding the MLE subject to the constraint that the profiled parameter is

fixed. Denoting the parameter to be profiled by φ and the remaining parameters as η such that

p = (φ, η), the profile log-likelihood is given by

PLLðφÞ ¼ sup
η
‘i ðφ;ηÞ � ‘iðp̂iÞ; ð22Þ

where p̂ i is the MLE when all parameters are varied. The value of the profile likelihood at φ =

φ0 corresponds to the test-statistic for the likelihood ratio test and has an asymptotic χ2-distri-

bution. Therefore, we can establish identifiability by comparing the profile log-likelihood of a

parameter to the threshold for an approximate 95% confidence interval, equal to −Δ1,0.95/2�

−1.92, where Δν,q refers to the qth quantile of a χ2 distribution with ν degrees of freedom [50].

Model parameters with tightly-constrained intervals for which the profile likelihood is above

this threshold are classified as identifiable. In this work, we take the supremum of the log-like-

lihood function numerically using the Nelder-Mead algorithm over a region that covers the

true parameters over several orders of magnitude [51]. We profile the log-likelihood in

sequence, starting at the point closest to the MLE. To ensure we find the global maximum, we

initiate the optimisation routine at three points, corresponding to the MLE, the previously
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profiled point, and the initially specified guess; in the case of a disparity between these three

optimisations, the result with the largest log-likelihood is taken as the maximum.

We establish the identifiability of parameters in the logistic, radial-death, and Greenspan

models using the profile likelihood method in Fig 5A, 5C and 5D using synthetic data gener-

ated from the Greenspan model (shown previously in Fig 1B). Both the logistic and radial-

Fig 5. Identifiability analysis for the logistic, radial-death, and Greenspan models. (A,C,E) Profile likelihood for the parameters in each model,

using synthetic data generated from the Greenspan model with standard deviation σ = 20 μm. Also shown is the threshold for an approximate 95%

confidence interval (black-dashed). Decreasing the confidence level (i.e. from 95% to 99%) lowers this threshold. For the Greenspan model, we

additionally show the parameter values used to generate the synthetic data. (E) Shows the profiled error function for each parameter in the

Greenspan model. Note that profiles of the error function are produced in the case of noise-free data. (B) Normalised log-likelihood surface for the

logistic model, showing the maximum likelihood estimate (black dot) and both eigenvectors of the Fisher information matrix. v1 corresponds to the

eigenvector with the smallest eigenvalue. Note that axes are scaled relative to the maximum likelihood estimate ðl̂; R̂maxÞ.

https://doi.org/10.1371/journal.pcbi.1010844.g005

PLOS COMPUTATIONAL BIOLOGY Geometric analysis of complex non-identifiable models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010844 January 20, 2023 14 / 29

https://doi.org/10.1371/journal.pcbi.1010844.g005
https://doi.org/10.1371/journal.pcbi.1010844


death models are identifiable; parameter estimates can be established to within a two-sided

95% confidence interval. We also see that confidence intervals for the per-volume growth rate,

λ, are consistent between each model. Results in Fig 5D show that parameters in the Green-

span model; specifically, Q and γ, are non-identifiable, or one-sided identifiable. Estimates for

the spheroid radius at which necrosis first occurs, Rd, are constrained to a two-sided 95% con-

fidence interval, however the upper bound of this confidence interval corresponds to the maxi-

mum spheroid size observed, suggesting that Rd is also only one-sided identifiable.

To explore whether parameters in the Greenspan model are identifiable in the limit of

noise-free data, we produce profiles of the error function (Eq 21) in the hypothetical case that

noise free observations are made so that σ = 0 μm. This is done in a similar manner to profiles

of the log-likelihood function, albeit where the maximisation is replaced by a minimisation.

Results are shown in Fig 5E. Our aim is to determine whether the parameters uniquely map to

the data in the noise-free limit or, equivalently, whether there exist other parameter combina-

tions in the vicinity of p1 where the error function is zero. Results in Fig 5E show that the error

function has a clearly defined minimum, indicating that the parameters in the Greenspan

model are theoretically identifiable in the noise-free limit.

