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Abstract

Microbial specialised metabolism is full of valuable natural products that are applied clini-

cally, agriculturally, and industrially. The genes that encode their biosynthesis are often

physically clustered on the genome in biosynthetic gene clusters (BGCs). Many BGCs con-

sist of multiple groups of co-evolving genes called sub-clusters that are responsible for the

biosynthesis of a specific chemical moiety in a natural product. Sub-clusters therefore pro-

vide an important link between the structures of a natural product and its BGC, which can be

leveraged for predicting natural product structures from sequence, as well as for linking

chemical structures and metabolomics-derived mass features to BGCs. While some initial

computational methodologies have been devised for sub-cluster detection, current

approaches are not scalable, have only been run on small and outdated datasets, or pro-

duce an impractically large number of possible sub-clusters to mine through. Here, we con-

structed a scalable method for unsupervised sub-cluster detection, called iPRESTO, based

on topic modelling and statistical analysis of co-occurrence patterns of enzyme-coding pro-

tein families. iPRESTO was used to mine sub-clusters across 150,000 prokaryotic BGCs

from antiSMASH-DB. After annotating a fraction of the resulting sub-cluster families, we

could predict a substructure for 16% of the antiSMASH-DB BGCs. Additionally, our method

was able to confirm 83% of the experimentally characterised sub-clusters in MIBiG refer-

ence BGCs. Based on iPRESTO-detected sub-clusters, we could correctly identify the

BGCs for xenorhabdin and salbostatin biosynthesis (which had not yet been annotated in

BGC databases), as well as propose a candidate BGC for akashin biosynthesis. Addition-

ally, we show for a collection of 145 actinobacteria how substructures can aid in linking

BGCs to molecules by correlating iPRESTO-detected sub-clusters to MS/MS-derived

Mass2Motifs substructure patterns. This work paves the way for deeper functional and

structural annotation of microbial BGCs by improved linking of orphan molecules to their

cognate gene clusters, thus facilitating accelerated natural product discovery.
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Author summary

In this work, we introduce iPRESTO, a tool for scalable unsupervised sub-cluster pre-

diction in biosynthetic gene clusters. This computational genomics tool development is

important because these biosynthetic hotspots encode many products useful for human-

ity, such as antibiotics, antitumor agents, or herbicides. Recent technological develop-

ments have made detection of biosynthetic loci in genomes straightforward. Yet,

methods to connect these inferred biosynthetic genes to the final chemical structures of

their cognate metabolites are largely lacking. Being able to reliably predict parts of the

final product would constitute a real step forward in natural product genome mining

through integrative omics mining. Therefore, we focussed on constructing a tool to sys-

tematically predict and annotate small regions called sub-clusters, which code for the

biosynthesis of substructures in the final product, across all genomically inferred bio-

synthetic diversity. iPRESTO now makes it possible to query unknown biosynthetic

regions and infer which substructures are present in their metabolic products. This will

facilitate more effective prioritisation of chemical novelty, as well as linking activities

from bioassays and microbiome-associated phenotypes to the metabolites responsible

for them.

This is a PLOS Computational Biology Software paper.

Introduction

A considerable part of bacterial metabolism is dedicated to the biosynthesis of specialised

metabolites. These natural products (NPs) have many uses as pharmaceuticals, crop protection

agents, and ingredients for foods and cosmetics [1,2]. NPs consist of a spectrum of different

chemical classes, which are often highly complex in structure [3]. Intriguingly, the genes neces-

sary for the biosynthesis of NPs cluster together physically in biosynthetic gene clusters

(BGCs) [4]. The search and discovery of new BGCs accelerates identification of new NPs,

which is especially important in the field of antibiotics, as antibiotic-resistant bacteria are

becoming increasingly prevalent [5].

Due to the growing availability of genomic data, genome mining approaches have become

more and more useful for NP discovery. Currently, multiple algorithms exist that mine bacte-

rial genomes for putative BGCs, such as antiSMASH, ClusterFinder and PRISM [6–8]. These

methods have provided a better understanding of BGC diversity and the evolutionary mecha-

nisms that govern BGC diversity.

Many classes of BGCs display a modular architecture [4]. As such, a BGC can be divided

into multiple modules or sub-clusters, where each sub-cluster is a group of co-evolving

genes responsible for the biosynthesis of a specific chemical moiety in the NP [4,9,10]. Sub-

clusters therefore provide a direct link between the substructures of an NP and its BGC. This

makes information about sub-clusters and the substructures they synthesise highly valuable

for genome-based structure prediction, which would be a great asset for tools like anti-

SMASH. Apart from enhancing structural predictions for existing BGC classes, sub-cluster

knowledge would facilitate predicting novel (partial) structures of currently unclassified

BGCs, such as the thousands of unclassified BGCs with yet unknown products in the anti-

SMASH-DB [11].
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Additionally, BGC modularity poses a great opportunity to connect metabolomics experi-

ments to sub-cluster data. Chemical moieties identified from fragments in mass spectrometry

(MS) data could be linked to sub-clusters responsible for their synthesis, as part of MS-guided

genome mining strategies [10,12,13]. Recent advances in substructure modelling [14] may aid

such co-occurrence-based metabologenomic approaches [15] by automating the identification

of substructures from MS/MS data.

Recently, Del Carratore et al. [10] introduced an initial method for the prediction of sub-

clusters in BGCs. By constructing Clusters of Orthologous Groups (COGs) and by using a sta-

tistical approach to group co-occurring COGs in sub-clusters, they were able to detect several

experimentally characterised sub-clusters, as well as to discover novel ones. However, COG

construction is not very scalable due to the all-vs-all BLAST calculation required. As a result,

their analysis was performed on a relatively small dataset that is by now almost a decade old,

and the chosen approach is hard to scale up to the massive amounts of genomic data that have

become available in recent years. Additionally, the proposed statistical approach greatly over-

estimates the numbers of sub-clusters. This is due to the presence of redundant BGCs, which

leads to artificial sub-clusters spanning entire BGCs, and caused by the inherently nested struc-

ture of the sub-clusters, where smaller, less specific sub-clusters are contained in larger, more

specific sub-clusters. Apart from (artificially) inflating the number of sub-clusters, nested

structures also make it more difficult to find actual biologically meaningful sub-clusters as a

result of nested combinations of biological sub-clusters.