Fisher information. For models with additive normal noise, the Fisher information

matrix (FIM) for model i is given by

FiðpÞ ¼ ½JiðpÞ�
⊺JiðpÞ; ð23Þ

where Ji is the Jacobian of model i, sometimes referred to as the parameter sensitivity matrix
[49]. For spheroid radius data collected at n time points, Ji is an n × ki matrix with elements

JiðpÞ ¼ ½rpRiðt
ð1Þ; pÞrpRiðt

ð2Þ; pÞ � � � rpRiðt
ðnÞ; pÞ�; ð24Þ

where ki is the number of parameters. The FIM is a ki × ki matrix related to the expected Hes-

sian (and, therefore, the curvature) of the log-likelihood function (Eq 20) and least-squares

cost function (Eq 21).

The rank of the FIM at the MLE relates to the number of identifiable parameter combina-

tions [49]. We find that the FIM of models studied in Fig 5 (the logistic, radial-death, and

Greenspan models) have full rank. This is consistent with results from the profiled error func-

tion (Fig 5E) where we found that, although model parameters were not practically identifiable

from the available data, they are identifiable from noise-free data.

For many models the FIM may be of full rank but have a large condition number and is,

therefore, close to singular. For example, we find that the condition number of the FIM for the

Greenspan model is Oð109Þ, suggesting that the FIM is full rank and non-singular, but has at

least one uninformative direction. We can also see this from profile likelihood results in Fig

5D, which show that Q and γ cannot be constrained to be within 95% confidence, indicating a

large parameter variance and correspondingly close-to-singular FIM. Analysis of model sloppi-
ness provides finer-grained information about identifiability by gaining insight from the full

spectrum of the FIM (Fig 1D). In summary, such analysis establishes directions in parameter

space that are stiff, i.e., identifiable from data; and those that are sloppy, i.e., non-identifiable.

We demonstrate the relationship between the log-likelihood surface and the eigenvectors of

the FIM for the logistic model in Fig 5B. The direction defined by the eigenvector with the

largest eigenvalue, v2, points in the direction of steepest descent from the MLE. The direction

defined by v1, the eigenvector with the smallest eigenvalue, points in the direction of shallowest

descent from the MLE. Should an eigenvalue tend to zero, the likelihood becomes flat in the

direction of the corresponding eigenvector and parameters that lie on this contour are indis-

tinguishable: this direction is sloppy.
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In Fig 1D we show the log eigenvalues of the FIM for each model, scaled by the largest

eigenvalue for each model. All models, aside from the Greenspan model and Ward and King’s

model have eigenvalues constrained over a relatively small number of decades. Greenspan’s

model has one eigenvalue much smaller in magnitude than the remaining, suggesting a single

sloppy or uninformative direction. Similarly, Ward and King’s model has two eigenvalues

much smaller in magnitude than the remaining, suggesting two sloppy directions.

Geometric analysis

Identifiability and model sloppiness analysis indicates that several parameters in the Green-

span model are not identifiable from spheroid radius measurements, however we cannot gain

further information relating to the impact each non-identifiable parameter has on the features

of the data. To study this further, we examine the geometric relationship between the Green-

span model, and the simplistic, identifiable, logistic and radial-death models.

We define a map from the parameters in model i, denoted pi, to parameters in the identifi-

able model j, denoted pj, in the least-squares sense such that

pj ¼ f ijðpiÞ; ð25Þ

where

f ijðpiÞ ¼ arg min
pj

kmiðpiÞ � mjðpjÞk: ð26Þ

An interpretation of pj = fij(pi) is the maximum likelihood or least-squares estimate for the

parameters in model j if noise-free data from model i is observed. To quantify goodness-of-fit,

which we interpret as a measure of the correspondence between models, we compute the R2

statistic

R2 ¼ 1 �
kmiðpiÞ � mjðf ijðpiÞÞk

2

kmiðpiÞ � E½miðpiÞ�k
2
; ð27Þ

where E[�] denotes the sample mean. In this work, we take the supremum of the log-likelihood

function numerically using the Nelder-Mead algorithm over a region that covers the true

parameters over several orders of magnitude [51].

In Fig 4B, we show noise-free data generated from the Greenspan model with p1 = [Q, Rd,

γ, λ]⊺ = [0.8, 150, 1, 1]⊺. In this case, we have good correspondence between the logistic and

Greenspan models (R2 = 0.998) with p2 = [λ, Rmax]⊺ = [1.21, 316]⊺. Despite both models sharing

a parameter, λ, with an equivalent biological interpretation (the per volume growth rate), esti-

mates for this parameter differ between models. This result highlights that parameter estimates

are not necessarily directly comparable between models despite sharing a similar biological

interpretation [21]. In our case, both the Greenspan and logistic models assume that cells pro-

liferate exponentially at rate λ for infinitesimally small spheroids, however the crowding func-

tions differ between the models such that the logistic model does not capture the initial

exponential growth phase seen in the Greenspan model (Fig 4B). Given that the bounded

Gompertz and Greenspan models have comparable crowding functions, we see better agree-

ment between estimates for λ between these models (R2 = 0.99997 with p3 = [λ, Rmax]⊺ = [1.00,

317]⊺). In all cases, estimates for the maximum radius, Rmax, agree with the long-term solution

of the Greenspan model calculated numerically (Rmax = 320 μm).
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To study between-model sensitivities, we compute the Jacobian matrix of fij(pi), denoted

Jij ¼
@f ij

@pi
: ð28Þ

We compute Jij(pi) numerically, using a finite difference approximation that is implemented

in a standardised algorithm that is robust to numerical noise introduced from the optimisation

algorithm used to calculate fij(pi) [52]. The rows of Jij(pi) correspond to the gradients of each

element in pj, denoted byrpðkÞj . These vectors are normal to, and hence define, a hyperplane

in model i parameter-space that locally give identical estimates of pðkÞj in the vicinity of pi. For

example, we can use Jij(pi) to visualise the parameter combinations in the Greenspan model

that give identical estimates of λ and Rmax in the logistic and bounded Gompertz models.

While geometrically useful, it is difficult to interpret the elements of Jij(pi) directly as the

scales of each parameters differ significantly, even within each model. Therefore, we introduce

the sensitivity matrix of pj = fij(pi), denoted

SijðpiÞ ¼ diagðpiÞ
� 1JijðpiÞ diagðpjÞ: ð29Þ

The (k1, k2) element of the sensitivity matrix is given by

Sðk1 ;k2Þ

ij ðpiÞ ¼
pðk1Þ

j

pðk2Þ

i

Jðk1 ;k2Þ

ij ðpiÞ; ð30Þ

and can be interpreted as the relative increase in parameters in model j due to increases in

parameters in model i. For the map from the Greenspan to logistic model we have

Q Rd g l

S12 p1ð Þ ¼
� 0:0156 � 0:0493 0:105 0:989

0:901 1:01 � 0:304 0:0141

" #
l

Rmax

:
ð31Þ

Here, we see a near one-to-one correspondence in λ between models and, for example, see

that a 1% increase in Q in the Greenspan model is associated with a 0.0156% decrease in λ in

the logistic model. Furthermore, this analysis demonstrates that, roughly speaking, the param-

eter subset (Q, Rd, γ) corresponds primarily to the maximum spheroid size. We draw this con-

clusion based on the relative sizes of elements in each row of S12(p1) (Eq 31). In other words,

there exists a trivariate function of (Q, Rd, γ) that maps to Rmax, and by extension the likeli-

hood. This explains why the (Q, Rd, γ) are practically non-identifiable Fig 5, and since Rmax is

identifiable we expect that the relationship between (Q, Rd, γ) is also identifiable while the indi-

vidual parameters are not. This analysis is similar to existing techniques used to establish iden-

tifiable parameter combinations using the likelihood, through profiling [53, 54] or the FIM

[55]. From Eq (31) we also see that the per-volume proliferation rates correspond in each

model. This latter observation is entirely consistent with profile likelihood analysis in Fig 5,

where we see that estimates for λ in the Greenspan model are identifiable.