Here, we propose an improved scalable method for unsupervised sub-cluster prediction

which we called the integrated Prediction and Rigorous Exploration of biosynthetic Sub-clus-

ters Tool (iPRESTO). iPRESTO is scalable to large datasets and takes phylogenetic bias into

account by filtering the input in a more advanced way. To predict sub-clusters, iPRESTO uses

a statistical approach (PRESTO-STAT) as well as a topic modelling algorithm (PRESTO-TOP).

PRESTO-STAT uses the same approach as the method by Del Carratore et al. [10] to find sub-

clusters based on genes that co-occur in a statistically significant fashion across a collection of

BGCs. We further developed the method by removing part of the nested sub-clusters and col-

lapsing similar sub-clusters into families and clans. PRESTO-TOP is a novel method for sub-

cluster prediction based on Latent Dirichlet Allocation (LDA) that learns a set of sub-cluster

motifs from a collection of BGCs. As a data source, we used the antiSMASH-DB, which is one

of the largest collections of BGCs that currently exists, and which has been scrutinized for

underlying genome assembly quality [11]; it contains over 150,000 BGCs from almost 25,000

bacterial species selected to reduce taxonomic bias. These numbers represent a considerable

improvement in comparison with the previous method as it contains over ten times as many

BGCs, while being less redundant. After applying iPRESTO on this large collection of BGCs,

we were able to annotate 45 sub-cluster motifs based on occurrences in known BGCs from the

MIBiG reference BGC database [16]. Using these annotated sub-cluster motifs, we zoomed in

on relevant sub-clusters, and showed direct usefulness of our method by correctly predicting

the BGCs for xenorhabdin and salbostatin biosynthesis (which have been published but were

missing from BGC databases) and identifying a candidate BGC for akashin biosynthesis.

Finally, as a starting point for the automated connection of BGCs to their NPs, we were able to

systematically link sub-clusters to substructures by using a metabologenomic correlation

method in a paired-genome-metabolome dataset of 145 actinobacteria.

iPRESTO is available as a command-line tool at https://git.wageningenur.nl/

bioinformatics/iPRESTO/. We anticipate that the main use of iPRESTO for the genome-min-

ing community is to query BGCs to the annotated sub-cluster motifs that we made available,

and, in doing so, predicting one or more substructures in the biosynthetic products of those

BGCs. To make our current analyses most useful, we provide both the annotated sub-clusters
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as well as the remaining unannotated sub-clusters together with information such as the bio-

synthetic classes and taxonomic assignments of the BGCs that are associated with them, so

that they can continue to be explored. With new training data, it is of course also possible to

generate novel sub-cluster models with iPRESTO.

Results & discussion

Overview of iPRESTO

iPRESTO prepares each BGC for sub-cluster prediction by tokenising each gene in a BGC as a

combination of Pfam domains (Fig 1 and S1 Fig). If a pair of proteins share the same Pfam

domains, this provides an effective indication of (at least distant) sequence similarity, while

Pfam detection is highly scalable. As Pfams are quite broad sequence models (which would be

a major disadvantage compared to using COGs), we increased the resolution by splitting the

112 most abundant biosynthetic Pfams into a number of subPfams, akin to the implementa-

tion in BiG-SLICE [17]. Each subPfams constitutes a narrower domain model that covers a

subset of a Pfam’s sequence space. We only considered biosynthetic domains (see Methods) to

limit the search space and focus solely on finding biosynthetic sub-clusters. With a graph-

based filtering step, redundant BGCs are removed, after which iPRESTO predicts sub-clusters

using PRESTO-STAT and PRESTO-TOP. PRESTO-STAT is based on the previously pub-

lished statistical method [10], which we expanded by partly removing nested sub-clusters, col-

lapsing similar sub-clusters into families, and joining similar families into clans.

To extend the toolbox for discovery of sub-clusters with a method that does not produce

nested sub-clusters, we introduce PRESTO-TOP as a novel approach for sub-cluster predic-

tion. PRESTO-TOP is built on Latent Dirichlet Allocation (LDA), which is used to model top-

ics in text documents. LDA has already been used successfully in genome and metabolome

data analysis before [14,18]. In the case of PRESTO-TOP, a text document is a BGC, a word is

a gene represented as a domain combination, and a topic can be thought of as a sub-cluster

motif. This makes the use of PRESTO-TOP for sub-cluster prediction intuitive, as we assume

that a BGC is a combination of multiple different sub-clusters, which consist of co-evolving

Fig 1. Outline of the iPRESTO workflow for the prediction of sub-clusters. All genes in BGCs are converted into strings of Pfam domains, after

which redundant BGCs are filtered out based on an Adjacency Index of domains. Sub-clusters are predicted using two methods: PRESTO-TOP (TOP)

and PRESTO-STAT (STAT). BGCs from the MIBiG database are used to annotate putative sub-clusters with sub-structures. These annotations are used

to predict sub-structures in unknown BGCs.

https://doi.org/10.1371/journal.pcbi.1010462.g001
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genes that co-occur in multiple BGCs. Another benefit of PRESTO-TOP is that a topic or sub-

cluster motif will usually consist of a set of core genes that encode the enzymes to synthesise

the base of a substructure, while various combinations of additional modifying genes can be

found in PRESTO-STAT-predicted (nested) sub-clusters. In this way, the two iPRESTO meth-

ods can jointly capture substructure diversity, by identifying the sub-cluster cores as well as

their variants.

The resulting sub-clusters of both methods can be annotated with substructures and subse-

quently be used to predict sub-structures in BGCs. iPRESTO is readily usable as a command-

line tool for anyone who wants to predict sub-clusters in their own datasets, by querying BGCs

to the collection of sub-clusters we predicted and partially annotated in this study. It is also

possible to use iPRESTO for predicting new sub-cluster models from scratch using new train-

ing data. iPRESTO can handle large amounts of BGCs: tokenising and reducing redundancy

in the 150,000 BGCs in the antiSMASH-DB dataset took around 48 hours each using 32 CPU

cores on an Intel Xeon CPU E5-2670 v3. Predicting sub-clusters with PRESTO-STAT and

PRESTO-TOP completed in 24 and 8 hours, respectively. iPRESTO can query around 20

BGCs per minute to the sub-clusters predicted in this study including the tokenisation steps.

iPRESTO also contains a visualisation module to visualise the results of querying a BGC to

PRESTO-STAT or PRESTO-TOP output (see S2 Fig for an example of querying the rifamycin

BGC).

PRESTO-STAT improves comprehensibility of existing statistical method

We applied iPRESTO to the antiSMASH-DB v2 dataset, which contained, after pre-processing,

60,028 BGCs with 10,539 domain combinations (Table A in S1 Text). Using the PRESTO-

STAT method, we found 108,085 sub-clusters in the dataset. Over 80% of the statistical sub-

clusters contain fewer than ten genes, and 17% of the sub-clusters occur in more than 10 BGCs

(S3 Fig). When comparing PRESTO-STAT with the previous version of the method by Del

Carratore et al. [10], we observed that PRESTO-STAT produces on average roughly two sub-

clusters per BGC, while the previous method resulted in roughly fourteen sub-clusters per

BGC. This indicates that we end up with fewer nested sub-cluster structures, which is most

likely due to our extended redundancy filtering that removed almost half of the dataset

(Table A in S1 Text). Even so, nested structures are still very apparent in our results (S2 Fig).

For example, thousands of BGCs have more than 30 sub-clusters, many of which overlap with

one another (S4A Fig). Not only do the nested structures inflate the results, but they also have

the additional disadvantage that their presence makes it harder to connect BGCs with similar

yet distinct sub-clusters.

To facilitate the sub-cluster analysis, we connected related sub-clusters by clustering the sta-

tistical sub-clusters into 10,000 sub-cluster families (SCFs) and the SCFs into 2,000 sub-cluster

clans (SCCs). We used K-means clustering and represented the statistical sub-clusters as a

presence/absence matrix of the tokenised genes. Although some SCCs grouped seemingly

unrelated sub-clusters together that share only one gene (based on having the same Pfam

domain content), most SCCs (81%) provided groups of related sub-clusters, sharing at least

three genes.

Apart from the nested structures, the statistical method produces many sub-clusters of

which only a fraction probably provides meaningful information. This is illustrated by the fact

that the PRESTO-STAT results can be very noisy: in a group of BGCs sharing multiple sub-

clusters, all combinations of these shared sub-clusters could form new sub-clusters, which hap-

pens frequently (S2 Fig). Additionally, it would quickly become very time-consuming to query

a BGC using the statistical sub-clusters while also allowing inexact matching.
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PRESTO-TOP identifies characterised and novel sub-clusters

The drawbacks of PRESTO-STAT present a clear reason as to why we chose to also develop

PRESTO-TOP, which can find multiple sub-clusters in a BGC and is able to capture sub-clus-

ter diversity within sub-cluster motifs. Furthermore, LDA, upon which PRESTO-TOP is built,

allows for a scalable way to build and query sub-cluster motifs.

We used PRESTO-TOP to train and query a model on the antiSMASH-DB dataset with

1,000 sub-cluster motifs. In the Methods section, we provide information on (hyper)parame-

ters used and reasoning for the chosen settings. Over 80% of the BGCs in the dataset contained

at least one sub-cluster motif (S4B Fig). To assess the quality of the sub-cluster motifs, we visu-

alised all sub-clusters individually, where each sub-cluster is a group of genes matching against

a sub-cluster motif (Fig 2A). For a sub-cluster to be interesting, we would expect its size to be

between 2–12 genes, as experimentally characterised sub-clusters fall in this range [19]. Upon

checking our results, most sub-clusters that were present across a considerable number of

BGCs were within this expected size range (Fig 2A), while some sub-clusters were uninforma-

tive as they encompass (nearly) entire BGCs (Fig 2B). To validate the sub-cluster motifs, we

assessed whether we could detect a set of 109 experimentally verified sub-clusters, which are

stored in the SubClusterBlast module within the antiSMASH framework. The sub-cluster

motifs from PRESTO-TOP matched to 91 (83%) validated sub-clusters, where the methoxy-

malonate and AHBA sub-clusters of macbecin are shown as examples (Fig 2C). Additionally,

PRESTO-STAT was able to detect 78 of the validated sub-clusters, of which 75 overlap with

the sub-cluster motifs (S5 Fig). In general, we see that PRESTO-TOP generates a more

restricted amount of sub-cluster data, which might contain less meaningful sub-clusters com-

pared to PRESTO-STAT in absolute numbers but has a considerably higher ratio of valid sub-

cluster information.

Our results provide clear examples of sub-cluster motifs that capture sub-cluster variety, by

containing a set of core genes responsible for synthesising the base of a substructure, and a set

of modifying genes that may not be present in all sub-clusters. For example, a motif like the

Fig 2. BGC length versus sub-cluster length. (a) Scatterplot of the length of each BGC (number of non-empty genes) from the antiSMASH-DB dataset

versus the length of a match to a topic or sub-cluster motif, representing a sub-cluster. The colour of each dot indicates how many times a BGC with a

certain length contains a sub-cluster with a certain length. (b) BGC for sipanmycin where the identified sub-cluster encompasses the entire BGC,

demonstrating an uninformative result. (c) BGC for macbecin where the two characterised sub-clusters for AHBA (red) and methoxymalonyl (blue) are

highlighted in the structure of macbecin [20]. Sub-clusters from (b) and (c) are linked to their corresponding location in (a).

https://doi.org/10.1371/journal.pcbi.1010462.g002
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sugar-related sub-cluster motif 680 is present in 134 MIBiG BGCs that represent different bio-

synthetic classes, such as different types of polyketide synthases and nonribosomal peptide

synthetases. This motif codes for the biosynthesis of different (di)deoxy-sugars that are some-

times modified with amino or methyl-amino groups. However, for some sub-cluster motifs,

the biosynthetic context had an impact on shaping the motif. The sugar-related sub-cluster

motif 207, for example, contains several indolocarbazole biosynthesis genes as some MIBiG

BGCs matching to this motif encode the production of indolocarbazoles, and some of the

indolocarbazole-related genes ended up in this motif as weak features.