Geometric analysis using the logistic model. As the Greenspan model has only four

parameters, one of which is practically identifiable (Fig 5D), we can visually explore the geo-

metric link between the Greenspan and logistic models to provide insight into the relationship

between these models. To do this, we fix the identifiable parameter at the true value, λ = 1 h−1,

and numerically compute the coordinates of the remaining parameter values [γ, Q, Rd]⊺ for

which f12(p) is constant; that is, parameters in the Greenspan model that map to the same set

of parameters in the logistic model as at the true value p1 = [Q, Rd, γ, λ]⊺ = [0.8, 150, 1, 1]⊺. We
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show the associated two-dimensional manifolds that give a constant proliferation rate, λ, and

constant maximum spheroid size, Rmax, in Fig 6A. The intersection of these manifolds corre-

sponds to the one-dimensional manifold that give a set of parameters in the Greenspan model

that map to the same solution curve to the logistic model in the least-squares sense. As the

logistic model has good correspondence to the Greenspan model (R2 = 0.998), we expect that
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https://doi.org/10.1371/journal.pcbi.1010844.g006
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this intersection corresponds to a curve of near-constant likelihood; parameter sets that lie on

this line are indistinguishable, leading to non-identifiability of individual parameters.

The dimensionality of this manifold corresponds to the number of uninformative or sloppy

directions in the Greenspan model, observed in Fig 1D. However, as the corresponding eigen-

value was small but non-zero, this curve is not a curve of constant likelihood, but rather a

curve of near-constant likelihood. We consider that the eigenvector associated with the small-

est eigenvalue of F1(p) (the FIM of the Greenspan model), denoted at each point by v1(p),

defines a sloppy direction in parameter space; that is, a direction in which the model is rela-

tively insensitive. Starting at the true values, we follow the sloppy direction through parameter

space by solving the ODE

dp
dt
¼ v1 pð Þ; ð32Þ

subject to p(0) = p1, as shown in Fig 6A. As expected, this curve follows the intersection of the

constant λ and constant Rmax manifolds. In Fig 6B we demonstrate that the sloppy direction is

orthogonal to both manifolds using the linearisation of each manifold formulated from the

model-map Jacobian,

J12ðp1Þ ¼
rlðp1Þ

rRmaxðp1Þ

" #

¼
u1

u2

" #

: ð33Þ

Here, u1 gives the gradient of λ in the logistic model with respect to the parameters in the

Greenspan model, and similar for u2 to Rmax. Therefore, u1 and u2 are normal to the constant

λ and constant Rmax manifolds at p1, and, therefore, define a tangent plane to each manifold at

p1. In Fig 6B we show that the intersection of both tangent planes, given by the vector cross

product u1 × u2, corresponds to the sloppy direction v1.

We have established that data from outer radius measurements are insufficient to identify the

parameters in the Greenspan model. Rather we can only constrain parameter estimates to a one-

dimensional line that corresponds to the intersection of two two-dimensional manifolds. These

results are consistent with our previous work [14, 18], where we demonstrate that measurements

of the inner structure of spheroids, specifically, the necrotic core size, are required to identify

parameters. We explore this in our geometric framework by considering a third two-dimen-

sional manifold in the parameter space corresponding to realisations of the Greenspan model

that give identical measurements of the necrotic core size at the conclusion of our synthetic

experiment (t = 21 d). In Fig 6C we show that, as expected, the intersection of three two-dimen-

sional manifolds corresponds to a zero-dimensional point, indicating parameter identifiability.

Geometric analysis using the radial-death model. The radial-death model, having three

parameters, sits between the logistic and Greenspan model with respect to model complexity

and identifiability. Therefore, we can apply the radial-death model to aid interpretation of

parameters in the Greenspan model, and also learn about features of the radial-death model

using the logistic model.

The sensitivity matrix for the map from the Greenspan to the radial-death model is given

by

Q Rd g l

S15 p1ð Þ ¼

� 0:005 � 0:00501 � 0:0107 1:07

0:348 0:0848 1:01 0:835

1:08 1:04 0:222 � 0:0727

2

6
6
6
4

3

7
7
7
5

l

z

Rd

:
ð34Þ
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First, we see a near one-to-one correspondence between the per-volume growth rate, λ, in

each model. We expect this, as both models include a finite period of time where spheroid

growth is exponential. Secondly, we see that γ and λ in the Greenspan model have a near one-

to-one correspondence to z in the radial-death model. Finally, we see a near one-to-one corre-

spondence between Q and Rd in Greenspan’s model and Rd in the radial-death model.

Although Rd has a similar interpretation in both models, in the radial-death model it must cap-

ture both the second phase of growth inhibition and the third phase of necrosis, both of which

relate to Q and Rd.

We study the map between the radial-death and Greenspan models at p5 = f15(p1), the

parameters in the radial-death model we find to be equivalent to those in the Greenspan

model (Fig 4). The sensitivity matrix is given by

l z Rd

S52 p5ð Þ ¼
0:874 0:126 � 0:0506

0:519 � 0:52 1:01

" #
l

Rmax

:
ð35Þ

The maximum spheroid size, Rmax is sensitive to all parameters in the radial-death model,

whereas the per-volume growth rate, λ, has a near one-to-one correspondence between mod-

els. While the radial-death model is identifiable, we still see that the sloppiest direction corre-

sponds to the intersection of the constant λ and constant Rmax manifolds defined by the map

from the radial-death to logistic models (Fig 6D). In this case, we solve Eq (32) using the FIM

for the radial-death model, and show the resultant curve within a 95% likelihood-based confi-

dence region in the three-dimensional parameter space.

Predicting non-identifiability. Whereas traditional identifiability and sloppiness analysis

provides directions (if any) in the parameter space to which the model output is insensitive,

our geometric analysis provides information about the sensitivity of model features to changes

in parameters. This allows us to predict non-identifiability using known identifiability results

for the simpler, phenomenological models. For instance, for R(t)/Rmax� 1 the solution of the

logistic model corresponds to exponential growth

RðtÞ � R0 exp
lt
3

� �

; ð36Þ

which does not depend on Rmax. We conclude that Rmax is non-identifiable from early-time

data.

In Fig 7, we establish the practical identifiability of the logistic, radial-death, and Greenspan

models in the case that 22 equally-spaced early-time observations are made for 0� t� 5 d,

using profile likelihood analysis. Again, we generate synthetic data from the Greenspan model,

however reduce the variance of observations σ = 2 μm so that the confidence interval for esti-

mates of λ in the logistic model are comparable to those in Fig 5, where measurements are

taken for 0� t� 21 d. As expected, Rmax is non-identifiable (specifically, Rmax is one-sided

identifiable, as we can establish that the maximum spheroid size must be greater than the

observed size of spheroids).

Geometric analysis of the map between the radial-death and logistic models (Eq (35)) indi-

cates that λ in the logistic model is insensitive to changes in (z, Rd) in the radial-death model.

Therefore, since only λ is identifiable from early-time data, we expect that (z;, Rd) are now

non-identifiable. We see this in profile likelihood analysis for the radial-death model in Fig 7C.

From the geometric analysis we were able to determine that information about (z, Rd) is con-

tained in late-time data. Similarly, geometric analysis of the map between the Greenspan and
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logistic models (Eq (31)) established that changes in (Q, Rd, γ) correspond to changes in Rmax,

but not λ. Again, our analysis indicates that information about (Q, Rd, γ) would not be available

from early-time data. These results are consistent with profile likelihood analysis (Fig 7D),

which shows that profiles for (Q, Rd, γ) are flat; while (Q, Rd, γ) are also non-identifiable from

observations up to t = 21 d, there is less information about the parameters from early-time data.

Gaining insights from complex, non-identifiable models. For interpreting spheroid

radius data, the Ward and King model performs poorly compared to the other models consid-

ered based on AIC and model sloppiness analysis (Fig 1C and 1D). As significantly simpler

models can provide comparable fits, we conclude that the information contained in outer radius

measurements is insufficient to identify the eight parameters in the (already simplified) Ward

and King model. The reason for number of parameters in the Ward and King model is the num-

ber of biological mechanisms it includes: it is the only model we consider that explicitly incorpo-

rates the consumption of nutrients by cells, the passage of nutrients from the spheroid exterior

inside the spheroid, cell death, and the initial spatial distribution of cells inside the spheroid.