Exploring the sub-cluster motifs

Among the 90 identified characterised sub-clusters from the antiSMASH SubClusterBlast

module, we could readily annotate 23 sub-cluster motifs covering around 4,000 of the PRE-

STO-TOP-predicted sub-clusters. To extend on the sub-cluster knowledge stored in the Sub-

ClusterBlast module, we annotated another 22 PRESTO-TOP-predicted sub-cluster motifs for

which sub-cluster instances were found inside MIBiG BGCs. Together, these 45 annotations

constitute 24 different types of substructures at different levels of detail and allow us to explore

the discovered sub-clusters more deeply (Fig 3 and S1 File). In the non-redundant anti-

SMASH-DB dataset, around 9,500 (16%) putative BGCs contain at least one of these annotated

sub-cluster motifs. Through iPRESTO, we now gained relevant knowledge about these puta-

tive BGCs that we can use to predict part of the structures of the products they encode.

On average, an annotated sub-cluster motif occurs in 239 non-redundant BGCs, ranging

from 19 BGCs for sub-cluster motif 190, to 873 BGCs for sub-cluster motif 220, which encode

Fig 3. Sub-cluster motif annotations. The pie chart visualises the annotations for the 45 sub-cluster motifs divided into general substructure groups,

where an example substructure is shown for several groups. Additionally, examples of eight of the substructures are shown in the structures of

apoptolidin, platencin, fluvirucin b2 and pyralomicin 1a, where the colours of the substructures correspond to the sub-cluster motif annotations in the

pie chart. For these four metabolites, their respective BGCs are shown where the sub-cluster motifs are highlighted in the same colour as the

substructures they encode.

https://doi.org/10.1371/journal.pcbi.1010462.g003
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the biosynthesis of caprazol and dihydroxybenzoic acid moieties, respectively (S6 Fig). Some

of the annotated sub-cluster motifs are mainly present in one BGC class, while others occur in

diverse BGC classes (S6 and S7 Figs). An example of the latter is sub-cluster motif 773, which

occurs in 153 BGCs mostly encoding nonribosomal peptide synthetases and type I polyketide

synthases. This sub-cluster motif encodes the production of a 3-amino-2-methylpropionyl

starter unit that appears in the known gene cluster BGC0001597 (fluvirucin b2) (Fig 3). Inter-

estingly, the motif also occurs in some BGCs of the class “Other”, meaning they cannot be clas-

sified by antiSMASH, like two BGCs from Amycolatopsis alba DSM 44262 (NZ_KB913032.1.

cluster021; AMYAL_RS0129245—AMYAL_RS0129610) and Bradyrhizobium sp. Ec3.3
(NZ_AXAS01000001.cluster006; YUU_RS0100020—YUU_RS49645). This does not only

provide interesting leads for these BGCs with previously unknown structural predictions,

but it also adds to their validity. In total, 6.5% of the 10,000 “Other” class BGCs in the anti-

SMASH-DB contain one of the annotated sub-cluster motifs.

iPRESTO can identify BGCs of orphan metabolites through sub-cluster

presence

Information about the sub-clusters present in a BGC is not only useful to predict the product

of a BGC, but it could also be used as a tool to identify BGCs for ‘orphan’ known metabolites.

To demonstrate this, we searched NPAtlas [21] with substructures that are encoded by our

annotated sub-cluster motifs and looked for metabolites without a MIBiG BGC that are found

in one of the strains in the antiSMASH-DB dataset. We first searched for metabolites that con-

tain the dithiolopyrrolone substructure for which the biosynthesis is encoded by sub-cluster

motif 517, annotated as such based on the MIBiG BGCs encoding thiomarinol, holomycin and

thiolutin [22–24]. In doing so, we found xenorhabdins 1–6, produced by many Xenorhabdus
strains that are also present in the antiSMASH-DB [25]. By searching for BGCs in those strains

that contain a match to the dithiolopyrrolone sub-cluster motif, we found 12 Xenorhabdus
strains that contain such a BGC (Fig 4). In one of those strains, X. doucetiae, the BGC for

xenorhabdin biosynthesis has recently been described, corroborating that we accurately identi-

fied BGCs for xenorhabdin biosynthesis based on iPRESTO-predicted sub-clusters [26]. Next,

we searched NPAtlas for metabolites with the valienol moiety present in validamycin and pyra-

lomicins, which is encoded by sub-cluster motif 940 [27,28]. As a result, we found salbostatin,

which is produced by Streptomyces albus ATCC 21838 in our dataset [29]. By investigating

BGCs in that strain, we identified a BGC that contains sub-cluster motif 940 and should there-

fore be responsible for salbostatin biosynthesis (Fig 4). Indeed, it turned out that this BGC has

already been described in 2008 to encode the production of salbostatin [30], but it has been

lacking from the MIBiG database [16]. This valienol sub-cluster motif encoding C7-cyclitol-

like substructures is an interesting example of a sub-cluster motif that can be found in different

biosynthetic contexts, i.e., PKS-NRPS-like pyralomicins and different kinds of saccharides like

validomycin and salbostatin. This analysis highlights that iPRESTO allows identifying correct

links between BGCs and molecules that are published but were yet missing in public BGC

databases (and which can thus be added to these resources).

By searching in NPAtlas for chlorinated indoles, we found the orphan metabolites akashin

A-C produced by the diazaquinomycins producer Streptomyces sp. F001 [32]. The BGC of aka-

shins has not been described before in literature. As this strain was not present in the anti-

SMASH-DB, we ran antiSMASH 6 on the genome of this strain and used iPRESTO to infer

sub-clusters in the predicted BGCs. As akashins have chlorinated-indole moieties and are

glycosylated, we sought for such sub-cluster motifs in the BGCs of S. sp. F001. Interestingly,

we identified the genomic region in QZWF01000007.1.region003 (StrepF001_25985—
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StrepF001_26130) directly upstream of the diazaquinomycin BGC, based on the presence of

sub-cluster motifs 194, 607 and 680 that were annotated as methylaminosugar, halogenated

aromatic ring, and (amino)deoxysugar, respectively (Fig 5). The formation of the indigo-

derived backbone of akashins could potentially be formed by the two p450 enzymes, akin to

CYP102G4, a recently described p450 enzyme from S. cattleya [33]. This p450 enzyme can cat-

alyse the reaction from indole to 3-hydroxyindole after which spontaneous oxidation forms

Fig 4. Connecting non-MIBiG BGCs to their metabolic products through iPRESTO-predicted sub-clusters. (a) Phylogenetic tree made with

CORASON of 12 Xenorhabdus BGCs and 3 MIBiG BGCs, that contain an iPRESTO-predicted sub-cluster for dithiolopyrrolone biosynthesis [31]. The

A-domain containing gene of NZ_FO704550.1.cluster001 was used as query for CORASON. Structures of thiomarinol (1), thiolutin (2) and holomycin

(3) are linked to their MIBiG BGCs. Xenorhabdins (4–9) are encoded by X. doucetiae str. FRM16 as indicated by the asterisk, while we infer based on

sub-cluster presence that the other Xenorhabdus BGCs are also responsible for xenorhabdin biosynthesis. (b) Phylogenetic tree made with CORASON

NZ_CP010519.1.cluster004 from S. albus ATCC 21838 and 4 MIBiG BGCs, that contain an iPRESTO-predicted sub-cluster for C7 cyclitol biosynthesis.

The predicted 2-epi-5-epi-valiolone synthase from NZ_CP10519.1.cluster004 was used as query for CORASON. Structures of validomycin A (10) and

pyralomycin 1A (11) are linked to their MIBiG BGCs. Salbostatin (12) is encoded by S. albus ATCC 21838 as indicated by the hash symbol.

https://doi.org/10.1371/journal.pcbi.1010462.g004
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indigo. CYP102G4 was even shown to accept chloro-indole as substrate, in the case that chlori-

nation occurs before indole formation in akashin biosynthesis. This shows that iPRESTO can

aid in generating meaningful hypotheses about the biosynthesis of orphan metabolites.

Correlation analysis in substructure-based integrative omics mining

To automatically link unknown molecules to BGCs at a larger scale, correlating substructures

predicted from metabolomics data to sub-clusters from genome data would potentially be of

great added value [12,13]. To test such an approach, we used a previously defined correlation

score which assumes that a BGC is needed to synthesise a product, but that a BGC may be

cryptic and not synthesise anything under the used conditions [15]. Ernst et al. [34] used the

MS2LDA tool to discover substructure mass patterns, called Mass2Motifs, from metabolomics

data of 145 Salinispora and Streptomyces species for all of which (except one) genomic data

and BGC predictions are also available (the ‘Streptomyces/Salinispora dataset’) [14]. To iden-

tify sub-clusters in the genomics data of the same species, we used iPRESTO to query all Strep-

tomyces/Salinispora BGCs on the sub-cluster motifs and sub-cluster clans (SCCs) of the

antiSMASH-DB dataset. For each of the 107,590 pairs of Mass2Motifs and sub-cluster motifs,

we used the correlation score from Doroghazi et al. [15] to calculate how frequently they co-

occur across the Streptomyces/Salinispora strains, while we did the same for the 122,404 pairs

of Mass2Motifs and SCCs (S8 Fig). To prioritise interesting substructure-sub-cluster pairs, we

performed permutation tests for all pairs to assess the likelihood of a high scoring pair arising

by chance. This was especially needed as the Streptomyces/Salinispora dataset includes highly

related strains, in which many BGCs and compounds are shared. Abundant sub-clusters and

substructures therefore get high correlation scores by default. Permutation testing resulted in

3,230 and 1,939 ‘significant’ pairs of Mass2Motifs and sub-cluster motifs or SCCs, respectively

(S8 Fig). As an example of how such an approach connects substructure information inferred

from genome mining with that of metabolome mining, we identified 5 high correlation scores

with low p-values between two staurosporine-related mass2motifs and both sub-cluster motifs

and SCCs constituting the amino-sugar moiety of staurosporine (Fig 6). Since currently only a

Fig 5. Putative BGC for akashin A biosynthesis. The antiSMASH-predicted BGC QZWF01000007.1.region003 is shown

(StrepF001_26130-StrepF001_26145), which is hypothetically responsible for akashin A biosynthesis in S. sp. F001. Genes are

coloured by their iPRESTO-predicted sub-clusters or predicted function based on Pfam domains.

https://doi.org/10.1371/journal.pcbi.1010462.g005
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fraction of the Mass2Motifs, sub-cluster motifs and SCCs are annotated, our analysis serves as

an illustration of how such an approach could help to link metabolome and genome data in

the future.

This correlation method generally results in a lot of noise, as sub-clusters and substructures

that occur in a shared subset of strains will all correlate to each other. Therefore, s uch co-cor-

relating structures make the identification of the actual correlating pair difficult, especially

with limited annotations. Identifying clusters of co-correlating pairs could provide a way to

make the interpretation of this analysis easier. Additionally, the correlation analysis is not per-

fect in our case, as multiple different sub-clusters are often responsible for synthesising the

same kind of substructure. For example, we identified multiple sub-cluster motifs that can

encode for the production of methylated aminosugars, while only one mass2motif is annotated

as a methylated aminosugar. In future approaches, such mismatches between genome and

metabolome could be overcome by finding ways to group sub-cluster motifs together that

encode similar structures before running such metabologenomic correlation analyses. Com-

bining such solutions with the integration of more diverse species, new annotations, and

improved correlation scoring methods like the one developed in Hjörleifsson Eldjárn et al.