We study the sensitivity of parameters in the Ward and King model to features

indicated by the logistic model at p6 = f16(p1) where an initial guess of �p6 ¼

½10; 1:5; 1:4; 0:4; 0:35; 0:07; 6� 105; 3� 104; 0:1�
⊺

is used in the optimisation routine. The

Fig 7. Identifiability analysis for the logistic, radial-death, and Greenspan models using early-time data. (A,C,D) Profile likelihood for the

parameters in each model, using synthetic data generated from the Greenspan model with standard deviation σ = 2 μm. Synthetic data is shown

in (B). Also shown is the threshold for an approximate 95% confidence interval (black-dashed). For the Greenspan model, we additionally show

the parameter values used to generate the synthetic data.

https://doi.org/10.1371/journal.pcbi.1010844.g007
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sensitivity matrix is given by

l d c1 c2 a Dp Qp p0

S62 p6ð Þ ¼
0:641 0:135 � 0:0318 0:0474 0:0247 � 0:0143 0:0129 � 0:0452

0:563 � 0:5 0:234 � 0:368 � 0:515 � 0:0158 0:00482 0:1

" #
l

Rmax

:
ð37Þ

Table 1 contains a summary describing the biological interpretation and biological mecha-

nism associated with each parameter. First, we see a correspondence in the per-volume

growth rate between models. As expected, increasing the cell per-volume growth and death

rates have opposing effects on the maximum spheroid size. Interestingly, we find that

increasing the relative nutrient consumption rate, α, has little impact on the the growth rate,

but does cause a decrease in the maximum spheroid size. Further, we see that increasing the

nutrient threshold for growth inhibition, c1, causes an increase in the maximum spheroid

size; if cells require more oxygen to proliferate, they do so more slowly but this may, overall,

yield larger spheroids.

Given that there are eight parameters in the Ward and King model, it is difficult to visualise

the geometry of the map from the Ward and King model to the logistic model. However, we

can apply the Jacobian of the Ward and King to logistic model-map, J62(p6), to interpret the

model sloppiness results for the Ward and King model in Fig 1D. We denote the rows of J62 as

u1 and u2, corresponding to gradients with respect to λ and Rmax, respectively. Recalling that

the eigenvalues of the FIM correspond to the curvature of the expected log-likelihood in the

direction of each corresponding eigenvector, we interpret the relative magnitude of each

eigenvalue as a measure of how informative the corresponding direction is. In Table 2 we tabu-

late the eigenvalues of the FIM and the dot products between the corresponding eigenvectors

and unit vectors in the direction of u1 and u2. Dot products close in absolute value to zero indi-

cate orthogonality, dot products close in absolute value to one indicate a correspondence

between the directions. These results confirm that sloppy or uninformative directions are

orthogonal to directions that correspond to large changes in λ and Rmax.

The elements of the Jacobian of the model-map relate to absolute changes in the parame-

ters, whereas elements of the sensitivity matrix relate to relative changes in the parameters.

Therefore, we can use the rows of the sensitivity matrix, denoted s1 and s2 to move around the

parameter space of the Ward and King model to achieve relative changes in the volumetric

growth rate, λ, and relative changes in the maximum spheroid radius, Rmax, respectively (full

details are available in S1 File). We demonstrate this in Fig 8A and 8B, where we choose

Table 2. Orthogonality between the model-map and uninformative directions. We tabulate the eigenvalues of the

FIM relative to the largest eigenvalue, and the dot product between each corresponding eigenvector and rows of the

Jacobian of the Ward and King to logistic model-map.

Eigenvalue v � û1 v � û2

2.18 × 10−18 3.06 × 10−8 6.27 × 10−9

2.41 × 10−15 -1.13 × 10−7 1.99 × 10−7

4.04 × 10−6 -6.38 × 10−2 3.88 × 10−3

6.74 × 10−5 -4.18 × 10−1 4.09 × 10−2

1.51 × 10−4 3.26 × 10−2 1.24 × 10−2

3.73 × 10−4 -7.03 × 10−1 3.31 × 10−2

1.12 × 10−2 2.05 × 10−1 -2.21 × 10−1

1.0 -5.33 × 10−1 9.74 × 10−1

https://doi.org/10.1371/journal.pcbi.1010844.t002
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adjusted parameters in the Ward and King model to achieve a 10% relative increase and

decrease in both λ and Rmax.

Since s1 and s2 are not orthogonal, moving in the relative direction of s1 results in an increase

to both λ and Rmax. However, and potentially more usefully, we can move in the direction of an

orthogonal projection of s1 onto s2 to achieve, approximately, a relative change in λ without

changing Rmax. We demonstrate this in Fig 8C, showing an increase in the volumetric growth

rate but a much smaller change in the maximum spheroid radius compared to results in Fig 8A.