[35] would improve such analyses drastically. Furthermore, we expect that combining co-

occurrence based scores (such as the standardised Metcalf one) with feature-based scores, such

as NPClassScore [36], and the here developed iPRESTO, will further help to prioritise plausible

BGC-MS/MS spectral links [12,13]. Indeed, we expect that tools like iPRESTO could in the

future be built into frameworks like NPLinker [35]. As our current contribution represents a

first step in linking substructure-and sub-cluster models with rather limited (annotated)

Fig 6. Metabologenomic correlation scores between sub-clusters and mass2motifs. Stacked histogram of the correlation scores across the

Streptomyces/Salinispora strains between the mass2motifs paired with either the SCCs or sub-cluster motifs with a p-value below 0.1. Highlighted with

their scores are the pairs mass2motif_108 with SSC_452, SSC_1010, sub-cluster_motif_207 and sub-cluster_motif_680, and the pair mass2motif_8 with

SSC_452. The aforementioned sub-cluster motifs (blue) and SCCs (brown) are responsible for sugar synthesis in staurosporine, while both mass2motifs

(red) are staurosporine related.

https://doi.org/10.1371/journal.pcbi.1010462.g006
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information, we expect that analyses like these will have great impact in the future to facilitate

metabologenomics experiments that use integrative omics mining.

Conclusion and future perspectives

This study introduces the iPRESTO concept and makes it available as a command- line tool

which can be used to query BGCs to the set of partially annotated sub-clusters generated in

this study, as well as to train new sub-cluster models. We plan to include iPRESTO in one of

the future releases of antiSMASH, so the collection of sub-clusters we generated can be used

more easily to predict and visualize them in antiSMASH-predicted BGCs. We anticipate that

this will enhance the current scope of sub-cluster prediction, as antiSMASH’s current sub-clus-

ter predictor SubClusterBlast offers a limited amount of sub-cluster data, whereas our sub-

cluster set will allow making more connections between predicted BGCs and MIBiG reference

BGCs. This will accelerate NP discovery by linking structural information from genome and

metabolome data.

Due to the above discussed limitations of PRESTO-STAT, we plan to use PRESTO-TOP as

the main method for sub-cluster prediction in the antiSMASH implementation, as it also cap-

tures sub-cluster variety in the sub-cluster motifs and yet can be used easily to query BGCs for

sub-cluster motifs. PRESTO-STAT could still be used to identify the sub-cluster boundaries

better, by for example linking groups of related PRESTO-STAT sub-clusters to ’parent’ PRE-

STO-TOP sub-cluster motifs, and by using the PRESTO-STAT modules to more specifically

identify the sub-cluster variant found in a given BGC. The drawback of the statistical method,

i.e., that it produces highly nested and variable sub-clusters, could as such be used as a strength.

A way to further improve PRESTO-TOP would be to apply PRESTO-TOP in a semi-super-

vised manner, which constitutes a major potential benefit of this approach. Before training an

LDA model, certain motifs could be seeded beforehand, which allows accurate sub-cluster

motifs to be reused in new analyses, analogous to the metabolomics substructure database

MotifDB, in which annotated Mass2Motifs are stored in MotifSets [37]. Such semi-supervised

approaches would allow for noise to be eliminated from sub-cluster motifs and sub-cluster

motifs to be finetuned. Another way to reduce noise and to identify the more robust sub-clus-

ter motifs would be to train multiple PRESTO-TOP models on the same dataset. Sub-cluster

motifs that are found in every PRESTO-TOP model would constitute conclusive sub-cluster

motifs, whereas sub-cluster motifs that are identified in most cases would still be considered

reasonably accurate. In this manner, noisy sub-cluster motifs that arise by chance would be fil-

tered out, as they would only occur in one or a few of the many LDA models. Noisy genes in

accurate sub-cluster motifs could be filtered out by taking the intersection of multiple similar

sub-cluster motifs. As another option, each BGC could be represented multiple times in train-

ing to increase the observations of less frequently occurring sub-clusters. This could lead to

better estimation of the sub-cluster motif distributions over the data and cause less erroneous

mixed sub-cluster motifs. We have attempted this for a small subset and noticed that the over-

lap with SubClusterBlast increased slightly, making this an interesting avenue to continue

PRESTO-TOP sub-cluster algorithmic developments.

Using iPRESTO, in our current study we were able to characterise 45 different sub-cluster

motifs present in diverse BGC classes. The remaining 955 sub-cluster motifs remain largely

unexplored, of which many are likely to encode useful substructures. We expect that, in the

future, more annotations will increase the value of our results even more, which will be aided

by the inclusion of updated (expanded) versions of the MIBiG database. Using one of the char-

acterised sub-cluster motifs, we showed a direct practical application of our method by

hypothesising a putative BGC for akashin A production. Additionally, we provided the initial
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step for linking genomics-derived sub-clusters to metabolomics-derived substructures in a sys-

tematic way, which in the future could facilitate the automated connection of BGCs to their

NPs through integrative omics mining.

Methods

Data selection

The antiSMASH-DB dataset consisted of three data sources: the MIBiG database, the Strepto-

myces/Salinispora dataset and the antiSMASH-DB. Version 1.4 of the MIBiG database was

used which contains 1,819 BGCs (https://dl.secondarymetabolites.org/mibig/mibig_gbk_1.4.

tar.gz). The Streptomyces/Salinispora dataset consists of 5,927 BGCs that originate from the

146 Streptomyces and Salinispora strains investigated by Crüsemann et al. [38]. antiSMASH

3.0 was used for identification of BGCs in the Streptomyces/Salinispora dataset. The anti-

SMASH-DB version 2 is comprised of 152,122 BGCs detected with antiSMASH 4.0, where we

included BGCs from draft genomes (Table A in S1 Text; https://dl.secondarymetabolites.org/

database/2.0/asdb_20180828_all_results.tar.xz). BGCs were discarded if they were flagged by

antiSMASH as lying on a contig-edge, as these BGCs are probably incomplete (fragmented)

and less accurate. Additionally, BGC class information was included in the analysis, by using

the assigned antiSMASH biosynthetic classes.

Data pre-processing

BGCs were tokenised by converting each gene into a string of (sub)Pfam domains. To identify

(sub)Pfams, the HMMER3 tool hmmscan was used with a custom profile hidden Markov

model (pHMM) database consisting of Pfam database version 32.0, where 112 Pfams were

replaced by corresponding subPfams [39,40]. These 112 Pfams were selected as they are the

most abundant biosynthetic Pfams in the antiSMASH-DB (S2 File). To create subPfams, the

multiple sequence alignment of a Pfam is split into clades, after which a new pHMM is built

for each clade, each of which constitutes a subPfam (S1A Fig and https://github.com/

satriaphd/build_subpfam).

Redundant BGCs were removed from the analysis using a similarity network of BGCs,

where BGCs were connected based on an Adjacency Index of domains higher than 0.95 or if

BGCs were fully contained within one another. From each maximal clique in the network,

only the BGC with the most domains was chosen to remain in the analysis (Table A in S1 Text

and S9 Fig) [41]. After redundancy filtering, all non-biosynthetic domains were removed from

all BGCs. To select biosynthetic domains, EC-associated Pfams were collected with ECDo-

mainMiner, from which Pfams were selected if they occurred in pre-calculated BGCs [42].

After manual curation, this resulted in a list of 1,839 biosynthetic Pfams (S3 File). Additionally,

Pfams that occurred less than three times in the dataset were removed as well as BGCs that

contained less than two non-empty genes (S4 File).

PRESTO-STAT

The statistical method for sub-cluster prediction was re-implemented in Python based on Del

Carratore et al. [10] with some alterations, resulting in PRESTO-STAT. Instead of representing

genes as COGs as in the previous method, we represent each gene as a combination of its

domains. First, all possible adjacency and co-localisation interactions between each pair of

genes are counted. To assess whether an observed interaction between two genes occurs more

than by random chance, one needs to distribute such a pair of genes randomly through the

dataset and calculate the probability of the observed interaction. To reduce the computational
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burden of a permutation-based approach, for each pair of genes one gene is kept fixed while

the other is being randomly distributed throughout the data. For an adjacency interaction this

gives a hypergeometric equation describing all available positions of one gene while the other

is fixed (Table B1 in S1 Text). This follows from the fact that there are three options for the

position of gene B while keeping gene A fixed: not adjacent to gene A (B1), adjacent to gene A

(B2), or adjacent to gene A on both sides (B3). N1, N2 and N3 represent all available positions

in these three categories, while Ntot represents all positions and Btot all occurrences of gene B.

For a co-localisation interaction the same applies, except for the fact that gene B can be co-

localised with nmax genes A, where nmax is the number of genes A co-localised with gene B

(Table B2 in S1 Text). When nmax is large this becomes computationally hard, which is why we

replaced duplicate genes with an empty gene (a dash) and placed one copy of the duplicate

gene at the end of the cluster separated by an empty gene. This simplifies the equation, as only

two types of co-localisations need to be counted: co-localisation and no co-localisation

(Table B3 in S1 Text). A p-value can be calculated by summing all probabilities in the hyper-

geometric distribution that correspond to several interactions higher or equal to the observed

number of interactions. Or, to make it easier, by subtracting the sum of all possible interactions

smaller than the observed interaction from one (Table B4 in S1 Text).

Calculating an interaction between each pair of genes results in two p-values, one coming

from gene A and one coming from gene B. Only the largest p-value for both the co-localisa-

tion, and the adjacency interactions is considered, to be conservative. To control false discov-

ery rate under dependency we used the Benjamini–Yekutieli method on both the co-

localisation and adjacency p-values [43].

To group interacting pairs of genes into sub-clusters, undirected graphs are constructed,

where each gene is a node. An edge is made between two genes if they have an adjacency or

co-localisation p-value below a threshold of 0.1. All maximal cliques are selected as sub-clus-

ters, while changing the threshold iteratively to all the p-values in the dataset smaller than

the original threshold of 0.1. To reduce false positives, we removed putative sub-clusters if

they contained fewer than three genes and if they only occurred in one BGC. Next, we

grouped similar sub-clusters together using K-means clustering into sub-cluster families and

sub-cluster clans and removed redundant sub-clusters (Supplementary methods in S1 Text)

[44,45].

PRESTO-TOP

PRESTO-TOP uses Latent Dirichlet Allocation (LDA) latent sub-cluster composition in

BGCs [46]. LDA assumes a bag-of-words representation, where each BGC is depicted as a

frequency vector of its domain combinations, not taking gene order into account. We used

the multicore LDA implementation from Gensim, that makes use of online variational Bayes

[47,48]. In this implementation, an LDA model is trained by updating it with mini-batches

from the data, which has low time and memory complexity. We chose the chunk size of each

mini-batch to be 5% of the data with a minimum chunk size of 2,000, which is loosely based

on testing different chunk sizes by Hoffman et al. [48]. We considered that using 500 itera-

tions to train a model was enough after assessing that the log-likelihood converged suffi-

ciently (S10 Fig). For the sake of computational resources, we did limited hyperparameter

optimisation for the number of sub-cluster motifs (topics) N, α, and β. To test the perfor-

mance of the different models, we considered the coherence score as measured with the

u_mass method [49] and the overlap with validated sub-clusters from SubClusterBlast (Sup-

plementary methods in S1 Text). Based on the coherence score of the different models,

choosing 250 sub-cluster motifs seemed optimal (S11A Fig). However, upon manual
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inspection of some of the motifs, it turned out that many motifs are hard to annotate with a

single substructure due to the presence of many noisy features. This is corroborated by the

fact that choosing 250 sub-cluster motifs does not produce the highest overlap with SubClus-

terBlast (S11B Fig). Instead, the model with 1000 sub-cluster motifs produced the highest

overlap with SubClusterBlast while having a similar coherence score to the model with 250

motifs, which is why we chose 1000 sub-cluster motifs. We chose the default setting of a sym-

metric 1/N for hyperparameters α and β, as we could not find a better SubClusterBlast over-

lap when setting α and β to symmetric, asymmetric, auto, or 1.

Each sub-cluster motif in an LDA model consists of a probability vector of domain combi-

nations, representing the contribution of each domain combination to a sub-cluster motif. To

filter out noise, we sorted this vector from high to low probability, summed the probabilities

and included all domain combinations until 0.95 was reached. When a group of genes from a

BGC match to a sub-cluster motif, each gene is assigned a gene-to-motif probability describing

how well it fits in the sub-cluster motif, for which we set a cut-off of 0.3. To consider the

matching group of genes a sub-cluster, it needs to consist of more than one gene. We therefore

set a cut-off of 1.1 on the summed gene-to-motif probabilities. Additionally, we calculated an

overlap score for each match, which we computed by summing the domain combination prob-

abilities from the sub-cluster motif present in the match [50]. We set a threshold of 0.15 on the

overlap score, as this was the highest threshold that did not remove manually validated Sub-

ClusterBlast sub-clusters from the analysis.