Discussion

The nexus between model complexity and data quantity and quality is an ongoing challenge in

computational biology that is often resolved subjectively rather than objectively. While new

experimental technologies are rapidly increasing the detail and resolution obtainable in biolog-

ical data, mathematical models can always be made arbitrarily complex. On the other hand,

data is often limited in light of the biological questions that are posed. Identifiability and slop-

piness analyses have been developed to harmonise model and data complexity, to guide model

selection and reduction, in order to ensure parameter identifiability [19, 56]. However, the

complex, highly-detailed, heavily-parameterised models that are commonplace in mathemati-

cal and computational biology are often required to answer important biological questions: a

model of tumour spheroid growth must incorporate nutrient dependencies to provide insight

into the role nutrients play on growth [8, 57]. As we show, for some data only simple phenom-

enological models, such as the logistic and Gompertz growth models, are those that are identi-

fiable. These models can provide excellent agreement to experimental data, allow the

comparison and interpretation of experiments, however not being constructivist, provide only

limited insights into underlying biological mechanisms.

In many cases, simple phenomenological models produce a goodness-of-fit on par with

that of a complex mechanistic model (Fig 1B and 1C). As a result, traditional model selection

methodology will favour the simplicity and identifiability of the simple model, penalising the

number of parameters in the complex model. Where the non-identifiable parameters in com-

plex mechanistic models carry direct biological interpretations (the nutrient sensitivity, for

instance) of prime interest to experimental scientists and biologists, the identifiable parameters

in the simple model carry interpretations relating to features of the data (the early-time rate of

change or the maximum spheroid size, for instance). In this work, we utilise this key difference

Fig 8. Using the sensitivity matrix of the model-map to achieve relative changes in model features. We apply the rows in the sensitivity matrix to

adjust the parameters in the Ward and King model to achieve approximate relative changes in the parameters in the logistic model. In (A–B) we

move in the direction of each row of the corresponding row of the sensitivity matrix; in (C) we move in direction of a projection of row 1 orthogonal

to row 2, resulting in relative changes to the volumetric growth rate, but not to maximum spheroid radius.

https://doi.org/10.1371/journal.pcbi.1010844.g008
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to draw biological insight from complex mechanistic models by studying the geometry of a

map from the parameters in the complex model to those in the identifiable surrogate. One

interpretation of our approach is to provide an intermediate mode of interpretation that sits

between the model parameters and the likelihood (or other goodness-of-fit metric) that is tra-

ditionally studied in identifiability and model sloppiness analysis. In contrast to studying the

sensitivity of the model in terms of the overall fit, we effectively decompose the fit into features
and study the sensitivity of model parameters to these features. This approach enables us lever-

age mechanistic modelling to gain insights from data that would otherwise be lost if a one-

dimensional goodness-of-fit metric, such as the likelihood, were to be studied directly.

We demonstrate our approach by analysing common models and typical data of tumour

spheroid growth. Mathematical models of tumour spheroid experiments range from the sim-

plistic—however routinely and effectively applied—logistic growth models [11, 58], to spatial

models that can capture the density of arbitrary numbers of cell and nutrient species [13, 17,

59, 60], and to individual-based models that describe the individual behaviour of every cell in

the spheroid [61–63]. Despite the complexity of even this simple experimental model of

tumour growth, data often comprise only measurements of overall tumour spheroid size.

More complicated experimental systems, such as in vivo vascularised tumour growth, are

accompanied by a corresponding menagerie of complex models [64–66], however data from

these experiments can be even more limited, noisy, or sparse in comparison with experimental

models of avascular tumour growth [18]. Even the relatively simple Greenspan model, which

comprises only four unknown parameters, is non-identifiable without measurements of inner

spheroid structure [14]. Our goal in this work is to draw insights from such models with com-

plexity mismatched to that of the available data.