Supporting information

S1 Text. Supplementary information for iPRESTO: Automated discovery of biosynthetic

sub-clusters linked to specific natural product substructures.

(DOCX)

S1 Fig. Schematic depiction of BGC tokenisation. (A) subPfams are constructed for the 112

most frequent Pfam domains in the antiSMASH-DB by dividing the multiple sequence align-

ment of a Pfam into clades and converting each clade into a new pHMM. (B) The BGCs pre-

dicted by antiSMASH are tokenised by detecting (sub)Pfams in each gene, where non-

biosynthetic Pfams are removed. After tokenising the BGCs, sub-cluster can be predicted with

the statistical method (Stat), where the tokenised genes are represented in their original order,

or by LDA, which assumes a bag of words model where original gene order is not considered.

(TIF)

S2 Fig. Result of querying rifamycin (BGC0000373) to the PRESTO-TOP and PRESTO-

STAT sub-clusters generated in this project. Only around 25% of the PRESTO-STAT sub-

clusters are shown. Each gene is depicted as a token, where all (sub)Pfam domains are col-

oured. The visualisation of the BGC, the PRESTO-TOP and PRESTO-STAT output are sepa-

rated by a dashed line, respectively. All PRESTO-STAT sub-clusters clearly exhibit a nested

structure, where all combinations of genes in an actual sub-cluster are predicted as individual

sub-clusters. The PRESTO-STAT sub-clusters shown here are also examples of noisy sub-clus-

ters comprised of combinations of genes from different actual sub-clusters, like predicted PRE-

STO-STAT sub-clusters that are combinations of genes responsible for the biosynthesis of

AHBA (green), sugars (blue) and the polyketide scaffold (purple).

(TIF)

S3 Fig. Information about the PRESTO-STAT sub-clusters. (A) The distribution of the

number of genes per PRESTO-STAT sub-cluster in the antiSMASH-DB dataset. (B) The

distribution of the log10 transformed PRESTO-STAT sub-cluster occurrences in the
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antiSMASH-DB dataset.

(TIF)

S4 Fig. Number of PRESTO-STAT and PRESTO-TOP sub-clusters per BGC. (A) Distribu-

tion of the log10 transformed number of PRESTO-STAT sub-clusters per BGC in the non-

redundant antiSMASH-DB dataset, where the bin with the seemingly negative value represents

BGCs without any PRESTO-STAT sub-cluster. (B) The number of topics or sub-cluster motifs

per BGC in the non-redundant antiSMASH-DB dataset, not counting sub-clusters of length

one as these are almost definitely noise (see Methods). (C) All BGCs with at least one anno-

tated sub-cluster motif grouped by how many annotated sub-cluster motifs they have. In total

there are 9,425 putative BGCs with at least one annotated sub-cluster motif, and 350 MIBiG

BGCs.

(TIF)

S5 Fig. PRESTO-STAT and PRESTO-TOP overlap with validated sub-clusters from Sub-

ClusterBlast. Overlap between predicted SubClusterBlast sub-clusters and output of both sub-

cluster prediction methods applied on the antiSMASH-DB dataset according to different over-

lap cut-offs. The overlap expresses the fraction of genes from the original SubClusterBlast sub-

cluster that is found in the iPRESTO-predicted sub-cluster. We considered an overlap of 0.6

sufficient for having predicted a sub-cluster (see Supplementary methods in S1 Text).

(TIF)

S6 Fig. Degrees (occurrences) of the annotated sub-cluster motifs within the anti-

SMASH-DB dataset (non-redundant).

(TIF)

S7 Fig. BGC class distribution across sub-cluster motifs. Relative abundance of antiSMASH

classes when querying the non-redundant antiSMASH-DB dataset on the 45 annotated sub-

cluster motifs. Matches of length 1 are ignored and hybrid class BGCs are counted for all clas-

ses they contain. RIPPs classes are grouped together.

(TIF)

S8 Fig. Correlation scores between Mass2Motifs and sub-clusters. (A) Correlation scores

between Mass2Motifs and SCCs. (B) Correlation scores between Mass2Motifs and sub-cluster

motifs. In both panels the significant pairs are highlighted.

(TIF)

S9 Fig. Graphical representation of graph-based filtering for the small dataset: MIBiG-and

Streptomyces/Salinispora BGCs. Each node represents a BGC and an edge represents an

adjacency index (AI) of 0.95 or higher. In blue are the BGCs chosen as representatives, while

BGCs that are filtered out are shown in black. We show the small dataset here as it was difficult

to visualize this process for the antiSMASH-DB dataset.

(TIF)

S10 Fig. LDA model convergence. Convergence of the log-likelihood of an LDA model with

1,000 topics/sub-cluster motifs trained on the non-redundant 60,028 BGCs from the anti-

SMASH-DB dataset, which also contains the Streptomyces/Salinispora dataset and the MIBiG

database, using 2,000 iterations of chunk size 3,000. Log-likelihood based on 28 held out

BGCs.

(TIF)

S11 Fig. Coherence scores and overlap with SubClusterBlast sub-clusters for different

LDA models. (A) Coherence scores of different LDA models trained using PRESTO-TOP
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on the non-redundant antiSMASH-DB dataset with different number of topics. (B) Number

of validated SubClusterBlast sub-clusters found with different LDA models trained using

PRESTO-TOP on the non-redundant antiSMASH-DB dataset with different number of top-

ics.

(TIF)

S1 File. Excel file containing the current information about the generated sub-cluster

motifs. Sheet one includes annotations for the annotated sub-cluster motifs and sheet two

contains metadata for all sub-cluster motifs such as biosynthetic classes and taxonomic assign-

ments of BGCs that are associated with them.

(XLSX)

S2 File. The 112 domains for which we created subPfams.

(TXT)

S3 File. The biosynthetic domains we considered in this study.

(TXT)

S4 File. All used domain-combinations present in the antiSMASH-DB dataset after filter-

ing.

(TXT)
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