The model-data relationship is typically explored with structural or practical identifiability

analysis [26]; the former in an infinite-data, model-only frame of reference, the latter in con-

sideration of the noisy observation process that ties the model to the data. While we first estab-

lish the practical identifiability of each model, our geometric analysis does not fall into either

of these classifications for a number of reasons. First, the model-map is defined in the least

squares sense, and does not explicitly incorporate data. Secondly, as the surrogate model is not

necessarily nested within the complex model of interest, the two are not equivalent in a mean-

ingful infinite-noise-free-data limit. As a consequence, if the complex model is considered

reality, the surrogate model produces predictions that are biased. In the context of data, we see

this as an advantage as even complex models are by definition abstractions of reality. As we

utilise the surrogate model to characterise features of the data, our approach is overall robust

to this bias. We demonstrate this by using the logistic model as a surrogate for the Greenspan

model in the main text, despite the bounded Gompertz model having a crowding function far

more similar to that of the Greenspan model. Analysis using the Gompertz and Richards mod-

els (S1 File) is similar to that using the logistic model.

A limitation of FIM-based identifiability and sloppiness analysis, and our sensitivity-

matrix-based geometric analysis, is a restriction to providing only local information. Effec-

tively, these techniques relate to a quadratic approximation and linearisation, respectively,

about the MLE (or parameter values otherwise under consideration) of the complex model

and are consequentially sensitive in cases where the corresponding likelihood is multimodal.

While the manifolds relating to the map between the logistic and Greenspan models (Fig 6A

and 6B) are locally linear near the parameter combination of interest, globally the manifold

relating to λ appears hyperbolic. Different points on the constant-likelihood curve have the

potential to produce substantially different sensitivity matrices. One approach to address this

is to incorporate prior knowledge to regularise the parameter fitting problem. Recent work

considers identifiability and sloppiness analysis based directly on the parameter covariance
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matrix estimated from Bayesian methods such as Markov-chain Monte-Carlo to provide an

overall snapshot of the global parameter sensitivities [35]. However, we expect this approach

to be problematic in our geometric framework, since the model-map is based on an equiva-

lence between models that may only apply locally in the vicinity of the points used to compute

the between-model sensitivity matrix.

The relatively small number of unknown parameters in the Greenspan model allow us to

visually explore the geometry of the parameter space using surrogate models, providing insight

into non-linearities that are not captured by the model-map sensitivity matrix. However, in

contrast to traditional identifiability analysis where parameters are generally classified as identi-

fiable or not, the model-map sensitivity matrix has the ability to further classify non-identifiable

parameters by which feature they relate to. In the vicinity of the parameter values of interest,

this classification can allow for graphical geometric analysis even for models with more than

three unknown parameters, by decomposing the parameter space into low-dimensional subsets

that relate to individual features. For example, in the Ward and King model, the three parame-

ters with the strongest correspondence to the maximum spheroid size, (λ, α, δ), can be priori-

tised for further analysis ahead of the full, eight-dimensional parameter space [29].

Aside from providing insight into the sensitivity of model features to parameters and predict-

ing non-identifiability, we provide a simple demonstration of how the model-map relationship

can be used to move in the parameter space to produce changes to specific model features (Fig

8C). Akin to moving in the direction of the sloppiest direction, these results show how to con-

strain movements in the parameter space to model feature manifolds. For heavily-parameterised

models that are difficult to calibrate (perhaps, for example, due to multi-modal likelihoods),

constraining movements in the optimisation algorithm used for model calibration to these man-

ifolds allows successive matching of model features: for instance, first moving to parameter

combinations that produce the desired maximum spheroid radius, and then moving on this

manifold to match the growth curve shape and scale. More generally, applying surrogate models

that are themselves candidate models raises interesting possibilities for future analysis. General-

isations of the logistic model, such as the three-parameter Richards model, provide a low-

dimensional summary of model behaviour that can be characterised using machine learning or

Gaussian processes [67]. Building up a global model-map between the complex and surrogate

models is another approach to overcome the localisation limitation of our methods, and could

be computationally advantageous in the case of computationally expensive complex models.

Experimental data are often limited in light of the biological questions posed of them. Like-

wise, in the mathematical and modelling literature, complex models are numerous and often

more suitable to biological questions of interest, yet can be ill-suited for parameterisation from

the available data. In this work, we develop a geometric analysis to gain insights from complex,

non-identifiable models using simple surrogate models with parameters that relate to features

in the data. We expect our analysis to apply to any hierarchy of non-identifiable and identifi-

able models of biological systems.
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